
Diss. ETH No. 7346

Medos-2:

A Modula-2 Oriented Operating System

for the Personal Computer Lilith

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

Doctor of Technical Sciences

presented by

SVEND ERIK KNUDSEN

Dipl. Phys. ETH

born October 19,1947

citizen of Thalwil (Zurich)

accepted to the recommendation of

Prof. Dr. N. Wirth, examiner

Prof. Dr. C.A. Zehnder, co-examiner

Zurich 1983

C 1983 by Svend Erik Knudsen, Grundsteinstr. 2, CH-8804 Au/ZH

Preface

In the fall of 1977, Prof. N. Wirth started an integrated hardware and software project

aiming at the construction of a modern personal computer, a highly desirable tool for

the creative software engineer. The principal parts of the so-called Lilith project

were the design of the programming language Modula-2 and the construction of a

multipass compiler for it, the design of a suitable machine architecture for the

execution of compiled programs, the design and construction of a computer capable
of efficiently interpreting the defined machine architecture and equipped with the

desired peripheral devices, the design and the implementation of the single-user

operating system Medos-2, the development of modern text and graphic editors

taking full advantage of the computer's capabilities, and the development of a whole

range of utility programs and library modules supporting the preparation of

documents and the development of programs. After successful prototyping a series

of 20 computers was built.

During the first year of the project, I was mainly involved in the programming

language part of the project. Since then, I have designed, implemented, and

maintained the operating system. This thesis grew out of my participation in the

Lilith project and concentrates on the single-user operating system. The thesis

shows that it is feasible to implement a substantial single-user operating system in

Modula-2, that good support of and by a modern programming language providing

separate compilation may considerably influence the design of an operating system,

and that the area of personal computing made possible by recent progresses in the

computer hardware area will call for well-suited operating systems. Medos-2 is an

attempt to create such a system.

I am indebted to Prof. N. Wirth for conceiving and coordinating the Lilith project, for

giving me the opportunity to design and implement the operating system Medos-2,

and for supervising this thesis.

I also thank Prof. C.A. Zehnder for his advice on this thesis.

Thanks are also going to all my colleagues who parcipated in the Lilith project and

thereby contributed to Lilith's success. The thanks are in particular going to L.

Geissmann, Ch. Jacobi, and W. Winiger for many valuable discussions and to A.

Gorrengourt for the implementation of the file-buffering. I would also like to thank H.

Hinterberger and F. Ostler for their careful reading of my thesis.

The patience and encouragement of my mother have, however, above all, made it

possible for me to finish this work.

4

Contents

Abstract 6

Kurzfassung 7

1 Introduction 9

1.1 Similarities and Dissimilarities of Operating Systems 9

1.2 Development History 10

2 Medos-2 and the Given Environment 12

2.1 Goals of Medos-2 12

2.2 The Target Computer Lilith 14

2.3 The Programming Language Modula-2 19

3 Design Objectives and Chosen Concepts 25

3.1 Design Objectives 25

3.2 Medos-2 as a Collection of Modules 26

3.3 Execution of Programs 28

3.4 Management of Resources 31

3.5 Concepts Providing Openness 35

4 System Overview from the User's Side 37

4.1 The Command Interpreter 37

4.2 The Program Interface 38

4.3 The Structure of the Resident System 42

5 Implementation of Programs 45

5.1 Management of Main Memory 45

5.2 The Linking-Loader 49

5.3 Execution and Termination of Programs 60

6 The Implementation of Files on Disk 63

6.1 Files in Medos-2 (Overview) 63

6.2 The Organization of Disk-Files 65

6.3 Data I ntegrety Aspects 70

6.4 File Buffering 74

6.4.1 The File Buffering Concept in Medos-2 74

6.4.2 Distribution of Buffers to Disk Files 75

6.4.3 Read-Ahead for Sequentially and Randomly Accessed Files 79

6.4.4 Organization of the Buffer Pool 80

6.4.5 Performance Measurements 82

7 Conclusions 86

7.1 System Advantages 86

7.2 System Disadvantages 86

7.3 Evaluation of Modula-2 as a Systems Implementation Language 87

7.4 Evaluation of Lilith's Architecture and Hardware 88

7.5 Perspectives 89

5

Appendices
1 Descriptions of the Modules in Medos-2 91

1.1 Module CardinallO 91

1.2 Module DefaultFont 92

1.3 Module DiskSystem 93

1.4 Module DisplayDriver 99

1.5 Module D140Disk 102

1.6 Module FileMessage 105

1.7 Module FileSystem 106

1.8 Module Frames 122

1.9 Module Monitor 123

1.10 Module Program 124

1.11 Module SEK 132

1.12 Module System 134

1.13 Module Terminal 135

1.14 Module TerminalBase 138

1.15 Module Userldentification 140

2 Format of Object Code Files 142

References

6

Abstract

Medos-2 is a single-user operating system designed and implemented for the

personal computer Lilith. It is an object-oriented operating system conceived

according to the concept of open systems. Its principal parts are the file system, the

linking-loader, the part providing a "standard" terminal, and the command

interpreter. All basic software for the Lilith computer is programmed in Modula-2.

The operating system's interface to programs is therefore presented as a collection

of separate Modula-2 modules and the operating system is a memory-resident

Modula-2 program.

The purpose of this thesis is to show how Medos-2 provides both an easy to use and

comfortable environment for developing and running Modula-2 programs by use of

simple but powerful concepts for managing resources, for executing programs, and

for handling files. The successful implementation, the efficiency, and the small size

of the system are also due to this. The thesis also shows that it is possible to

implement a realistic single-user operating system completely in Modula-2.

Medos-2 executes programs like "super-procedures". Any running program may

activate another program. The linking-loader links a called program to its actual

environment and checks the compatibility of separate modules. Both Lilith's

architecture and the format of object code Hies contribute to the simplicity of the

linking-loader.

Resources are managed by separate modules, typically one module for each kind of

resource. A resource (e.g. an open file, main memory space) is owned by an

activated program. Medos-2 provides several routines helping in implementing

resource-managers, which may be non-resident.

The effectiveness of the file system may heavily influence the performance of a

computer system. Medos-2's file system allocates disk sectors to files almost

contiguously, and makes use of this fact by reading ahead on files. The buffering

strategy is different for sequentially and randomly accessed files. This is enabled by

simple statistics over file accesses and by the management of buffers by the

generalized clock-algorithm.

7

Kurzfassung
Medos-2 ist ein Einbeniitzer-Betriebssystem, welches fur den Arbeitsplatzrechner
Lilith entworfen und implementiert wurde. Es ist ein objektorientiertes

Betriebssystem gestalltet gemass dem Konzept von offenen Systemen. Die

Hauptteile des Betriebssystems sind das Dateisystem, der Linking-Loader, der Teil,

welcher ein "Standard" Terminal zur Verfugung stellt und der Commandinterpreter.
Alle Grundprogramme fur den Lilith-Rechner sind in Modula-2 programmiert. Die

Schnittstellen des Betriebsystems fur Programme sind deshalb eine Sammiung von

separaten Modula-2 Modulen, und das Betriebssystem selbst ist ein

speicherresidentes Modula-2 Programm.

Der Zweck dieser Dissertation ist zu zeigen, wie Medos-2 eine sowohl einfach zu

beniitzende als auch komfortable Umgebung fur die Entwicklung und Ausfuhrung
von Modula-2 Programmen zur Verfugung stellt. Dies wird durch einfache aber

wirksame Konzepte fur das Verwalten von Betriebsmitteln, fur das Ausfiihren von

Programmen und fur die Behandlung von Dateien erreicht. Die erfolgreiche

Implementierung, die Effizienz, und der kleine Umfang des Betriebssystems ist

ebenfalls diesen Konzepten zuzuschreiben. Die Dissertation zeigt ebenfalls, dass es

moglich ist, ein realistisches Einbeniitzer-Betriebssystem komplett in Modula-2 zu

implementieren.

Medos-2 fiihrt Programme wie "Super-Prozeduren" aus. Jedes laufende Programm
kann ein anderes Programm aktivieren. Der Linking-Loader bindet ein aufgerufenes

Programm zu seiner aktuellen Umgebung und priift die Kompatibilitat der separaten

Module. Sowohl Liliths Architektur als auch das Format des object code file tragt zur

Einfachheit des Linking-Loaders bei.

Betriebsmittel werden durch separate Module verwaltt, typischerweise ein Modul fur

jede Betriebsmittelart. Ein Betriebsmittel (z.B. ein Datei, ein Hauptspeicherbereich)

gehort einem aktivierten Programm. Medos-2 stellt mehrere Routinen zur

Verfugung, die das Implementieren von eventuell nichtresidenten

Betriebsm ittelverwaltern erleichtern.

Die Effektivitat des Dateisystems kann die Leistung eines Rechners gravierend

beeinflussen. Das Dateisystem von Medos-2 alloziert, wenn moglich, benachbarte

Plattensektoren zu Dateien und nutzt diese Tatsache durch Vorauslesen auf Dateien

aus. Verschiedene Pufferstrategie werden fiir sequentiell und direkt zugegriffene
Dateien angewandt. Dies wird ermoglicht durch eine einfache Statistik Liber

Dateizugriffe und die Verwaltung der Puffer mit dem generalisierten

"clock"-Algorithmus.

Leer - Vide - Empty

9

1 Introduction

1.1 Similarities and Dissimilarities of Operating Systems

Medos-2 is a relatively small operating system developed for the personal computer
Lilith [Wir81]. A clear definition of what an operating system is cannot be found in

the literature. Terms like monitor, supervisor, and executive system are essentially

synomyms to operating system. Most authors, however, agree to the need of an

operating system and argue that the main reason for having an operating system is

the need for sharing resources. P. Brinch Hansen wrote about a decade ago, that

"an operating system is a set of manual and automatic procedures that enables a

group of people to share a computer installation efficiently" [BH73]. At another

place it is stated that "the operating system is that part of the software which

supports the sharing of resources" [TB74]. The sharing of a computer installation

among several (or many) users was, and still is, one of the main problems solved by
the operating systems in expensive installations. Personal computers should,

however, by definition not be shared among different users, at least not at the same

time. Like terminals, they are used exclusively by one person at a time. So, two

questions have to be answered before building a new operating system for a

personal computer, namely the first: Why is an operating system needed at all? And

the second: If an operating system is needed, why is a new operating system

needed? The answers to these two questions are also an important answer to the

question about the similarities and dissimilarities of operating systems.

The answer to the first question is that an operating system helps in sharing
resources in a very general sense. Although the traditional sharing of computers

among users is no longer needed for a purely personal computer, resource sharing

provided by operating systems in other areas is still very important for the user. A

few examples illustrate this: File systems support the storage of many files on a

single or a few disks, i.e. many files may share one or a few disks. More or less

unrelated and even unreliable programs may be executed one after the other,

without hampering each other, i.e. the main memory and the central processing unit

are shared by several computations in a convenient way. In most cases however,

the sharing of a resource among otherwise unrelated computations makes it

necessary to provide some sort of protection in order to guarantee the integrity of

the resource. The sharing of secondary storage media among several files makes it

possible, for example, to communicate information not only among users but, at

least as important, also among different computations of one user. The

standardized environment {abstract machine) provided by operating systems makes

the exchange of programs and routines among users feasible, i.e. the sharing of

programs and routines is made possible. A standard environment also hides

configuration differences, at least in the most often used aspects. Also, it helps to

make software more generally usable. A standardized encoding of information on

files increases the usefulness of programs. Many operating systems recommend

programmers to encode a text into a sequence of ASCII-characters. As most

programmers follow this advice, it turns out that text written by one program (e.g. an

editor) may be read by many other programs (compilers, cross reference generators,
text formaters, print programs, etc.) and not only by the program itself.

10

What can be expected from a new operating system that no existing one does

provide? The worst property of a new operating system is that it is new. Old

programs have to be adapted or even reprogrammed, new systems tend to be less

reliable, etc. Why not adapt an existing interactive (time-sharing) system (e.g. UNIX

[RT78]) or a real-time system to the personal computer Lilith? The answer to this

question is similar to the answer to questions like: Why not buy an existing mini- or

micro-computer system and use it as a personal computer? Why propose and

implement still another programming language? Many assumptions made one

decade ago when the now existing operating systems were designed have since

changed. Most operating systems (and indeed the most successful of them) are

special purpose systems in order to provide the desired service in a convenient and

economical way. The changed basic assumptions imply that better operating
systems might be written for our current (and special) needs. The interface of a

specialized operating system and, even to a higher degree, its implementation are of

course influenced by the assumptions made for its design. Over the last decade, the

size of hardware components and their prices have dropped so much that it is now

nearly a must to "give" each serious programmer his own real (and personal)

computer and not only a virtual machine in a centralized, shared computer system.
Consequences are that the user may be offered a much better interactive service

(shorter response time, "intelligent" responses to each key-stroke, etc.) and that the

operating system no longer has to share resources among different users.

Developments in programming languages (Ada [Ich80], Concurrent Pascal [BH75],
Mesa [MMS78], Modula-2 [Wir82], Pascal [Wir71, JW75], and many others) as well

as the fact that each user has his private computer, change the view on the whole

programming environment considerably. An operating system for a modern work

station should, as an example, no longer merely provide an improved (and hardware

protected) assembly language machine as its main building block.

1.2 Development History

A short history of the development of Medos-2 is given here: The main design was
done between spring 1979 and autumn I979 as a part-time task in addition to

educational duties and work on the Modula-2 compiler. The programming task

started in October 1979, and the first test executed on the Lilith computer was made

December 23, I979. In those days, the reliability of Lilith was very poor. The mean

time between two main memory failures was around 10 minutes, the time to load the

test-program from a small casette-tape about the same! The first release of Medos-2

(version 1) was in April 1980. In summer 1980, the Modula-2 cross compiler was

transported from a PDP 11/35 to Lilith within one week. The second version of

Medos-2 was released in October 1980. It had a few minor changes in the interface

to the file system. The third release, June 1981, included an improved mechanism

for recovery from errors in user-programs. In this period, several machines were

equiped with 128 kword main memory. The normal address space of Lilith is,

however, only 65536. Medos-2 was adapted not to store the bitmap for the display in

the normally addressable part of main memory. Version four of the system was

released in June 1982. Its interface to the display was changed, it provided a more

general allocation method for main memories larger than 64 kword, and it uses an

11

improved buffering technique for disk-files. The most recent release of the system

(Medos-2 version 4.2) was in December 1982. It supports the identification of users.

This appears to be needed if several work-stations are integrated into distributed

system by a (local area) network.

Meanwhile, many packages and programs have been developed for Lilith, all based

on Medos-2. The list of available programs includes the more common things like

editors, compilers, a debugger, and file utilities as well as a relational database

system and a new operating system built on top of Medos-2.

12

2 Medos-2 and the Given Environment

The development of the operating system Medos-2 is merely one part of a larger
project: the construction of a relatively powerful personal computer [Wir81].
Roughly speaking, each operating system has to provide facilities which support the

desired applications of the target machine, in this case the area of personal

computing. Some of the initial goals of Medos-2 are enumerated in the next section.

However, an operating system has also to fit well on top of the target machine and

has to be well implemented. Two major pillars, on top of which Medos-2 is built, have

to be characterized before the design of Medos-2 is discussed in more details,

namely the hardware of Lilith (2.2) and the programming language Modula-2 (2.3).
Both, the design of the hardware and of the programming language, were parts of

the project aiming at the development of the single-user work-station Lilith.

2.1 Goals of Medos-2

When the design of Medos-2 started in the spring of 1979, Lilith was mainly seen as a
work-bench computer in a software-oriented computer science department. Two

essential application areas were envisaged for a personal work-station in such an

environment, namely assistance by the machine in doing repetitive office work such

as preparing a document, writing a letter, and sending a message to a colleague, or

as a tool for developing, debugging, and executing programs.

The first class of problems may be handled by letting users execute one or several

application-specific "standard" program(s) (e.g. editors, formatters, print-programs,
etc.). The main advantage of a personal computer for these applications lies in its

potentially better user interface compared to that of an ordinary time-sharing
system. Shorter response times, more and better information on the screen

(graphics), response to each key-stroke, and the availability of a pointing device

(mouse) are some of the key-points. In order to have an even better tool at hand for

this class of applications, it is desireable to have work-stations connected to each

other and to some server computers by a local area network. It is still convenient

and more economical to place expensive, large, noisy, and/or rarely used devices

like printers, large disk drives, tape units, and communication multiplexers at central

locations and share them among several users.

The programmers, whom Medos-2 is intended to help, are mainly computer

scientists, software engineers, and students. Such people like to be free in the use

of their personal computer. The operating system should not hinder a programmer

to program and test even hardware oriented software like a driver for a new

interface, should not prescribe a certain lay-out on the display, nor should it fill the

memory up with resident code. What is needed is a relatively small resident

executive system which can load a program from a file on the disk and execute it.

No absolute protection mechanisms are necessary. Hardware supported protection
mechanisms tend to be of the category allowing "everything or nothing" which

appeared not to be of much help if it is desirable, from time to time, to use special or

new features of a certain machine. The desired "openness" aspect of the operating

system is important in an experimental environment. When Medos-2 was designed,

we had, however, no clear idea of the consequences this aspect has on an operating

13

system, although B. W. Lampson argued for open single-user operating system in

1974 [Lam74]. Pilot, an operating system developed for personal computers at

Xerox, is a modern example of a system providing no absolute protection

mechanisms [Red80]. Pilot is, however, by no means small.

Relatively early it was also decided that both the operating system and all user

programs had to be programmed in the same programming language, namely
Modula-2. The rule of having only one single programming language available was

not considered to be a restriction. On the contrary, there are many advantages to

programming all programs in the same high level programming langague. Here are

some examples: Only one compiler must be provided. The operating system calls

can be (at least syntactically) checked at compile time. The interface to the

operating system can be defined such that there is no distinction between

user-written routines, library routines, and operating system provided routines. It

was also expected that the module concept of Modula-2 would help in structuring

programs into manageable units and would provide a protection mechanism, no

doubt circumventable, but with a much finer granularity than the absolute

mechanisms usually employed by operating systems.

The small resident executive had to include a file system, simply because the

resident loader should load programs from files. The file system must be very robust

against all hardware, software, and user faults. This robustness is desirable mainly

because the system provides no absolute protection mechanism and because a loss

of information on a disk pack often may turn out to be irreversible. Of course, the file

system also has to be efficient both in terms of memory space used and in terms of

access-times, although, no real-time applications were envisaged for Medos-2. The

general performance of a single-user work-station (and of other general purpose

computer systems), however, depends heavily on the efficiency of its file system.

Another problem, which had to be anticipated from the beginning, was that several

application programs may turn out to be too large to be stored in main memory. The

first critical program was the Modula-2 compiler. The compiler was already

programmed for a minicomputer with a relatively small address space (PDP11), and

therefore partitioned into several passes. A good support of loading and execution

of the compiler passes and of communication between the passes was felt to be

adequate from the beginning, especially since Lilith does not support the

implementation of virtual memory.

To conclude the section, some key-sentences characterizing the goals of Medos-2

are listed:

- It should be a single-user system.
- It should support the execution of programs written in Modula-2.

- It should itself be programmed in Modula-2.

- It should enable an efficient use of main memory.
- It should be open.

- It should include a robust and efficient file system.

Other operating system topics were explicitly not egoals of Medos-2, for example:

Concurreency in user programs were not considered important at the beginning (no
real-time applications are supported). Multi-user support and multi-programming

14

were also not aimed at. The file system did not have to support general data-base

applications (e.g. atomic transactions, stable storage, etc.).

2.2 The Target Computer Lilith

The operating system Medos-2 is designed for the Lilith computer hardware. The

hardware of Lilith is described in a report by N. Wirth [Wir81]. This section gives a

short overview of a typical Lilith configuration and enumerates some of its main

hardware characteristics.

The Lilith Hardware

The hardware is a 16-bit machine and consists of a micro-coded central processing
unit, a multi-port memory with initially^ kword(16), interfaces for a raster scan

display, a disk drive, a keyboard, a cursor tracking device (mouse), a V-24 (RS-232)
asynchronous communication port, and a line clock. (See Figure 2.1) Later, the

main memory was enlarged to 128 kword and a controller for a 3 MHz Ethernet-type
local area network has been developed for the work stations [Hop83]. Interfaces for

a laser beam printer (Canon LBP 10), for an about 450 MByte disk drive (Fujitsu M

2351 A), for a X.25 network, and for other devices have also been developed.

The central processor (CPU) has a 16 bit wide arithmetic and logic unit (ALU) based

onJour AMD 2901 bit-slice units. A register stack for up to 16 entries supports the

evaluation of expressions. The micro-code memory is a PJROM-store for 2048

instructions ol\4^bjts each. The CPU operates at a basic clock cycle of iSOjis^ the
time required to interpret a micro-instruction. The most frequently occuring
macro-code instructions correspond to about 5 micro-instructions on the average.

No hardware mechanism has been provided for address translations (virtual
addresses to physical addresses) nor is a protection mechanism supported. Devices

are not memory-mapped, the interfaces are connected to a separate I/O bus.

The display is based on the raster scan technique using 592 lines of 768 dots each.

Each of the 454'656 dots is represented in main memory by one bit. The entire

bitmap occupies therefore 28'416 word or about 43 % of the initial main memory. A

second type of display providing 832 lines of 640 dots each has also been

developed. The bitmap for this display is a little larger (33'280 word), but as the main

memory typically contains 128 kword now, the fraction used for the display bitmap is

reasonable (22 - 23 %). The representation of each dot (picture element) in the

program accessible main memory makes the display equally suitable for text,

technical diagrams, and graphics in general. In the case of text, each character is

generated by copying the dot-pattern of the character into the appropiate place of

the entire screen's bitmap. This is done by software, supported by microcoded

routines, corresponding to special instructions. This solution offers the possibility to

display characters according to different fonts (i.e. the size, the thickness, the slope,

and the style of the displayed characters is changeable by software).

A Honeywell Bull D120 disk drive for removable disks is provided. The capacity of

one disk is about 9.8 MByte. The disk cartridges are formatted by the manufacturer

with 50 sectors per track and with 392 tracks on each of its two surfaces. 256 Byte

15

may be stored in each sector. The average rotational positioning time of the drive is

8.3 ms, the average head positioning time about 65 ms.

The mouse is a device that transmits to the computer signals which represent the

mouse's movements on a flat surface (e.g. a table). These movements are

translated (by software) into a cursor-position displayed on the screen. The

accuracy of position may be as high as the resolution of the screen. The mouse also

contains three pushbuttons (keys) which are convenient for giving commands after

positioning the mouse.

The Lilith Architecture

The instruction set of the Lilith computer is based on a stack architecture. This

so-called M-code was designed such that it can be generated easily by a Modula-2

compiler (or compilers for other Pascal-like programming languages) and can also

be executed efficiently. The efficiency of the execution is partly due to the dense

encoding of the instructions and partly due to the fact that the instruction set

enables a heavy use of CPU-internal base registers and of the CPU-internal short

register stack. The high density of the code is achieved not only by implicit

addressing of intermediate results in expressions, but mainly by providing different

address lengths and suitable addressing modes. Most addresses in instructions are

relatively small offsets to one of the base registers.

Unlike most other implemented architectures, the M-code architecture also supports

the execution of programs partitioned into several modules. The word module here

is to be understood as synonym to compilation unit. A separately compiled Modula-2

module is a typical example. To each loaded module belongs a so-called data frame

for its global data and a so-called code frame for the code of its procedures. (See

Figure 2.2) A table at a fixed location in main memory, the data frame table, holds

the addresses of the data frames of loaded modules. A reference to the

corresponding code frame is stored in the first word of its data frame. All modules

are accessible via the data frame table. The index of the entry in this table, the

module number, is used for the addressing of a certain module in the code. M-code

instructions that access data in other modules or call of procedures in other

modules typically use the module number as reference.

During the execution of a procedure declared in a certain module, the base

addresses of the corresponding data frame and code frame are stored in two base

registers (called G and F). Code and global data within the procedure's own module

may therefore be addressed efficiently by offsets only.

The next instruction to be executed is addressed by the register PC, a byte-offset

relative to the beginning of the code frame (i.e. relative to F). A call to a procedure of

another module (or a transfer of control from one coroutine to another coroutine)

implicitly assigns new values to the registers F, G, and PC.

M-code instructions for procedure calls do not contain the offsets of the procedures'

entry points within the corresponding code frame. Instead, an index to the

procedure entry table, the so-called procedure number, is specified in the

instruction. The procedure entry table is allocated at the beginning of the code

16

frame and contains the byte-offsets of the entry points of all procedures in the

corresponding module.

Local data of procedures are allocated in a stack of procedure activation records.

Each coroutine is allocated a contiguous working area in store, called a stack frame.

The stack frame contains the so-called process-descriptor at its beginning. The rest

of the stack frame contains the working space of the process. Four address

registers point to the stack frame of the currently executed process. They are called

P, L, S, and H. P points to the process descriptor at the beginning of the stack frame

(P for Process pointer), L ponts to the activation record on top of the stack (L for

Local data), S points to the first free location in the stack(S for Stack pointer), and H

points to the upper end of the stack (H for High limit).

The addresses of stack frames are used when control is transferred from one

coroutine to another. This so-called coroutine transfer may either be explicitly

programmed, or be implicitly invoked by an execution error detected by the

microcoded M-code interpreter, or be caused by an interrupt. Eight interrupt

handlers may be defined, one for each interrupt line. The addresses of the

corresponding coroutines (driver processes) are stored in a table, the interrupt

vector, at a fixed location in main memory and are therefore known to the M-code

interpreter. A priority scheme and an interrupt-enable scheme control the way

interrupts are handled by the M-code interpreter.

The M-code architecture includes several instructions for machine-specific

operations. These instructions may be classified into l/O-instructions, instructions

for operations on (screen-) bitmaps, and instructions for moving of blocks in main

memory. In the Lilith computer, interfaces are controlled by several M-code

instructions (and not by accessing fixed memory locations). Four M-code

instructions operate on bitmaps. The desired efficiency of these operations forced

them to be microcoded. Data can be moved around in the whole main memory by a

single M-code instruction.

Three further concepts of the M-code have to be mentioned:

Many instructions use absolute addresses as reference to the accessed data

(variables). It is therefore impossible to move data frames or stack frames around in

the address space after their loading or creation.

The M-code provides only a direct mapping from virtual memory addresses to

physical memory addresses. The M-code provides no absolute protection

mechanisms.

Addresses provided by the M-code are 16 bit wide word-addresses. The resulting 64

kword address space is, however, too small to address the whole physical memory

which typically contains 128 kword. The consequence is that all data referenced by

arbitrary M-code instructions have to reside in the generally addressable 64 kword of

the main memory (i.e. in the contigous part of main memory starting at address

zero). Only data referenced by few specialized instructions or referenced in a

controllable way may be stored at any main memory location. In particular only

fonts, bitmaps, code frames, and data not accessed by arbitrary M-code instructions

may be stored at any location in main memory.

17

I/O Bus 16

64

CPU 16

64

Keyboard

Memory

Bus

Arbiter

Mouse

Display

64 + 16

128 kword

Memory

16

Clock

RS232

Memory Data Bus 64+16

Memory Address Bus 18

Disk

Ethernet 16

Figure 2.1 Lilith Hardware

Data Frame Table

Code Frame

p
^

Process

Descriptor

Local Data

(Work Stack)
L

S

H

Local Heap

Top

Limit

Figure 2.2 Lilith Architecture

19

2.3 The Programming Language Modula-2

The programming language Modula-2 is a descendent of its direct ancestors Pascal

[Wir7l, JW75] and Modula [Wir77]. It is designed to satisfy requirements of

high-level systems design as well as those of low-level programming of parts that

directly interact with the given hardware. Roughly, Modula-2 includes all aspects of

Pascal except files. The important module concept, the modern syntax, the

multiprogramming aspect, and the low-level features have been influenced by
Modula. In the rest of this chapter, the most important additions, compared to

Pascal, are explained. These are grouped in the module concept, separate modules

and separate compilation, coroutines, procedure types, and low-level

(implementation dependent) facilities. The definition of Modula-2 may be found in

[Wir82], more details on separate modules and their compilation may be found in

[Gei83], and the code-generation of the Modula-2 compiler for Lilith is explained in

[Jac82].

Modules

The module in Modula-2 is a syntactical structure which supports the modularization

of programs. A module declaration is almost identical to the declaration of a

parameter-less procedure. Three essential differences exist between procedures
and modules:

The rules controlling the visibility (or validity) of objects, the so-called scope rules,

are different. An object visible outside a module is only visible within the module if it

is explicitly imported, and an object declared inside the scope of a module may be

made visible outside the module by an explicit export.

The lifetime of objects declared inside a module is equal to the life-time of the

objects in the scope enclosing the module (i.e. of the procedure enclosing the

module).

The module's body (statement part) is executed when the environment of the

module is instantiated. The body typically serves for the initialization of objects
declared inside the module.

An example from Medos-2, a small coroutine scheduler in program Comint, should

illustrate the module concept:

MODULE Scheduler;

FROM SYSTEM IMPORT ADDRESS, PROCESS, NEWPROCESS, TRANSFER;
EXPORT CreateProcess, Pass;

CONST procs = 3;

VAR ptab: ARRAY [O..procs-1] OF PROCESS;

cur, top: [0..procs];

20

PROCEDURE CreateProcess(proc: PROC; addr: ADDRESS; size: CARDINAL);
BEGIN

IF top < procs THEN

NEWPROCESS(proc, addr, size, ptab[top]); INC(top)
ELSE HALT

END

END CreateProcess;

PROCEDURE Pass;

VAR old: CARDINAL;

BEGIN

old := cur;

cur := (cur+1) MOD top;

IF old <> cur THEN TRANSFER(ptab[old], ptab[cur]) END

END Pass;

BEGIN

cur := 0; top := 1

END Scheduler.

The module Scheduler owns six local objects, namely a constant procs, three

variables ptab, cur, and top, and two procedures CreateProcess and Pass. It exports
the two procedures and hides the constant and the variables. Four objects are

imported from module SYSTEM, namely ADDRESS, PROCESS, NEWPROCESS, and

TRANSFER. The body of the module initializes the variables cur and top. The

example shows how objects may be hidden and how access from outside is

restricted to explicitly exported objects, in this case to the procedures

CreateProcess and Pass. This makes it possible to guarantee invariants on the local

objects of the module independent of possible errors in the environment and thereby

makes it possible to understand the module without first studing its complete
environment (in this case about 830 additional lines of Modula-2 text).

Separate Modules and Separate Compilation

A Modula-2 program consists of either a single (and independent) module or it is

split into several separate modules. The environment of each separate module is

considered as the "universe" in which the separately compiled modules are known.

A program consists in this case of a main module together with all the modules

which are directly or indirectly imported by it from the "universe". Mainly two

concepts support the decomposition of programs into several modules on the global

level, namely the so-called qualified export mode, and the splitting of a separate

module into a part specifying the interface to it, its definition module, and a part

specifying the realization, its implementation module.

Qualified export serves to avoid clashes between identically named identifiers

exported from different modules into the same enclosing scope. This is especially a

problem when a separate module is written because its writer may not know all

exported objects. If the procedure Pass is exported in qualified mode from module

21

Scheduler, then the procedure needs to be denoted as Scheduler.Pass in the

environment of module Scheduler. All exports from separate modules must be made

in qualified mode. Therefore, a module writer has merely to choose a module name

not already existing in his "universe" in order to avoid name clashes. (This rule also

makes life much easier for the Modula-2 compiler, as it has only to search complete
modules in the "universe".)

A separate module providing (exporting) objects for other modules must be split into

a definition and an implementation module. The definition module describes the

interface to the separate module at least syntactically and may therefore be

considered as a contract of the module with its importers (clients). The definition

module contains all declarations needed for a complete specification of the

interface. Procedures are, for example, defined by their complete headings.

The following example shows module Scheduler as a separate module.

DEFINITION MODULE Scheduler;

FROM SYSTEM IMPORT ADDRESS, PROCESS;

EXPORT QUALIFIED CreateProcess, Pass;

PROCEDURE CreateProcess(proc: PROC; addr: ADDRESS; size: CARDINAL);
PROCEDURE Pass;

END Scheduler.

The corresponding implementation module contains the realization of the separate

module, i.e. "things" which need not be known to the clients of the module.

Generally, all objects declared in the definition module are implictly defined within

the implementation module. Procedures are the exception; they must be declared

again inside the implementation module, this time, however, including their bodies.

IMPLEMENTATION MODULE Scheduler;

FROM SYSTEM IMPORT ADDRESS, PROCESS, NEWPROCESS, TRANSFER;

CONST procs = 3;

VAR ptab: ARRAY [O..procs-1] OF PROCESS;

cur, top: [0..procs];

PROCEDURE CreateProcess(proc: PROC; addr: ADDRESS; size: CARDINAL);
BEGIN

IF top < procs THEN

NEWPROCESS(proc, addr, size, ptab[top]); INC(top)
ELSE HALT

END

END CreateProcess;

22

PROCEDURE Pass;

VAR old: CARDINAL;

BEGIN

old := cur;

cur := (cur+1) MOD top;

IF old <> cur THEN TRANSFER(ptab[old], ptab[cur]) END

END Pass;

BEGIN

cur := 0; top := 1

END Scheduler.

The splitting of a separate module into an interface description and an

implementation part is advantageous and crucial. It allows changing the

implementation of a module whenever needed, or even having several

implementations of the same module.

Separate compilation of modules implies full type checking across module

boundaries, in particular among separate modules of the same program. The

Modula-2 compiler for Lilith generates a so-called symbol file upon compilation of a

definition module. The symbol file contains a symbolic encoding of the definition

module and is considered to represent the separate module in compilations later on.

The compiler reads the symbol file when the implementation of the separate module

or another compilation unit importing the module (a definition or an implementation

module) is compiled.

It is obvious that the compiler, maybe assisted by a program linker, has to check that

all references to a separate module are based on the same interface description, i.e.

on the same symbol file. For this check, the compiler generates a time stamp, called

module key, when a definition module is compiled and includes it on the symbol file.

The name of the module together with the module key identifies thereafter a (certain
version of a) separate module uniquely.

Upon compilation of an implementation module the compiler writes the generated

code on an object file. It also copies the module name and its key on the file as well

as the name-key pairs of all modules referenced by the module. This allows a linker

or linking-loader (as provided by Medos-2) to check by simple name and key

matching tests, whether or not all references to a certain module are based on the

same interface description (i.e. symbol file). The format of the symbol file is given in

[Gei83], the format of the object file in Appendix 2.

Coroutines

Modula-2 does not provide "general" processes as do many other real-time or

systems programming languages (Ada, Concurrent Pascal, PORTAL [Nae79], etc.).

It includes instead, roughly speaking, the mechanisms needed for the

implementation of processes, namely a simple mechanism to handle coroutines and

the possibility to encapsulate a user-defined scheduler in a separate (library)

module.

23

The examples used to illustrate the module concept show a very simple user-defined

scheduler. It schedules processes with the round-robin algorithm. Coroutines are

referenced by variables of type PROCESS. Procedure NEWPROCESS creates a new

coroutine, given a parameterless procedure and a memory segment. Procedure

TRANSFER transfers the "control" from one coroutine to another.

In Modula-2, an interrupt is considered as a transfer of control at an unpredictable

moment. It can be regarded as equivalent to a statement TRANSFER(interrupted,

driver) that is effectively inserted in the program whenever an interrupt request is

accepted. The variable driver denotes the coroutine (process) that handles the

request, whereas the variable interrupted will be assigned the suspended coroutine.

In the Lilith M-code architecture, each of the eight interrupt signals is associated

with its own variables interrupted and driver at fixed locations (in the interrupt

vector). A priority scheme and an interrupt-enable scheme allow disabling further

interrupts while an interrupt is handled.

Procedure Types

The concept of procedure types has, although rarely used, shown up to be both

powerful and important for providing the intended openness in Medos-2. Normally,

procedures are simply considered as program parts or texts that specify actions on

variables. A procedure may, however, also be considered an object of a certain

type. From this point of view, a procedure declaration is a special kind of constant

declaration, the value of this constant being a procedure. Modula-2 allows the

definition of types whose values are procedures, so-called procedure types. Both

variables and procedure parameters of procedure types may be declared. The

procedure type declaration specifies the number and types of parameters, and if it is

a function procedure, also the type of the result. Thereby, (globally declared)

procedures may be assigned to variables (of a compatible procedure type) or be

passed as an actual parameter to a procedure.

Low-Level Facilities

Modula-2 and its compiler for Lilith provide some low-level (i.e. implementation

and/or machine dependent) facilities which are important for the implementation of

Medos-2. The most important of them will be enumerated, together with a short

explanation. Further explanations may be found in [Wir81, Wir82, and Han82].

The specification of the absolute address of a variable in its declaration helps in

accessing variables at fixed locations in the memory. The M-code defines some

variables to be at fixed locations (e.g. the interrupt vector and the data frame table).

Arithmetic on addresses is made possible with the type ADDRESS. Variables of type
ADDRESS are compatible with any pointer type and with CARDINAL. The functions

SIZE, TSIZE, and ADR also support address computation.

A formal procedure parameter of type ARRAY OF WORD may be substituted by an

actual parameter of any type. Inside the called procedure, the actual parameter

would typically not be inspected, but rather, for example be copied to or from a

24

secondary storage medium.

Type transfer functions make it easily possible to give the value of an expression

another interpretation, i.e. its bit-pattern is assumed to be the value of another type.
In Medos-2, a type transfer function is used, for example, to assign the value of an

expression of type CARDINAL describing the initialization code of a program to a

variable of type PROC. (See Chapter 5.2.)

Last but not least, code-procedures stand for M-code instructions which cannot be

generated by ordinary Modula-2 statements. A call of such a code-procedure results

in in-line code. Examples of such instuctions are instructions controling devices and

instructions operating on display bitmaps.

25

3 Design Objectives and Provided Concepts

Section 3.1 enumerates some predicates of good programming. These have

significantly influenced the development of Medos-2 and are therefore mentioned

here. Medos-2 presents itself to the normal programmer as a collection of separate

Modula-2 modules. The object-orientation aspect of these modules (and of the

system) is presented in 3.2. Medos-2 provides a simple but powerful concept for the

execution of programs. It is explained in 3.3. The mechanism for managing

resources is explained in 3.4, and section 3.5 enumerates concepts which contribute

to the openness of Medos-2.

3.1 Design Objectives

Several objectives have guided the development of Medos-2. From the beginning, it

was the intention to make a good operating system of modest size. But what does

the term a good operating system or generally a good program mean? The answer is

different from individual to individual.

Among the set of predicates specifying the quality of a program, (e.g. modular,

portable, efficient, general, well structured, etc.) the most important is that a

program is reliable. One cannot depend on an unreliable program. A reliable

program must both be correct and understandable, i.e. its behaviour must be

foreseeable for its users. A reliable program must, however, also be robust to

commonly occuring errors. Generally, the correctness of a program cannot be

proved formally. By use of high-level programing languages, proof-reading,

debugging, run-time tests, and other techniques, one might sooner or later get the

conviction that a (certain piece of a) program is correct. Robustness against errors

is generally achieved by redundancy in both the stored data and the programs

accessing the data. The redundancy makes it possible to detect state

inconsistencies and thereby to prevent one single failure to cause many succeeding

errors as a consequence (i.e. a disaster). Redundancy may of course also help to

reestablish a consistent state after an erroneous situation, without any loss of

information.

A program should, however, also be simple, adaptable, and, whenever possible,

efficient. Simplicity is needed in order to make a program understandable to its

users and to its implementor(s). If an implementor does not understand an algorithm

to be programmed, he cannot be expected to deliver a correct (and reliable)

program. It is, however, generally not easy to find simple solutions solving a huge

number of (more or less) complex problems. Both theory and experience appear to

be very important. Most larger programs are written to be used for several (or even

many) years. It is therefore important that a program is structured such that it can

easily be adapted to "small" changes in the preconditions of the program, as they

may change over the years. A program should, of course, also be efficient, if the

efficiency is not conflicting with the previously mentioned attributes of good

programs. It is cumbersome to live with unnecessarily slow programs. Fortunately,
most of the time simple (not simple-minded!) solutions are also efficient solutions.

If in a certain case, several of the mentioned objectives are conflicting goals,

26

reliability should be considered as the most important objective, certainly the one

which should not be subjected to compromise.

3.2 Medos-2 as a Collection of Modules

Medos-2 presents itself to the programmer as a collection of library modules which

may be imported from any user-written module whenever desired. This

modularization of the operating system interface and its passive nature (a module

typically exports only several routines) is very desirable. It simply changes the

programmer's view on the operating system from being one supervisor, i.e. a

monolith which the programmer has to accept, into being a set of provided facilities

(services, resource managers, device handlers, etc.) which in principle may easily be

changed and which a programmer does not have to know completely. In the

following, it is described how this object-oriented interface is provided by separate

modules in Medos-2.

Following the so-called object model [Jon78], an operating system can be described

as a set of object types, each of which can be thought of as a kind of resource.

Some resources have a direct physical realization (I/O devices), others are "only"
artificial (processes, files, etc.). Each resource is described by an instance of the

object type, i.e. by an object. The object describes the state of the resource, and an

operation on the object corresponds to a change of the resource's state. For

example, consider type File and the operations on an instance of a file: Create,

Delete, Write, Reset, Read, etc. In this model a resource (an object) is passive, and a

user of a resource has only to understand the fixed set of operations defined for the

resource. The representation of the resource (e.g. as stored information or as

hardware) and the implementation of the operations on the resource are not

essential for its user. Many recently developed operating systems are

object-oriented, for example CAP [WN79], iMAX [Kah81], StarOS [Jon79], Pilot

[Red80], and Solo [BH77]. The encapsulation of the objects (i.e. the protection of

the resources) is supported by hardware in the first three examples. Medos-2, Pilot,

and Solo merely provide no absolute (i.e. no uncircumventable) protection of

resources by software.

The object model view of an operating system may easily be expressed in high-level

programming languages supporting abstract data types (i.e. data encapsulation)

[Par72]. In programs written in such languages, an object type (a resource kind

resp.) is expressed as an abstract type, and an object (a resource resp.) is expressed

as an instance of the corresponding abstract type. Abstract data types are,

however, directly supported by few high-level programming languages only, and

these have not been widely accepted. CLU [LSAS77], Concurrent Pascal [BH75],
Euler [BH81], PORTAL [Nae79], and Simula 67 [DMN68] are examples of such

languages.

Separate modules of Modula-2, however, may be used to provide interfaces with

many of the desired data encapsulation aspects. Essentially three cases may be

distinguished if a separate module is used this way:

A module exports routines operating on one set of data (representing one resource).

27

As exactly one instance of the type exists, the instance need not be identified for

each called routine. The data needed for the representation of the instance is simply
declared globally in the corresponding implementation module and initialized by the

initialization code of the module.

A module exports a type and a collection of routines operating on variables

(instances) of this type. A variable of the exported type passed as parameter to an

exported routine identifies the instance, upon which the corresponding operation

should be performed. Modula-2 allows to export opaque types. In this case, the

structure of the exported type is unknown to the module's clients.

A module may provide an interface to several data abstractions, presented in one of

the two variants mentioned above.

A separate Modula-2 module providing operations on exactly one set of data (one

object) has the best correspondence with the data encapsulation idea. The data

representing the instance of an abstract type can totally be hidden in the

implementation part of the separate module and the initialization of the data can be

guaranteed. Furthermore, it is impossible to issue operations on non-existing data

because the data exist as long as the module is accessible (loaded).

A module exporting a type and a collection of routines operating on variables of the

exported type supports the data encapsulation aspect less well. A variable of the

exported type corresponds to an instance of the abstract type, but in order to keep
the hiding aspect, the variable is in most cases effectively a reference to a data

element representing an instance of the abstract type. The structure of the data

element may thereby be hidden in the implementation part of the module. The

allocation and deallocation (creation and deletion) of instances of the abstract data

type must explicitly be done by procedure calls. But the lifetime of an object is

ideally the same as the existence of the variable representing the object. Operations

on uninitialized variables may occur if the first operation executed on a variable of

the exported type is not an operation creating the corresponding object. The

missing automatic deallocation of no longer referenced data elements makes it

difficult to limit the lifetime of objects which erroneous programs "forget" to

deallocate explicitly. How this deallocation problem is handled in Medos-2 is

described in section 3.4.

The reason for providing an interface to several object types in one separate module

is typically either a desire to provide convenience or a need for hiding (protecting)

"something" which would otherwise be freely available to clients.

From Medos-2, module Terminal provides routines reading from or writing to the

standard terminal. The module provides an interface to exactly one resource.

Module Frames provides routines for the allocation and deallocation of a main

memory segment, a so-called frame. A parameter of type FramePointer identifies

! the frame to be operated upon for the provided routines. Module DisplayDriver is of

the third kind. The resources managed by the module are the display interface, the

default bitmap, and the default font. Descriptions of module Terminal, Frames, and

DisplayDriver may be found in Appendix 1.

28

3.3 Execution of Programs

A program is the formulation of an algorithm in a formalized notation (programming
language). The definition almost always used for a process, that of being the

execution of a (sequential) program makes sense only partly to programmers

looking at "real-world" computer programs. Many computer programs make explicit
use of concurrency for the description of algorithms. The concurrency is thereby

expressed by either programming language or operating system primitives. Many

high-level programming languages provide primitives for expressing concurrency

(e.g. Ada, Concurrent Pascal, Portal, Edison, Mesa), mostly by offering the possibility
to declare processes. Many operating systems provide primitives for executing
several programs by one process, either one after each other or (less often) by a

program call mechanism.

In the following text, the term program (or source program) stands for a textual

description of an algorithm formulated according to the rules of a programming

language. As Medos-2 essentially only supports the execution of Modula-2

programs, the programs mentioned will typically be Modula-2 programs. (See

Chapter 2.3.) If no confusion is possible, the term program may also mean an

activated (running) program.

A process is a unit of activity sequentially performing operations on objects, for

example by sequentially executing statements of a Modula-2 program. Generally, a

program may be executed by one process or several concurrent processes, and a

process may possibly execute part of one or several programs. As a computer most

often has only one central processor and several processes may be required to

execute programs, most operating systems include a so-called process scheduler

which multiplexes the processor among the processes.

Medos-2 does not support explicit concurrency in user-written programs. From the

operating system point of view, one single process executes all user-written

programs. The process does this by executing so-called program calls or program

activations. The execution of a program may be considered as a generalization of

the execution of a procedure. Any program may contain a statement (a program

call) causing the activation of a program like a procedure call. During the execution

of the called program, the caller of the program is suspended, and it is resumed

when the called program has terminated.

All activated programs form a stack of activated programs. The first program in the

stack is the resident part of the operating system, i.e. the (resident part of the)
command interpreter together with all imported modules. The program on top of the

stack is the currently running program. Figure 3.1 illustrates how programs may be

activated. In Medos-2, some essential differences exist, however, between the

activation of a program and the activation of a Modula-2 procedure.

A program is identified by a computable program name (a string).

The calling program is also resumed, if a program terminates by a crash (exception

handling).

Resources like memory and connected files are owned by programs and are

29

retrieved again, when the owning program terminates {resource management).

A program can only be activated once at any one time, i.e. there are no instances, no

recursion (programs are not reentrant).

The code for a program is loaded, when the program is activated and is removed

from main memory, when the program terminates.

At any moment, the dynamic activation level or simply the program level uniquely
identifies an activated program. Program level 0 is the first activated program, i.e.

the resident part of Medos-2. If program level / calls a program, the activated

program is on level /+1. The level of the running program, i.e. the activated program

at the top of the activation stack, is the so-called current level. The caller of a

program may indicate by a parameter to the program-call procedure that the calling
program and the called may share resources whenever possible. The lowest

program level sharing resources with the current level is the so-called shared level.

An activated program is represented by a program activation record in the stack.

Currently, the activation record contains a working stack and the code and global
data of all modules loaded for the called program.

Whenever a program is activated, its main module is loaded (instantiated, activated).
All directly or indirectly imported modules are also loaded if they are not used by
already activated programs, i.e. if they are not already loaded. In the latter case, the

just called program is bound (linked) to the already loaded modules. This is

analogous to nested procedures of a block-structured program, where the scope

rules guarantee that objects declared in the enclosing block may be accessed from

an inner procedure.

After the execution of a program, its activation record is removed from the stack.

The modules that were loaded when the program was activated are removed. At this

time, all resources (objects) owned by the activated program are returned as well.

Futher details of the management of resources will be described in the next section.

The main advantages of the described concept for the execution of programs are to

be found in the following three areas:

The stack of activated programs enables a very high memory utilization (without any
fragmentation). Generally, the architecture of Lilith does not support the relocation

of used data in memory. Under this circumstance, memory allocation strategies
more general than the stack scheme do not guarantee a comparably high memory
utilization because of possible memory fragmentation. From the beginning, the

available memory space (65536 word) was a critical factor. The operating system

occupied about 12 kword and the refresh memory for the display (the bitmap) used

28.5 kword. Only 23.5 kword remained for the execution of user-written programs.
This was little more than needed to run the Modula-2 compiler and the standard

editor. (Later, another 65'536 word of main memory were added to all machines, and

the bitmap is now allocated in this (not generally addressable) half of the memory.)

The binding of an activated program to activated programs at lower levels is very
desirable. This mechanism allows every user to dynamically expand the set of

facilities (modules) provided by the operating system. For example, this can be done

30

by executing a program importing (directly or indirectly) the additional modules. Its

main module may for example be the standard command interpreter. Ordinary
user-written programs will then be executed as level-2 programs, and they can also

make use of the facilities provided by the program on level-1 (e.g. a module enabling
communication over the local area network). The Modula-2 multi-pass compiler
makes use of the same facility. The part common to all passes is executed as a

program called modula. This program subsequently activates the passes in shared

mode. Modules in program modula are used for the communication among the

various passes, and the execution of a pass in shared mode guarantees that the

heap and the inter-pass files are not deallocated when a compiler-pass program

terminates.

The concept of activating a program just like a procedure is very convenient for

programmers. The binding of the activated program to the already activated

programs is quite natural, especially for programmers used to high-level

programming languages allowing nested procedure declarations. To let activated

programs be owners of resources (objects), just like activated procedures are

"owners" of locally declared variables is both a convenient and very powerful

concept. The management of resources is, however, subject to the next section.

Dynamic

Activation

Level

Comint edit Comint

Init Passl Pass2 Symfile Lister

modula (compiler base)

SEK (resident program)

time

Figure 3.1 Execution of Programs

31

3.4 Management of Resources

In section 3.2, it was mentioned that objects are managed by separate modules, i.e. a

module may provide routines which create, remove and perform other operations on

a certain type of objects. In Medos-2, the allocation and deallocation strategy for

objects as well as the rules governing the access to the objects can be chosen freely

by the designer of the module providing the objects (the object-handler). Medos-2 is

in this respect a very "liberal" or open single-user operating system. However, it is

generally not without cost for a module to provide objects. The maximal number of

provideable objects is therefore limited, either to a fixed or to a changing maximal

number of objects. The allocation strategy for objects causes only few worries. As

long as an object-handler can allocate an object, it will generally do it so. The rules

controlling the access to an object is in most cases also very liberal: A program may

issue an operation on an object if the object (and therefore also its handler) exists.

The normal scope rules of Modula-2 may of course limit the visibility of existing

objects and thereby hinder an access to a specific object, and the object-handler

may introduce special rules on the usage of a certain type of objects. Difficulties

arises, however, if an erroneous program "forgets" to deallocate an object it

allocated. Object-handlers have to limit the lifetime of objects such that the

following two conflicting goalsare satisfied: It should be guaranteed that an object

exists when it can be legally used, i.e. referenced objects should exist as long as

references to these objects exist in order to avoid dangling references. On the other

hand, the lifetime of objects should be as short as possible, in order to reduce or

eliminate the costs of unused objects. If no longer accessible objects remain

infinitely allocated, a system will sooner or later (virtually) crash because of lack of

resources needed for the creation of new objects.

In Pascal-like programming languages, the lifetime of an object (e.g. type, variable) is

with few exceptions equal to the execution time of the procedure, within which the

object is declared. The local variables of a procedure are instantiated when the

procedure is called and are removed when the procedure terminates. Scope rules

guarantee that objects can only be accessed as long as they exist. Programming

languages supporting abstract data types typically control the lifetime of instances

of abstract types by the same rules.

Modula-2 also supports explicit allocation and deallocation of variables. Such

variables are referenced by so-called pointers. It is, however, generally impossible

to know the number of pointers referencing a dynamically allocated variable. The

consequence is that a no longer referenced variable cannot automatically be

retrieved when the last reference to it is removed. The no longer referenced variable

has to remain allocated as long as the corresponding pointer type declaration exists.

As most pointer types are declared globally in programs, a garbage collector is

normally not included in a "storage allocator" for Modula-2 (or Pascal) programs.

An allocated variable remains allocated until it is explicitly deallocated or the

program terminates. In the latter case, all pointer type declarations have normally

disappeared.

If a Modula-2 program is executed by Medos-2, a type declaration may survive the

execution of a program, because not all modules imported by the program are

32

"thrown away" when the program terminates. Modules used for the execution of

lower program levels remain activated. In order to, nevertheless, be able to

automatically remove no longer used objects the following concept has been

introduced:

An object is owned by an activated program.

An object owned by program level / may only be accessed from the same or higher

program levels. A reference to an object owned by program level / is assumed to be

stored in an activated program at level k greater or equal to / or in an object owned

by such a program. An object may, therefore, be removed when its owner program

terminates, and no other object holds a reference to the object.

In section 3.2 it was stated that each type of object (each kind of resource) is

managed by one separate module. If exactly one object is provided by a module and

this object exists as long as the module is activated, then there are no extraordinary

problems. The object exists as long as it can be accessed. When, after termination

of a program, the module is no longer imported, it is removed together with the

provided object. Module Terminal in Medos-2 is an example of a module of this class

(see Appendix 1).

More problematic are modules providing one or several objects which may be

created explicitly by different program activations. Such modules typically export a

type and a set of routines performing operations on variables of the exported type.

In rare cases, an object may be completely described by a variable of the exported

type. In such cases, the lifetime of an object is of course not longer than the lifetime

of the variable describing it. Typically, however, a variable of the exported type

serves only to identify (contain a reference to) the provided object. The following
module illustrates the case:

DEFINITION MODULE Streams;

EXPORT QUALIFIED

Stream, Create, Remove, Read, EOS (*, ... *);

TYPE Stream;

PROCEDURE Create(VAR s: Stream; name: ARRAY OF CHAR; new: BOOLEAN);
PROCEDURE Remove(VAR s: Stream);

PROCEDURE Read(VAR s: Stream; VAR ch: CHAR);
PROCEDURE E0S(VAR s: Stream): BOOLEAN;

(* ••• *)

END Streams.

A program may use module Streams for reading characters. A variable of type

Stream represents a stream when it has been created and until it is removed. The

following program module illustrates the usage of a stream.

33

MODULE ListText;

FROM Streams IMPORT Stream, Create, Remove, Read, EOS;

FROM Terminal IMPORT Write;

VAR s: Stream; ch: CHAR;

BEGIN

Create(s, "DK.Example.TEXT", FALSE);

Read(s, ch);
WHILE NOT EOS(s) DO Write(ch); Read(s, ch) END;

Remove(s)
END ListText.

The program activation owning an explicitly created object must typically be

determined when the object is created. In most cases, it will either be the currently

running program or the shared program (the program at the lowest dynamic

activation level sharing resources with the current program).

Medos-2 provides three routines (in module Monitor), which help modules to control

the lifetime of objects: the function procedures CurrentLevel and SharedLevel, and

the proper procedure TermProcedure. CurrentLevel returns the level-number of the

running program and SharedLevel returns the level-number of the shared program.

By a call to procedure TermProcedure in the initialization part of a module, the

module declares a parameterless routine to be its reset-routine. The reset-routine

will be called whenever a program terminates, provided the program was activated

on a higher level than the level within which the object-handler is loaded. All defined

reset-routines are called before the actual removal of the program, and in the

reversed order of their declaration as being reset-procedures.

This simple implementation of module Streams illustrates how an object-handler

may use these three routines for the automatic removal of objects when a program

terminates.

IMPLEMENTATION MODULE Streams;

FROM FileSystem IMPORT (* See also Appendix 1.7 *)
File, Response, Lookup, Close, ReadChar, WriteChar;

FROM Monitor IMPORT CurrentLevel, SharedLevel, TermProcedure;

CONST streams = 16;

TYPE

Stream = CARDINAL;

StreamDesc = RECORD free: BOOLEAN; owner: CARDINAL; f: File END;

VAR streamTab: ARRAY [0..streams-1] OF StreamDesc;

34

PROCEDURE Create(VAR s: Stream; name: ARRAY OF CHAR; new: BOOLEAN);
BEGIN

s := 0; (* search a free entry in streamTab *)
LOOP

IF s >= streams THEN (* ... *) HALT END;

IF streamTab[s].free THEN EXIT END;

INC(s)
END;

WITH streamTab[s] DO

Lookup(f, name, new);
IF f.res <> done THEN (* ... *) HALT END;

owner := SharedLevel(); (* a stream is sharable *)
free := FALSE;

END

END Create;

PROCEDURE Remove(VAR s: Stream);
BEGIN

IF (s >= streams) OR streamTab[s].free THEN RETURN END;

WITH streamTab[s] DO Close(f); free := TRUE END

END Remove;

PROCEDURE Read(VAR s: Stream; VAR ch: CHAR);
BEGIN

IF (s >= streams) OR streamTab[s].free THEN (* ... *) HALT END;

ReadChar(streamTab[s].f, ch)
END Read;

PROCEDURE EOS(VAR s: Stream): BOOLEAN;

BEGIN

IF (s >= streams) OR streamTab[s].free THEN (* ... ») HALT END;

RETURN streamTab[s].f.eof
END EOS;

(••• •)

PROCEDURE ResetLevel;

VAR s: Stream;

BEGIN

FOR s := 0 TO streams-1 DO

WITH streamTab[s] DO

IF NOT free AND (owner >= CurrentLevel()) THEN Remove(s) END

END

END

END ResetLevel;

35

VAR s: Stream;

BEGIN

FOR s := 0 TO streams-1 DO streamTab[s].free := TRUE END;

TermProcedure(ResetLevel)
END Streams.

Streams are sharable. Procedure Create sets the owner of a new stream equal to

the currently shared level, i.e. to SharedLevelO. (An object-handler can provide

sharable objects only if all objects referenced by it in its implementation are also

shareable. Files provided by module FileSystem are shareable!)

Procedure ResetLevel is called whenever a program terminates. ResetLevel

removes all streams owned by the terminating program or owned by even higher

program levels. The file needed for the implementation of a stream is owned by the

same program level as the stream. The fact that module Streams imports module

FileSystem and that there are no circular imports among modules in Medos-2

guarantee that the initialization part of module Streams is executed after the

execution of the initialization part of module FileSystem. The reset-routine of

module Streams is, therefore, defined after the reset-routine (i.e. procedure
ResetLevel) of module FileSystem. As the reset-routines are called in the reverse

order of their announcement to module Monitor, procedure ResetLevel of module

Streams will be called before an eventually defined reset-routine of module

FileSystem. This ordering of the reset-routine calls prevents that an object is

automatically removed before an object containing a reference to it is removed.

By the example above, it has informally been shown that the three routines

CurrentLevel, SharedLevel, and TermProcedure provided in Medos-2 both simply
and powerfully support the automatic removal of no longer used objects. They are

one of the pillars for Medos-2's ability to recover resources after program crashes.

Another pillars of the provided recoverability is to be found in the careful

programming of routines performing operations on objects. An operation on an

object should ideally be indivisibly executed in order to maintain consistent data.

Serious problems may occour when a program crashes during the execution of a

procedure exported by a module which remains activated after the removal of the

terminated program. Medos-2 recovers from most program crashes in "unhappy
moments" by making at least the remove-operation, i.e. the reset-routine, of an

object-handler reexecutable and insensitive to inconsistent data, and by ordering
statements performing changes on an object properly. Detected inconsistent states,

from which the system cannot recover, however, lead to the system's suicide.

3.5 Concepts Providing Openness

The desired openness of Medos-2 is basaed on several concepts:

The fact that any program may execute programs and that activated programs are

bound not only to the resident system makes the system extensible. A level-1

program may for example include a collection of modules effectively providing a

36

totally changed environment for programs on higher levels. The programs executed

on level-2 or even higher levels will effectively run on top of another operating

system. The XS-1 system [BBF82] is implemented this way. XS-1 is a single-user
system providing an integrated user-interface and hierarchically structured files.

The binding of activated programs at load-time, and the method for searching not

already loaded modules on files, makes it easy to substitute user-written

implementations for public modules, to make additions and corrections to Medos-2,

and to provide new modules. Generally, no distinction is made between

user-provided and system-provided programs or modules. Therefore, any user is

free to develop the modules needed for his special application.

The idea of extending the standard operating system by a non-resident program

providing additional facilities is also made feasible by the fact that non-resident

object-handlers may recover from program crashes the same way resident modules

do, namely by use of reset-routines. The number of object-handlers may change

during the lifetime of the system.

Several resident modules allow non-resident programs to provide routines which are

in effect new or additional implementations of the resident modules. The possibility
to declare procedure types and variables of procedure types in Modula-2 makes it

easy to provide this facility. For example, the Read and the Write routines in module

Terminal may be substituted by user-written routines. (See Appendix 1.13 and

Appendix 1.14.) A non-resident program may substitute the input from the keyboard

by characters read from a file and thereby introduce commandfiles. Another place
in the system, where this concept is provided, is in the file system. All operations on

a file are encoded into a call of one of two procedures, namely procedure

FileCommand and DirectoryCommand exported from module FileSystem. A

(resident or non-resident) module may implement files on a medium and make them

accessible via module FileSystem by a call of the "create medium" routine. This

routine needs as parameter the name of the medium on which the module provides

files, and the two routines corresponding to FileCommand and DirectoryCommand.

(See Appendix 1.7, section 5.)

Openness of the system is also directly supported by the module interfaces. An

example showing this is module FileSystem. The unexperienced user may use files

in a very ordinary manner. The routines Lookup, Close, ReadChar, WriteChar, etc.

enable a simple use of files. More demanding users (e.g. systems programmers)

may get higher performance and/or flexibility by directly accessing the file-buffers,

by building file-directories themselves, by making ramdom accesses to files, etc. The

same module FileSystem also provides routines enabling this kind of "low-level"

programming. (See Appendix 1.7, section 4.)

The possibility to access all separate modules in the resident system, and even to

access the hardware if needed, also makes the system more open. This kind of

openness is only relevant or useful for relatively few experienced programmers.

Direct access to the hardware may of course cause the system to crash, if it is not

carefully programmed. Nevertheless, this freedom is felt to be essential by users of

the work-station.

37

4 System Overview from the User's Side

This chapter gives an overview of Medos-2 as it presents itself to a user. In section

4.1 it is briefly explained how a program may be activated from the keyboard (job

control). 4.2 presents the operating system interface as it may be seen by

programmers. In 4.3 the structure of the resident part of Medos-2 is shown, and

some statistical information about the system is given.

4.1 The Command Interpreter

After Medos-2 has been loaded (booted) from disk, the main program of Medos-2,

i.e. the standard command interpreter, executes, it first initializes the operating

system and asks its user to log in. Thereafter the command interpreter repeatedly

executes the following tasks:

- read the next command (i.e. read the name of the program to execute next),
- interpret the command (i.e. call the corresponding program), and
- report errors (i.e. write program load or execution errors).

In order to keep the resident system small, a part of the command interpreter is

implemented as a non-resident program called Comint. This is, however,

transparent to most users of Medos-2.

The command interpreter indicates with an asterisk («) that it is ready to accept the

next command. Actually, there is only one type of command: the program call.

To call a program, the name of the program has to be typed in, for example

directory

The program with the typed in name is called. If some load or execution error

occured, an error message is displayed. Thereafter, the command interpreter is

ready to accept the next comand, and therefore it displays an astennrisk again.

direx

program not found

directory

display output from the directory program
*

A program name is an identifier or a sequence of identifiers separated by periods.

(An identifier begins with a letter followed by further letters or digits. Capital and

lower case letters are treated as distinct.)

In order to asist the user in typing a program name, the command interpreter

automatically extends an initially typed character sequence to the name of an

existing program. This means that a long program name may be identified by a few

characters. If several programs exist whose name start with the typed character

sequence, the sequence is only extended up to the point where the program names

start to differ.

The command interpreter accepts several special keys as commands to be

interpreted immediately.

38

? Display a list of all programs starting with the typed characters.

DEL Delete the last typed character.

CRTL-X Cancel. Delete all typed characters.

CRTL-L Form Feed. Clear the screen. (Accepted after an asterisk.)
CRTL-C Kill character. Stop the execution of the running program.

ESC Terminate the execution of the command interpreter.

It is possible that a sequence of programs must be called several times. In this case,

instead of typing all commands interactively, it is more appropiate to substitute these

commands as a batch. For this purpose the operating system allows the substitution

of command files. A command file must contain exactly the same sequence of

characters as normally would be typed on the keyboard, i.e. the names of the

programs to execute next and the answers given in the expected dialog with the

called programs. Program commandfile initializes the substitution of keyboard input
with the text stored on a command file. This program prompts for the name of a

command file. After the whole text has been read from the command file, the input is

read again from the keyboard.

commandfile

Command file> transfer.COM

*input is now read from the command file

instead of from the keyboard

End command file

*

Programs are loaded from the user's disk cartridge. In order to find the file from

which the program should be loaded, the linking-loader converts the program name

into a file name. It inserts the medium name DK. at the beginning of the program

name, appends the extension .OBJ, and searches for a file with this given name. If

no such file exists on the user's cartridge, the loader inserts SYS. into the file name

after the medium name and searches for a file with this name.

Accepted program name d 1 rectory

Firest file name DK. directory. OBJ

Second file name DK.SYS. di rectory. OBJ

A more detailed description of the user's options to control execution of programs

may be found in the Lilith Handbook, Chapter 2 and 3 [Han82].

4.2 The Program Interface

For the (inexperienced) programmer, Medos-2 presents itself as a collection of

library modules. The programmer essentially sees no difference between operating

system modules, ordinary (non-resident) library modules, and modules written by the

programmer himself. Thus, the mechanism for checking the syntactically correct

use of separate modules at compile and linking-load time are also provided if

operating system modules are imported [Han82 Chapter 7, Gei83]. The main

difference between modules provided by the operating system and other modules is

to be found in the fact that the former are always loaded when Medos-2 is running

39

(because it makes use of them itself).

When a program is activated, its main module and all directly or indirectly imported
and not already loaded modules are loaded and linked to each other and to the

already loaded modules. This way, the activated program is linked to the operating

system at load time, if it imports any of the operating system's modules.

The resident part of Medos-2 consists of 15 modules, one of them is the run-time

system needed to execute any Modula-2 program on Lilith. The remaining 14

modules provide an interface to operating system facilities. Oormally only three of

these modules are of major interest, namely the modules Terminal, FileSystem, and

Program. The purpose of these three modules is illustrated here. Short descriptions
of the purpose of the other modules are given at the end of this section. Appendix 1

contains the definition modules of all 15 modules together with explanations needed

by programmers to use them. (The Modula-2 run-time system, i.e. module System, is

included for comleteness.)

Module Terminal provides routines to read from the standard input and write to the

standard output. Normally, the standard input is connected to the keyboard and the

standard output to the display. The routines provided for reading characters are

Read and BusyRead, the routines provided for writing characters are Write, WrUeLn,

and WriteString.

Module FileSystem provides an open interface to files. Thus, a client of module

FileSystem may use files on several abstraction levels. Medos-2 files are, however,

always byte-sequences stored on a certain storage medium (e.g. a disk cartridge, a

magnetic tape, or the main memory).

Files may be used much like sequential files in Pascal. The routines Lookup, Close,

Reset, ReadChar, WrKeChar, etc. are provided for this purpose.

Module FileSystem also provides routines enabling a program to position a file at any

stored Byte, to directly access a file's buffer, to explicitly control the buffering, to

protect files against modifications, and to control the permanency of files.

Module FileSystem does not include any device drivers. Instead, a resident or

non-resident module may, by a call to procedure CreateMedium in module

FileSystem, specify that it provides an implementation of files on a certain, uniquely
identified, medium. Several such so-called file implementations may coexist, which

makes it possible for a program to access files stored on several different media.

The following example illustrates the use of module Terminal and module

FileSystem. The program lists a text stored on a file.

MODULE ListText;

FROM FileSystem IMPORT File, Response, Lookup, Close, ReadChar;
FROM Terminal IMPORT Read, Write, WriteLn, WriteString;

CONST eol = 36C; fnlength = 32;

VAR

40

f: File;

fn: ARRAY [0..fnlength] OF CHAR;

ch: CHAR; c: CARDINAL;

BEGIN

WriteString(" name of file to list > ");
c := 0;

LOOP

Read(ch);
IF (ch =

"

") OR (ch = eol) THEN fn[c] := OC; WriteLn; EXIT

ELSIF c < fnlength THEN Write(ch); fn[c] := ch; INC(c)
END

END;

Lookup(f, fn, FALSE);
IF f.res <> done THEN WriteString("- file not found"); WriteLn

ELSE

LOOP

ReadChar(f, ch);
IF f.eof THEN EXIT END;

Write(ch)

END;

Close(f)
END

END ListText.

Module Program controls the execution of (sequential) programs and manages the

generally addressable 65'536 word part of Lilith's main memory. Any program may

activate another program by calling procedure Call in module Program. This facility,
for example, enables users to provide their own command interpreter (job control

language) and/or environment for programs. A program may be executed in either

shared or unshared mode. The caller of a program specifies the actual execution

mode by a parameter to procedure Call. In shared mode, the called program shares

resources with the caller program whenever possible (i.e. if the resources are

shareable). The heap and files are the most commonly used shareable resources

provided by Medos-2.

The routines AllocateHeap and DeallocateHeap enable a client module to

dynamically increase and reduce the size of the heap provided for the running

program. However, modules typically allocate and deallocate memory space by use

of the (non-resident) library module Storage [Han82 Chapter 9.3]. The following

example illustrates the use of module Program:

MODULE MiniComint;

FROM Program IMPORT Call, Status;

FROM Terminal IMPORT Read, Write, WriteLn, WriteString;

CONST eol = 36C; pnlength = 16;

41

VAR

pn: ARRAY [0..pnlength] OF CHAR;

st: Status;

ch: CHAR; c: CARDINAL;

BEGIN

LOOP

Write("*");
c := 0; (* read program name)
LOOP

Read(ch);
IF (ch =

" ") OR (ch = eol) THEN pn[c] := 0C; WriteLn; EXIT

ELSIF c < pnlength THEN Write(ch); pn[c] := ch; INC(c)
END

END;

Call(pn, FALSE, st);
IF st <> normal THEN

WriteStringC'- some load or execution error occured"); WriteLn;

END

END

END MiniComint.

Whenever a program is activated, its main module is loaded from an object code file.

The name of the object code file is generated from the program name given as

argument to procedure Call as explained in 4.1. All directly or indirectly imported

modules are also loaded from files if they are not already used by activated

programs. In the latter case, the just called program is bound to the already loaded

modules. An object code file may contain the object code of several separate

modules. Imported but not already loaded modules are searched sequentially on the

object code file, which the loader is just reading. Missing object code to an imported
module is searched similarly as with programs. A file name is generated from the

module name by inserting DK. at the beginning of the module name and appending

the extension .OBJ to it. If the file does not exist, a second search is made after the

prefix DK. has been replaced by the prefix DK.LIB. If the object code file is still not

found, the object code for another missing module is searched. This is tried once for

each imported but still unloaded module.

Module name Storage
First file name DK.Storage.OBJ
Second file name DK. LIB .Storage. OBJ

Modules not Mentioned in the Resident System

Module SEK (Sequential Executive Kernel) is the main program of the resident

program. It is the resident part of the standard command interpreter. It also

configures the system by importing the needed modules and initializes the system
after its boot and whenever needed later on.

42

Module DiskSystem implements files on disk cartridges for the Honeywell Bull

D120/D140 disk drive connected to Lilith.

Module DUODisk is the driver for the Honeywell Bull D120/D140 disk drive

connected to Lilith.

Module TerminalBase enables programs to substitute the read- and/or

write-routines of module Terminal with program-specific routines.

Module DisplayDriver provides the lowest level interface to the display controller, the

default bitmap for the display, and the default font. A routine writing characters into

the default bitmap is also provided by this module.

Module DetaultFont provides the default font used by module DisplayDriver as a

global variable. The reason for the existence of this module is to be found in the way

the default font is loaded. This is done by initialization of global data in the

absolutely linked operating system. In the actual implementation of the absolute

linker, this is much simpler to do for a module with only one or a few globally
declared variables.

Module Frames manages the "upper" not generally addressable part of the main

memory. Client modules may allocate and deallocate contiguous memory segments,

so-called frames.

Module Monitor provides interfaces to three different facilities, namely to the

keyboard, the clock, and a low-level program execution facility. The routines of the

program execution facility include three routines supporting object management in

client modules (see Chapter 3.4). Module Monitor hides all concurrency in the

system, i.e. the existence of two interrupt-driven driver processes (the line-clock

process and the trap-handler) and the normal process.

Module Userldentification enables a process to get the identification of the (usually)

human user, for whom it executes. This is essential if several work-stations and

so-called servers are connected together by a communication network.

Module FileMessage provides a routine displaying a file system error-message.

Module CardinallO provides two routines for reading and writing numbers in octal

form. This module is used for writing out error-messages

Module System is the run-time system needed for executing any Modula-2 program

on Lilith. It essentially implements procedure NEWPROCESS exported by the

standard module SYSTEM defined in Modula-2. The absolute code linker

automaticly includes this module in the generated absolute code executable on a

bare Lilith. The module is not explicitly imported by any module in the resident part

of Medos-2.

4.3 The Structure of the Resident System

The bare operating system Medos-2 consists of a (memory-) resident Modula-2

program called SEK and two non-resident programs called Comint and

CommandFile. The non-resident programs are effectively the non-resident parts of

43

the main program module SEK. The resident program consists of 14 modules

hierarchically ordered by their mutual imports. The run-time system for Modula-2

programs is included in the list of modules in the resident system, because it is also

resident when the system runs. Figure 4.1 shows this hierarchy of modules. The

main module of the resident system, module SEK, is placed at the top of the figure. A

module imports only modules placed lower in the figure. An import is indicated with

a line.

The module hierarchy not only makes the system easier to understand, it also helps

to verify it. The simplicity of the concept used for managing objects in the system is

mainly due to the strict hierarchical ordering of the system (see Chapter 3.4).

The following table contains for each module in the resident system the number of

source code lines (definition module and implementation module separately), the

number of needed memory word (data space and code space separately, as well as

their sum), and the fraction of memory space needed by the module compared to the

memory space needed by the whole system. The statistics were taken on October

23,1982.

Module Lines Lines Word Word Word C+D of

Name Def. Impl. Data Code C+D Total C+D

SEK 25 168 84 266 350 2.4 %

Program 46 871 132 1352 1485 10.1 %

Monitor 49 506 333 576 909 6.2 %

FileSystem 228 577 65 1001 1066 7.2 %

DiskSystem 109 2002 3471 3518 6989 47.4 %

D140Disk 39 266 92 373 465 3.2 %

Terminal 21 55 17 74 91 .6 %

TerminalBase 15 94 41 177 218 1.5 %

DisplayDriver 46 205 46 344 390 2.6 %

DefaultFont 11 32 1439 42 1481 10.0 %

Frames 16 244 21 429 450 3.0 %

Userldentification 16 75 58 127 185 1.3 %

Cardinal 10 9 52 14 129 143 1.0 %

FileMessage 9 37 153 115 268 1.8 %

System 25 168 172 98 270 1.8 %

Total 729 5322 6138 8622 14760

From this table it can be seen that the modules needed to execute programs

including the linking-loader (i.e. modules Program and Monitor) needs 16.3 %, the

modules providing files (i.e. module FileSystem, DiskSystem, and D140Disk) needs

57.8 %, the modules providing a "terminal" (i.e. module Terminal, TerminalBase,

DisplayDriver, and DefaultFont) need 14.7 %, and the remaining modules 11.3 % of

the memory space used by the entire operating system.

The source text of the non-resident program Comint is 860 lines long, and the

program CommandFile is 52 lines long.

44

SEK

Program

FileSystem

DiskSystem

FileMessage

X

CardinallO

T

D140Disk

X

Terminal

TerminalBase

DisplayDriver

Frames DefaultFont

Monitor

Userldent.

System

Figure 4.1 Resident Part of Medos-2

45

5 Implementation of Programs

Mainly three facilities support the execution of programs, namely the main memory

management, the linking-loader provided by module Program, and a low-lewel

executive provided by module Monitor. In section 5.1 the main memory

management is presented. Section 5.2 deals with the linking-loader, and the part of

module Monitor which supports the execution of programs is presented in 5.3.

5.1 The Management of Main Memory

The generally addressable part of Lilith's main memory (i.e. the main memory from

address 0 to address 65'535) is managed by module Program. The not generally

addressable part of the main memory, the so-called upper bank, is managed by the

separate module Frames. (See Appendix 1.8 and Appendix 1.10.)

Management of the Generally Addressable Part of the Main Memory

Module Program divides the generally addressable part of the main memory into

three parts, the program activation stack, the free area, and the heap stack. Figure
5.1 illustrates the memory layout. In the following text, the program activation stack

will simply be called the stack and the heap stack simply the heap. The program

activation stack grows from address 0 towards the top of stack, the free area is the

memory segment between top of stack and the stack limit, and the heap stack is the

memory segment from stack limit to the highest possible generally useable address.

The stack limit is also called top of heap.

(Parts of) the free area may on demand be allocated for both the stack and the heap.

Whenever a program is called, a program activation record for the activated

program is pushed on top of the stack by procedure Call. Currently, the program

activation record contains the code and global data of the modules, loaded for the

called program, and the working stack (i.e. the coroutine) needed for the execution

of the called program. The activation record of the running program is limited at the

high end by top of stack. (See also Figure 5.2 and 5.3.) How the activation record is

formatted, and how the linking-loader loads modules onto the stack is described in

section 5.2. During the execution of the running program, top of stack is implicitly

incremented or decremented by the running program, for example when a

procedure is called and returned from. The M-code instructions incrementing top of

stack check that top of stack remains less than or equal to stack limit. When a

program terminates, its activation record is simply popped from the stack again.

Module Program also handles the area reserved for heaps in the simplest possible

way, namely as a "reverse" stack of heaps. The heap at the top of the heap stack,

the current heap, may be enlarged by decrementing the stack limit and reduced by

incrementing the stack limit. Clients of module Program may, with the exported
routines AllocateHeap and DeallocateHeap, change the size of the current heap. If a

program is activated in shared mode, i.e. if the parameter shared of procedure Call is

set TRUE, the heaps are not affected The current heap may grow and shrink, as if

no program had been activated. If a program is called in unshared mode (parameter

46

shared set FALSE), a new current heap is created for the called program on top of

the heap stack. When an unshared program terminates execution, its current heap
is simply popped from the heap stack, and the heap previously used by the calling
program is the current heap.

The handling of the program activation stack will be further documentated in section

5.2. The implementation of the routines AllocateHeap and DeallocateHeap is

straight forward and will therefore not be shown in detail. Top of stack and stack

limit of the currently executed coroutine are kept in two processor-registers (called S
and H, see Figure 2.2). The value of stack limit can easily be obtained and set by
code-procedures. (See Chapter 2.3.) The value of top of stack is also obtainable by
a small routine. With the aid of these three routines, AllocateHeap and

DeallocateHeap are very simple to implement. The removal of the current heap after

the termination of an unshared program is done by procedure Call in module

Program.

Rationales for the Stack-Orientation of the Heap

There are several reasons for providing "only" a simple stack-oriented management
of the heap:

When the system was designed, it was felt to be important that programmers could

choose their private algorithm for the allocation and deallocation of dynamically
allocated variables in the heap. Medos-2 provides a standard non-resident library
module Storage which enables programmers to allocate and deallocate

pointer-referenced variables in an easy way [Han82, Chapter 9.3]. Programmers

may implement both simpler or more sophisticated algorithms whenever they feel

this to be necessary.

The mechanism for managing the heap stack is very reliable and robust against

program crashes. It is very easy for module Program to remove the current heap
from the heap stack. It is essentially done by an assignment to the stack limit

register H.

The removal of the whole heap previously provided for an (unshared) program

guarantees that allocated memory space for a program is freed when the execution

of the program is terminated. It also prevents that a fragmented heap survives the

program that caused its fragmentation. Such fragmentation would generally cause a

suboptimal memory utilization and (even worse) an almost unpredictable system

behaviour.

The reason for managing the main memory in module Program, the second highest
module in the hierarchy of modules in the resident system (see Figure 4.1), and not

for example by module Monitor, is due to the linking-loader. The linking-loader
stores loaded modules in the program activation stack and not in the heap. The

mechanisms for explicitly pushing data onto and popping data from the program

activation stack are provided for the linking-loader and, therefore, are better hidden

in the module containing the linking-loader. It is desiriable for the linking-loader not

to store loaded modules in the ordinary heap for two reasons:

47

The current heap may not be released after the execution of an unshared program.

In order to be able to free the space needed for the modules loaded for the

terminated program, the resident system had to include a more general algorithm for

the allocation and deallocation of memory segments in the current heap. But even

the best algorithm could generally not avoid fragmentation problems if an allocated

heap segment must remain at the allocated location during its lifetime. Consider the

Modula-2 multi-pass compiler. The passes of the compiler are executed in shared

mode. If pass one includes a module whose code requires a 2000 word large

memory segment to be loaded, a 2000 word large free segment may remain in the

heap after the execution of pass one. If a module in pass two needs 2010 word for

its execution, the consequence could be that the size of the current heap must be

enlarged by these 2010 word, and that a 2000 word unused segment would remain in

the heap. It can easily be imagined that the fragmentation problem gets worse the

more programs (passes) are executed after each other in shared mode. The current

Modula-2 compiler executes up to six programs after each other in shared mode!

Until recently, the Modula-2 compiler did not include the size of the module code at

the beginning of the module's object code file. This information is, however, needed

for the allocation of a memory segment in the heap (or in the upper bank). Under

this circumstance, the "trick" of loading modules into the program activation stack

helps also to simplify the resident linking-loader.

Management of the Not Generally Addressable Part of the Main Memory

The management of the upper bank will not be discussed at length. Currently, the

upper bank is used for the storage of display bitmaps, fonts, and of memory-resident
files. In rare cases, application programs also keep information in this part of

memory. Thus, the main idea for the usage of the upper bank is to let the operating

system modules and non-resident library modules use this not generally addressable

memory for the storage of "large", machine-dependent objects. The normal

programmer may, therefore, generally execute larger programs on a Lilith with

131072 word of main memory than would otherwise be possible on a machine with

65535 word of main memory. Module Frames provides routines for the allocation

and deallocation of frames, fixed allocated memory segments addressed via

so-called frame pointers. The module allocates frames with a straight forward first fit

algorithm. Further details about this module can be derived from its description in

Appendix 1.8.

48

Top of Stack
Top of Heap 64 kword

r ir .p ,p

Program Activation Stack Free Area Heap Stack

Figure 5.1 Normally Addressable Main Memory

Top of Stack

Level 0 Level 1 Current Level

Figure 5.2 Program Activation Stack

Data

MO

Code

MO

Data

M1

Code

M1

Figure 5.3 Program Activation Record

49

5.2 The Linking-Loader

Overview

Due to the concept of treating the activation of a program similar to the activation of

a procedure, due to the support of separately compiled modules in Lilith's M-code

architecture, and due to the format of object code files, Medos-2's linking-loader
turned out to be relatively straight forward to implement. The actual implementation

is simple and therefore efficient. In contrast to linkers and linking-loaders in most

other systems, Medos-2's linking-loader supports the linking of separate modules by

simple compatibility checks.

The program activation concept is presented in Chapter 3.3. When a program is

called, a program activation record is pushed on top of the program activation stack,

and it is removed, when the called program terminates. A procedure activation

record contains essentially only the procedure-mark, the variables declared locally

to the procedure, and some temporarily used variables. The program activation

record contains, in addition to the information corresponding to the information in

the procedure activation record (i.e. the variables declared globally to modules

loaded for the program and a coroutine used as working stack for the execution of

the main program), the code of the modules loaded for the program. Figure 5.2 and

Figure 5.3 show the memory layout of the program activation stack and the program

activation record.

The concepts in the M-code architecture which simplify the compilation of separate

modules, turn out also to simplify the linking-loader's job. The addressing of global
data and all procedures relative to base-addresses, the indirect addressing of

imported modules by aid of the data frame table, and the position independent code

simplify both the linking of object code modules and the relocation of object code

when it is loaded into main memory. Imported modules are only referenced by their

(actual) module numbers in the linked code. A module number is the index of the

corresponding module's entry in the data frame table. Thus, the linking of a program

is reduced to inserting module numbers of referenced modules into the referencing
instructions. The location of a module in main memory is stored at only two places in

main memory. The module's entry in the data frame table contains the address of

the module's data frame. The first word of the data frame contains the address of

the module's code frame divided by two. Figure 2.2 illustrates this.

The format of the object code file (and the possibilities provided by it) influences the

complexity of a linker or linking-loader considerably. The format of the object code

file for Medos-2 makes it possible to provide both a simple and efficient resident

linking-loader. Its syntax is given in Appendix 2.

The object code file syntactically consists of a sequence of tables. The first two

words of each table describe the table's type and the number of words following the

first two words in the table. This simple and uniform encoding of the object code

information into tables enables the linking-loader to scan object code files by small

routines. Six types of tables are defined: Version, Header, Import, DataText,

CodeText, and Fixup. The version table identifies the M-code version which is used

in the object code file. The header table contains the module name of the module

50

stored on the file and the size of its data frame. The import table contains a mapping

of module names to local module numbers. The data-text table and the code-text

table contain information to be loaded into the module's data frame and code frame,

respectively. The fixup table contains a list of code locations where local module

numbers must be replaced by actual module numbers.

The object code file supports the linking of separately compiled modules by only one

simple but very powerful concept. In order to guarantee that linked together

modules make at least a syntactically correct use of each other, the linking-loader

may only link together modules whose compatibility has been asserted by a

compiler. The provided mechanism is based on the possibility to uniquely identify a

module's interface in the object code. This is done by so-called module names. A

module name consists of the (first 16 characters of the) identifier, which specifies

the module's name in the program text, and a 48 bit unique time-stamp, the so-called

key. The key is generated by the compiler when the module's interface part (i.e.
definition module) is compiled. The generated value of the key is not essential if the

module provides no interface to other modules, i.e. if it is not split into a definition

part and an implementation part. The linking-loader in Medos-2 links only modules if

the module name in a reference (i.e. in an import table) is equal to the module name

of the referenced module (i.e. the module name in the referenced module's header

table).

The initialization of each separate module of a Modula-2 program must adhere to

two rules: Each module of a program should be initialized exactly once and, with the

exception of modules which directly or indirectly import each other, imported

modules should be initialized before the importing module is initialized. These rules

defined by the programming language cause the initialization code of a program's

modules to be executed in an order which does not violate the two rules. This may

be guaranteed by either linking-loader (linker) or compiler generated code. For

Medos-2, the latter solution was chosen. Although the generated code for a module

is a little longer (actually: 3 »(imported modules + 1) Byte), the reduced complexity

of the resident linking-loader compensates for the increased code-size in most

cases on the Lilith computer.

A third problem concerning the topic of linking of Modula-2 programs is the

definition of a program's main module. From the collection of separate modules of a

Modula-2 program, it generally cannot be determined which of the modules is the

main module of the program. This information, however, is needed when the loaded

program has to be executed. It is therefore defined by Medos-2's linking-loader that

a program's main module is the module which the linking-loader reads (and loads)

first from an object code file when the program is activated.

Module Executer

The linking-loader is programmed in module Executer declared locally to module

Program. Its structure is illustrated below. Only declarations are shown which are

essential to understanding the linking-loader and the way it is executed.

51

MODULE Executer;

FROM SYSTEM IMPORT PROCESS, NEWPROCESS, TRANSFER, ADDRESS, ... ;

FROM FileSystem IMPORT File, ... ;

IMPORT

Monitor, Status, MainProcess,

GetStackLimit, SetStackLimit, GetStackTop,
heaptop, heapbottom, ... ;

EXPORT Call;

CONST

pnlength = 16;

modules = 128; (* maximal number of loaded modules *)
imports = 40; (* maximal number of imported and *)

(* not already loaded modules *)
callworkspace = 40;

loaderworkspace = 480 + 12 * imports;

TYPE

ProgramName = ARRAY [0..pnlength-1] OF CHAR;

ModuleNumber = [0..modules];
Modulelndex = [0..modules-1];
FrameTable = ARRAY Modulelndex OF ADDRESS;

VAR

moduletop: ModuleNumber;

dft[40B]: FrameTable;

programname: ProgramName;
loadbase, maxloadadr: ADDRESS;

state: Status;

programproc: PROC;

caller, loader: PROCESS;

PROCEDURE Error(st: Status);
BEGIN state := st END Error;

PROCEDURE Call(pn: ARRAY OF CHAR

VAR

oldmoduletop: ModuleNumber;

oldheapbottom: ADDRESS;

monst: Monitor.Status;

son: PROCESS;

{* loaded (imported) modules *)
(* data frame table *)

(* parameter to ProgramLoader *)
(* variables used by *)

(* ProgramLoader *)

(* result to Call *)

shared: BOOLEAN; VAR st: Status);

52

BEGIN

state := normal;

(* programname := pn (with checks) *)

IF (state = normal) AND MainProcess() THEN

loadbase := GetStackTop() + callworkspace;

IF heaptop - loadbase >= loaderworkspace THEN

maxloadadr := heaptop - loaderworkspace;

oldmoduletop := moduletop;

IF NOT shared THEN

oldheapbottom := heapbottom;

heapbottom := heaptop;

END;

NEWPROCESS(ProgramLoader,maxloadadr,1oaderworkspace,1oader);

TRANSFER(caller, loader);
IF state = normal THEN

NEWPROCESS(programproc, loadbase, heaptop-loadbase, son);

Monitor.Call(son, shared, monst);
state := VAL(Status, ORD(monst));

END;

IF shared THEN

SetStackLimit(heaptop);
ELSE

heaptop := heapbottom;

heapbottom := oldheapbottom;

END;

moduletop := oldmoduletop;

ELSE Error(maxspaceerr)
END

ELSE Error(callerr)
END;

st := state

END Call;

PROCEDURE ProgramLoader;

CONST

keysize = 3;

modidsize = 16;

TYPE

Moduleldent = ARRAY [0..modidsize-1] OF CHAR;

ModuleName = RECORD

key: ARRAY [0. .keysize-1] OF CARDINAL;

ident: Moduleldent;

END;

ImportedModule = RECORD

mn: ModuleName;

53

mnr: Modulelndex;

END;

ImportNumber = [0..imports];

Importlndex = [0..imports-1];

VAR

importlist: ARRAY Importlndex OF ImportedModule;

importtop, importsearchtop: ImportNumber;

programmodule: Modulelndex; (* Module number of just
loaded program *)

f: File;

PROCEDURE InsertModule(VAR modnam: ModuleName;

VAR mnr: ModuleNumber); ...

PROCEDURE DeleteModule(importnr: Importlndex); ...

PROCEDURE LoadFile(VAR f: File; prog: BOOLEAN);

TYPE

Symbol = (eofsy, codekeysy, modulesy, importsy,

ctext, dtext, fixup);

MODULE InCode;

IMPORT Symbol, ... ;

EXPORT Getnum, Getsy, Skip, sy, fs;

VAR sy: Symbol; fs: CARDINAL;

PROCEDURE Getnum(VAR n: CARDINAL); ...

PROCEDURE Skip; ...

PROCEDURE Getsy; ...

END InCode;

PROCEDURE LoadModule(prog: BOOLEAN);

CONST maxarea = 77777B;

TYPE

AreaPointer = POINTER TO ARRAY [Cmaxarea] OF CARDINAL;

Area = RECORD

ap: AreaPointer; (* pointer to the actual area *)
atop: CARDINAL; (* uppermost used index +1 *)
top: CARDINAL; (* uppermost usable index + 1 *)

54

END;

VAR

loctab: ARRAY Modulelndex OF Modulelndex;

loctabtop: ModuleNumber;

data, code: Area;

PROCEDURE Equal(VAR mnl, mn2: ModuleName;

VAR eq, comp: BOOLEAN); ...

PROCEDURE Find(VAR mn: ModuleName; ...); ...

PROCEDURE SkipModule; ...

PROCEDURE Getmn(VAR mn: ModuleName); ...

PROCEDURE CodeKey; ...

PROCEDURE ModuleHeader; ...

PROCEDURE Imports; ...

PROCEDURE LoadText(VAR a: Area); ...

PROCEDURE Fixups; ...

END LoadModule;

END LoadFile;

BEGIN

(* Assign the procedure-variable programproc the initialization

procedure of the program's main module by aid of

typeconversion. *)

programproc := PR0C(programmodule * 400B);

TRANSFER(loader, caller);
END ProgramLoader;

END Executer

Procedure Call determines the memory space available for loading modules,

controls the execution of the linking-loader, starts the execution of the loaded

program, and returns stack-space, heap-space, and module numbers provided for

the executed program. The linking-loader is executed as a coroutine to the running

program's main coroutine (working stack) in order to enable the linking-loader to

load modules on top of the program activation stack and not because of a need for

concurrency. How this is done in detail can best be explained by looking at the

actions performed by procedure Call. The linking-loader is procedure

ProgramLoader. The structure of this routine is also sketched in the following

section.

55

Procedure Call

Procedure Call first copies the name of the called program into a globally declared

variable (programname). The memory space available for loading modules is

determined and also passed to the linking-loader in globally declared variables

(loadbase, maxloadadr). The number of modules actually loaded (moduletop) is

saved. If the program is called in unshared mode, also the state of the current heap

(oldheapbottom) is saved and a new current heap is created. Thereafter, Call

creates the coroutine which is needed for the execution of the linking-loader (i.e. for

the execution of procedure ProgramLoader) and transfers control to it

(TRANSFERicaller, loader)). This coroutine is allocated between maxloadadr and

heaptop (= stack limit). The memory layout at this moment is illustrated by Figure
5.4. After the program has been loaded, the linking-loader transfers control back to

the caller's coroutine (TRANSFERdoader, caller)), i.e. procedure Call resumes

execution.

Assuming the called program is loaded now, the loaded program may be executed

by activating the procedure-variable programproc to which the linking-loader has

assigned the initialization procedure of the loaded program's main module.

Procedure Call does, however, not activate the procedure-variable directly. An

erroneous program could cause the whole system to crash, if it were executed this

way. Instead, a new coroutine is created for the execution of the loaded program

and this coroutine is handed over to module Monitor in order to be executed. The

memory layout of the program ready to start is shown in Figure 5.5. How module

Monitor executes the program will be explained in the next section. After the

execution of the program, i.e. by return from procedure Monhor.Call, the number of

loaded modules and the current heaplimit are adjusted as required.

Procedure ProgramLoader

Object code files are parsed by a simple parser consisting of the procedures

LoadFile, LoadModule, CodeKey, ModuleHeader, Imports, LoadText, and Fixups.
Each of these routines parses a syntactical unit of the object code file. The names of

the routines describe their purpose, apart from procedure CodeKey which parses a

version table and procedure LoadText which is used to parse both a data text table

and a code text table. The syntax of the object file is given in Appendix 2. Two other

routines help parsing the object code file: SkipModule and Getmn (get module

name).

The routines Getsy, Getnum, and Skip defined in module InCode local to procedure
LoadFile are used to scan the object code file. Procedure Getsy reads a

table-header and returns the table's type in variable sy (symbol) and the number of

information words in variable fs (frame size). Procedure Getnum reads one of the

information words in a table and decrements fs by one. Procedure Skip "jumps
over" the rest of a table. All these routines check of course the syntax of the read

object code file.

Procedure LoadProgram lets procedure LoadFile parse the object code files needed

for the loading of the called program. The globally defined procedure-variable

56

programproc is assigned the initialization procedure of the loaded program's main

module if the linking-load operation is successful, and the procedure

ProgramLoader returns thereafter the control to the running program's main

coroutine, i.e. to procedure Call.

The linking-loader operates on several essential data structures, namely a list of

imported but not already loaded modules, a translation table from local module

numbers to actual module numbers, the data frame table at a fixed location in

memory, the loaded module's module names, and the data frame and code frame of

the module currently being loaded.

The list of imported but not already loaded modules is represented by the variables

importlist and importtop, declared locally to procedure LoadProgram. An entry in

array importlist consists of an imported module's module name and its (actual)
module number, importtop modules are contained in the list and described by the

entries 0 to importtopA. Procedure InsertModule inserts a module in this list,

assigns it its module number, and initializes the modules's data frame entry to NIL. A

certain module may be deleted from the list by a call of procedure DeleteModule.

Procedure Imports inserts the modules in importlist which are contained in the

import table of the currently loaded module's object code anri are not already loaded

or entered in the importlist. A module is deleted from importlist when the module is

loaded, i.e. when procedure ModuleHeader encounters the module during the

parsing of an object code file.

Imported modules are referenced by so-called local module numbers within the

object code of a module. A module's import table is the mapping between module

names and local module numbers: Local module number 0 means the importing

module itself, the ;'th module name in the import table is the module with local

module number /. The array loctab declared locally to procedure LoadModule is a

translation table from local module numbers to (actual) module numbers. 0 to

loctabtop-l are valid local module numbers for the module just being loaded. The

translation table is set up by procedure Imports during the pasrsing of the import

table. This is possible, because any imported module has a module number: It is

either already loaded or in the importlist. The translation table is used by procedure

Fixups to replace local module numbers by module numbers in the loaded code.

The data frame table (dft) is an array of addresses allocated at a fixed memory

location. One entry is reserved for each loaded or imported module. A module's

number is the index of the module's entry in this table. The address of a module's

data frame is stored in this table if the module is loaded. Entries of modules which

are imported but not yet loaded are initialized to NIL. The entries in the data frame

table are managed like a stack: The entries with indices from 0 to moduletop^ are

allocated. Variable moduletop is incremented by one whenever a (free) module

number is required for a module, i.e. when a module is inserted into importlist or

when a program's main module is loaded. After the execution of a program,

procedure Call resets the value of moduletop to its value before the corresponding

program was activated.

The linking-loader uses the module name and the module number of all loaded

modules in order to be able to link the called program to the already activated

57

programs. The module name of a loaded module is stored in the main memory just

before the module's code frame, i.e. with a small negative offset relative to the first

word of the corresponding module's code frame. The actual memory layout is

illustrated in Figure 5.6.

The linking-loader pushes all the modules which have to be loaded for the called

program on top of the program activation stack. At most one module is in the state

of being loaded (pushed) at any time. The data frame and code frame of the module

being loaded are described by two area descriptors, called code and data, declared

in procedure LoadModule. Each area descriptor contains a pointer to an array of

CARDINALS (positive numbers from 0 to 65'535) indexed from 0 to 32767 (field ap).

The pointer is initialized such that the element with index 0 in the array is allocated in

the first word of the frame described by the area descriptor. Procedure LoadText

loads the data frame (the code frame respectively) by storing information into the

array pointed to by field ap in the corresponding area descriptor. Only the memory

space corresponding to indices from 0 to top-1 of the array is allocated for the frame

and may therefore be used to load information into it. The memory space

corresponding to indices 0 to afop-1 is the actually used part of the reserved

memory space for the frame. The latter information is used for the storage allocation

for code frames because the size of the code frame of a module is not stored in the

object code file. The loading of code and data frame of a module is illustrated by

Figure 5.7.

loadbase maxloadaddr Top of Heap

IP IP IP

Current

Program

Loader

Stack

Heap

Stack

Figure 5.4 Layout after Activation of Loader

Level 0

Top of Stack Top of Heap

Current

Program

Loaded

Program

Heap

Stack

Figure 5.5 Layout before Activation of Loaded Program

59

Data Frame Table Module m Module Name

J

Data
m

Module Name

Code

Figure 5.6 A Loaded Module

Code Area

Data Area

ap t

-

atop 31

top 67

ap t

-

atop 555

top 7654

maxloadaddr

Data

Module Name

Code

Loader Stack

Figure 5.7 Loading a Module

60

5.3 Execution and Termination of Programs

Module Monitor controls the execution of a program, i.e. it activates the coroutine

which is set up for the execution of the initialization part of the program's main

module. (See Appendix 1.9.) A simple exception handling is provided which enables

the caller of a program to resume execution after the termination of the called

program. Medos-2 cannot guarantee that the caller of a program always resumes

execution after the occurrence of any "fatal" error as the system provides no

uncircumventable protection mechanisms against bad behaviour of programs.

Experience shows, however, that the system recovers from the most frequently
occurring errors.

Module Monitor also provides routines which return the current level and the shared

level, a routine which enables a program to terminate execution at any place in the

program and with any status (Terminate), and a routine for the announcement of

termination procedures (see Chapter 3.4). Other provided routines control the clock

and enable the reading of characters from the connected keyboard. The

implementation of these facilities will not be discussed here. It must, however, be

known that the keyboard is periodically scanned for input by the clock process, as

the keyboard interface does not send interrupt to the Lilith's processor. The clock

process is implemented in module Monitor.

In the M-code architecture, a trap is invoked when an erroneous condition is

detected by the processor (M-code interpreter). A trap may also be unconditionally
invoked by an M-code instruction in the executed code. A trap causes a transfer of

control to another process (or coroutine) just like an (unmaskable) interrupt. The

condition causing the trap may be derived from the suspended coroutine's

descriptor. To better understand this mechanism, consider the processor as a

peripheral device causing interrupts. The processor (-device) is controlled by the

operating system. The trap handler is an interrupt-driven process handling the traps
caused by the process executing programs. (It is assumed that the other two

processes in the operating system, namely the trap handler and the clock process,

do not cause traps. Both are programmed in module Monitor and are assumed to be

correct. The operating system treats all traps the same way: A trap terminates the

execution of the running program and lets the caller of that program resume

execution.

It is expected from an ordinary process scheduler that suspended processes are

resumed at the place where they were suspended. Since the trap handler starts to

execute because an erroneous condition occurred in the suspended process, it

makes no sense to restart the process unchanged. The trapped process must either

never be resumed, or it must be changed such that it makes sense to resume it. In

Medos-2, the latter alternative is chosen for conceptual reasons. The trapped

process is changed by popping the uppermost program activation record from the

program activation stack. Then the trapped process resumes execution where the

popped program was called, i.e. in the program which called the trapped program at

the place where it was called. This operation is easy to perform because the working
stack of an activated program is kept in a separate coroutine. The algorithm used is

illustrated in the following piece of program:

61

MODULE ExceptionHandler[15];

FROM SYSTEM IMPORT PROCESS, NEWPROCESS, TRANSFER, ADR, SIZE, WORD;

EXPORT Cal1;

TYPE InterruptVector = RECORD driver, interrupted: PROCESS END;

VAR

cpuIV[14]: InterruptVector;

father, son: PROCESS;

stack: ARRAY [0..99] OF WORD;

PROCEDURE Call(VAR p: PROCESS);
VAR grandfather: PROCESS;

BEGIN

grandfather := father;

TRANSFER(father, p);

p := son;

father := grandfather
END Call;

PROCEDURE TrapHandler;

BEGIN

LOOP

TRANSFER(cpuIV.driver, cpulV.interrupted);

son := cpulV.interrupted;

cpulV.interrupted := father

END

END TrapHandler;

BEGIN :ir /tr

NEWPROCESS(TrapHandler, ADR(stack), SIZE(stack), cpuIV.wfcem>pted)

TRANSFER(cpuIV.interrupted, cpulV.driver)
END ExceptionHandler;

In the example, the globally declared variable father represents the caller of the

running program's coroutine and the variable son is the most recently suspended

coroutine, i.e. the coroutine which caused the most recent program termination.

cpulV is the interrupt vector entry which is used when a trap occurs. Procedure Call

saves its father in variable grandfather and transfers the control from its own

coroutine to the coroutine passed over to it as a parameter. The started coroutine is

the working stack of the running program and the suspended coroutine (saved in

variable father) is the working stack of the caller of the running program. The

running program terminates execution with a trap. The trap handler is invoked,

copies the suspended coroutine into the globally declared variable son, replaces the

suspended coroutine by the coroutine of the caller's program (variable father), and

62

transfers control to it, i.e. to routine Call, where the trapped program was activated

by a coroutine transfer. Here, the trapped coroutine (son) is copied to the parameter

p and the variable father is reset to its value before the program activation. From the

value of the coroutine variable returned by procedure Call, the reason for the

termination of the program may be derived. The routines in the module execute on

priority 15, i.e. with all interrupts disabled.

The shown local module ExceptionHandler could have been programmed in module

Program because it imports only objects provided by Modula-2. The reason for

handling exceptions (traps) in module Monitor, the hierarchically lowest module in

the operating system, is that the actual implementation provides several additional

features:

The execution of the running program may also be terminated by the clock process.

If the user of the system types CRTL-C, the keyboard scanner (i.e. the clock

process) tries to terminate the execution of the running program. The termination of

the running program is delayed until the running program does not execute a routine

in the resident operating system. This condition is tested once for each clock

interrupt, i.e. once every 20 msec.

The management of program levels and of termination procedures as well as the

activation of the termination procedure in the opposite order of their announcement

after the termination of a program is implemented in module Monitor. These

features must be provided at a low level in the system in order to enable other

modules in the system to use them.

Several perhaps less important features like the automatic writing of memory dumps

to the disk and the killing of the system if a trap occurs during the execution of a

routine in the resident system cause additional complexity for the exception handler.

It should, however, be stated that the programming of even this delicate program

killing mechanism is done entirely in Modula-2. Code-procedures are only used for

the control of the disk drive in order to make memory dumps after program crashes

and for invoking a trap (procedure Terminate).

63

6 Implementation of Files on Disk

A brief overview of the file system interface is given in section 6.1. The standard file

storage medium for Lilith are disk cartridges for Honeywell Bull D120/D140 disk

drives. The orgranization of files on such cartridges by module DiskSystem is

explained in 6.2. Data security aspects are commented upon in 6.3. The

performance of a computer system depends heavily on the performance of its file

system. The average data throughput to and from disk files has been increased by

allocating sequential disk sectors to files and by buffering algorithms mainly

supporting sequential accesses to files. This is discussed in 6.4.

6.1 Files in Medos-2 (Overview)

Files are used for three main purposes, namely for long-term storage of information

(on permanent, named files), for communication among programs, and for

secondary storage of information (on temporary, unnamed files).

Files provided by Medos-2 are uniquely identified byte-sequences. Each file is

stored on a certain medium and may have a textual filename. The interface to files is

provided by module FileSystem. It exports the type File and operations on variables

of this type for creating, opening, naming, writing, reading, positioning, and closing
files in a simple and convenient way. Please refer to Appendix 1 for more details.

The provided interface is so complete that the skilled programmer may access files

randomly, modify the information in files, implement specialized I/O routines or

packages, control the lifetime and protection of a file, and even force the buffered

information to be stored on the corresponding file's storage medium. These latter

facilities have proved to be valuable for the implementation of "operating system

independent" I/O packages like module InOut [Han82] and CompFile [Gei83]. A

relational database system [KMP83, RRU82] and a file system providing

hierarchically organized files [Sug82], and even Medos-2'sfile system itself (see next

section) use these "low-level" facilities heavily.

The most unusual feature provided by module FileSystem is, however, that any

program (executed in unshared mode, see section 4.2) may declare that it provides a

physical implementation of files (i.e. an access-path to files) on a certain uniquely
identified medium. Thus, there is a sharp distinction between the abstract definition

of a file provided by module FileSystem and the implementation of files on a certain

(type of) medium provided by a resident or non-resident module.

The declaration of a certain implementation of files is made by a call of procedure

CreateMedium, which announces two procedures to module FileSystem together
with the supported medium's identification. Whenever an operation has to be

performed on a file and cannot be handled locally by module FileSystem, one of the

two routines announced for the corresponding medium is called. One of the

announced routines performs all operations on filename directories, i.e. insert,

delete, lookup, and rename filename of a certain file, the other announced routine

performs all other defined operations on files, e.g. create, open, and close a file.

Although a client of module FileSystem may directly invoke the two routines which

64

provide access to files on a certain medium (procedure FileCommand and

DirectoryCommand) and may also, for example, access the provided file buffer, only

few implementation dependent details are visible to clients of module FileSystem.
Files may therefore be implemented on a large class of media or devices, e.g. a

teletype, paper tape, magnetic tape, disk, main memory, and they may even be

accessed remotely. Pseudomedia or -devices, like printer spoolers, may also be

provided. Several modules have been developed which provide implementations of

files on a certain medium, i.e. provide implementations of the two routines which

must be anounced to module FileSystem.

Module DiskSystem implements files on cartridges for the Honeywell Bull

D120/D140 disk drives. This module is included in the resident part of Medos-2

because users normally have their files on cartridges for this type of disk drives and

because at least one file medium must be accessible by the resident system (in order

to be able to load programs).

Other (types of) media are supported by non-resident modules. Main memory

resident files are, for example, used for inter-pass files by the Modula-2 compiler.

Such files are provided by module MemoryFiles. Module TerminalFiles makes the

keyboard (standard input) and the display (standard output) accessible as files. The

Magnet local area network [Hop83] makes files accessible as ordinary files over a

network. A printer spooler has also been implemented this way.

It should be remarked that all such "implementations" of files import module

FileSystem and not vice-versa as one might expect. Module FileSystem is therefore

one of the hierarchically lowest placed modules in Medos-2. The hierarchy of

resident modules is shown in Figure 4.1.

Internal File Identifications and Filenames

All files supported by Medos-2 have a unique identification, the so-called internal file

identification and might also have an external (symbolic) filename. Both the internal

file identification and the filename consist of two parts, namely a part identifying the

medium upon which a file is (expected to be) stored and a part identifying the file on

the selected medium. The two parts of the internal file identification are called the

internal medium identification and the local file identification. The corresponding

two parts of a filename are called the mediumname and the local filename.

The uniqueness of an internal file identification is guaranteed if there exists no pair

of media with the same internal medium identification, and a given local file

identification is used only once for a file on a certain medium.

In the present version of Medos-2 (version 4.2), most file implementations do not

support a unique internal medium identification. This has not turned out to be

critical as long as only one medium of a certain type can be accessed at the same

time from one machine and internal file identifications are only stored "permanently"

on the medium upon which the identified file is stored. The introduction of a local

area network, through which files may be accessed remotely, will enforce a more

serious handling of the internal medium identification in future versions of the

system (e.g. by introducing a medium label on each removable medium).

65

6.2 The Organization of Disk-Files

Module DiskSystem implements files with disk cartridges for Honeywell Bull

D120/D140 disk drives. (See also Appendix 1.3.) The disk driver is provided by a

second module called DUODisk. The design of these modules compromises

between the following main requirements for the implementation of files:

- fast access, in particular if strictly sequential,
- robustness against hard- and software failures,

- recoverability from inavoidable errors,

- accomodation of a large number of (mostly short) files, and

- economical usage of disk and main memory storage space.

The implementation of files in module DiskSystem is split up into two principal parts

represented by two local modules in module DiskSystem: Uniquely identified,

temporary or permanent, nameless files are provided by module VirtualDisk; naming

of files is supported by module Names. The following two sections describe roughly

how files and filenames are provided by the two modules.

Files

All files on a cartridge for the Honeywell Bull D120/D140 disk drive are described by

the so-called file directory. The file directory is a file. It has a fixed length (196'608

Byte) and is allocated at a fixed location on the disk. Each of the file directory's 768

entries (file descriptors) may describe one file by its local file identification, length,
disk allocation, lifetime, protection, number of last modification, and date of creation

and last modification. Only one file descriptor is stored per disk sector. Figure 6.1

shows the description of a file on a disk.

In order to avoid compaction of files (which is time consuming and prone to failures),

so-called pages are allocated to a file on demand and addressed indirectly through a

pagemap. A page contains eight 256-Byte sectors. The 8 sectors of a page are

allocated equally spaced in a track on the disk (interleaving factor = 12). The

pagemap is part of the file descriptor and has space reserved for 96 page-pointers.

This number limits the maximum size (length) of a file to 96 » 2048 Byte. (A newer

version of module DiskSystem removes this limitation at a cost of about 1 kword

main memory for program code [Ruc82].)

The free pages on a disk are the pages which are not allocated to any file on the disk.

In order to speed up the allocation of a free page to a file, module VirtualDisk

maintains a memory resident page allocation table of 392 word (one per cylinder).

Each bit in a word indicates whether or not its corresponding page is allocated to

some file. The memory resident allocation table makes it feasible to give a file a

good allocation: Whenever a free page is allocated for a file, the free page closest to

the page allocated at the end of the file is searched and allocated to the file. This

strategy minimizes the overhead for seeks if a file is read or written sequentially.

Free entries in the file directory are described by a file number allocation table of 768

/16 = 48 word. Each bit in this table indicates whether or not the corresponding file

descriptor in the file directory describes a file. This table is used as an aid whenever

66

a file is created. If it turns out that a file descriptor is not free although it was marked

free in the file number allocation table another number of a "free" file descriptor is

searched. This is tried until either a free file descriptor is found or the file directory is

(believed to be) full.

Upon opening the DiskSystem for accesses to a certain disk (e.g. when the machine

is booted), the entire file directory is scanned and the page and file number

allocation tables for the disk are computed. Inconsistencies found during this initial

scan of the file directories are either written out on the screen and cause the system

to reject the disk or are automatically removed. For example, a temporary file (if

found) is removed without comment.

The uniqueness of a file's local file identification is guaranteed by generating a new

local file identification whenever a file is created on the medium. This is done in the

following way: The local file identification consists of two parts, namely the number

of the file's entry in the file directory (0 to 767) and a so-called version number (0 to

32767). The version number is always stored in the entry and is incremented by one

(modulo 32768) whenever the entry is allocated for a new file. This algorithm works

if it is assumed that the time until the same local file identification is generated again
is so long that all occurrences of a certain local file identification are deleted before

it is generated the next time.

An opened file is described by a so-called virtual disk descriptor in main memory.

The virtual disk descriptor contains the most often used information from the

corresponding file descriptor, the level number of the owning (activated) program,

and information describing the accesses to the file i.e. the file's local file

identification, size, protection, permanency, 12 of its page-pointers, the owning

program's level number, current state, current position, buffer, flags indicating
information changed in the virtual disk descriptor, and statistics over the last 16 disk

accesses for the file. A file may only be opened once at a time if the file is provided

by module DiskSystem. This restriction makes it possible to include information

describing the accesses to a file (i.e. current position, current state, etc.) in the

descriptor describing a file (with information like local file identification, size of the

file, its disk allocation, etc.). 16 virtual disk descriptors are allocated permanently.

This limits the maximum number of concurrently opened files to 16. Two of these

files are used by module DiskSystem itself for accessing the file directory file and the

name directory file (see next section). A virtual disk descriptor is shown in Figure

6.2. This figure shows also a variable of type File and a buffer bound to this file

variable.

Buffers are allocated on demand from a pool of 16 buffers. Each buffer is described

by a buffer descriptor which also contains the corresponding buffer space (256

Byte). Other information in the buffer descriptor is a pointer to the virtual disk

descriptor for which the buffer is allocated, the number of the buffered sector

relative to the beginning of the corresponding file, a page-pointer pointing to the disk

page within which the buffered sector resides, the last response from the disk driver,

and a clock used by the buffer management to distribute buffers among opened

files. The buffering technique used is described in Chapter 6.4.

The allocating of a fixed number of virtual disk descriptors and buffer descriptors is

67

due to the fact that the system provides no general scheme for the dynamic

allocation of variables (in the heap). (See also Chapter 5.1.) Robustness

considerations also speak against a dynamic allocation of these descriptors. The

number of buffer descriptors is chosen to be at least equal to the number of virtual

disk descriptors. Deadlock situations are prevented this way. Each opened file may

lock one buffer descriptor to the corresponding virtual disk descriptor because a

variable of type File may have pointers to the corresponding buffer.

Filenames

Local filenames of permanent files are typically stored in the so-called name

directory. The name directory also has a fixed length and location on the disk. It

contains 768 name descriptors, one for each possible file on the disk. Its i'th entry is

used for the name descriptor of the i'th file in the file directory. Thus, it is very simple

to find the name entry to a certain file, given the file's local file identification. A name

descriptor of a named file contains the file's local filename, i.e. an identifier or a

sequence of identifiers separated by dots, and the file's local file identification. (See

Figure 6.1.) The procedure Lookup(f, <filename>, new) is used to search the local

filename in the name directory. The corresponding file is opened with the aid of its

local file identification, if the name is found in the name directory.

File Descriptor

reserved

LFI.filno 23

LFI.versno 47

fdt father

length.sectors

modification

referenced

protection

ctime.date

ctime.minute

mtime.date

mtime.minute

reserved

pagetab

9

length.bytes 130

39

52

nil

Page of 8 Sectors

Page of 8 Sectors

Explanation:

f^ means used space in sectors

Name Descriptor

localfilename

'Example MOD'

nk 1

LFI.filno 23

LFI.versno 47

reserved --

Figure 6.1 File Description on Disk

69

File

bufa t

User

ela t

elodd FALSE

ina t

inodd FALSE

topa t

flags {rd}

eof FALSE

res done

com doio

mt 'DK'

mediumno 65535

mh

submedium t

Virtual Disk Descriptor Buffer Descriptor
System

nextvdk t
fc

nextbuf NIL

level 1 clock

LFI.fno 23 I

I

vp t

LFI.vno 47 sec 9

Igth.sectors 9 page 52

Igth.bytes 130 res done

Imod FALSE data

perm FALSE

modified FALSE

pos.sectors 9 *

pos.bytes 0

state reading

resp done

curbuf t

ptabbase 0

ptabmod FALSE

ptab 39

52

Figure 6.2

Description of an Opened File

lastsector 9

lastacc. {0..15}
nextbit 10

nonseqacc. 0

isnonseq. FALSE

70

6.3 Data Integrity Aspects

It is well known (but often forgotten) that no real computer system can guarantee an

absolute integrity of stored data. This is especially true for low-priced, single-user

computer systems. On the other hand the integrity of long-term storage is of

paramount importance to the user. During the design of module DiskSystem, a great
deal of attention has therefore been paid to its robustness. Resistance against

corrupted information and against misuse as well as recoverability after inevitable

program crashes was considered in its design. Most techniques for improving the

robustness of a file system, however, also cost in terms of either more expensive
hardware components or larger and slower software. Thus, an adequate

compromise must be found between the desired file system's robustness and the

just acceptable overhead of obtaining it. It can easily be imagined that the chosen

compromise depends much on the intended application area of the computer

system. Data integrity aspects are much more important for computer systems used

for the implementation of large data bases which may be updated interactively, than

for computer systems which are "merely" used for document preparation and

program development. The difference between the two cases lies mainly in the

value of the stored information and in the easiness by which corrupted files (data

bases) can be reconstructed from backup (or redundant) information. Even if it is

taken into account that most file systems designed for smaller computer systems are

not intended to support large data base applications, their reliability is definitely too

low. For example, in an ill-designed system, corrupted data in a single sector can

create such confusion that the valid data on the rest of the disk is practically
inaccessible.

Both, erroneous hardware and software may cause corruption of stored information.

Several techniques exist to reduce the probability of lost data. For the intended

application of the personal computer Lilith, it doesn't seem to be worthwhile to

always store files on two different media (mirrored disks [Katzm, Hoe82]). This

approach leads to too expensive hardware and is highly inconvenient for users of

the machine. Even the approach to generally store the information twice on the

same medium (disk) is doubtful because of the inferior utilization of the storage

medium and because of the lower attainable maximal write rate. Several systems

provide therefore a "secure" storage option which enables a user to specify that a

file should be stored twice (e.g. mirrored files, stable storage [SMi80]). This latter

approach seems, however, to be so complex that, to my knowledge, no operating

system implemented for a personal computer provides this option. Medos-2 is no

exception to this. The user of Lilith must from time to time explicitly make back-up

copies of important files. If this method is inadequate, the application program (e.g.

a data base system) must be written such that the desired degree of data integrity is

provided for the specific application. A highly reliable file server accessible via a

local area network is an obvious and preferreable alternative.

The methods mentioned above to improve the data integrity in long-term storage

deal mainly with erroneous hardware components. Erroneous software is, however,

as dangerous as marginally performing hardware. Aside from programming errors in

the file system software, two main groups of problems may cause the file system to

affect data integrity: Corruption of the operating system by hardware or user

71

software, and unexpected or enforced system crashes.

File systems generally keep state information about accessible files in main memory.

If the information stored in main memory is faulty, the file system may be caused to

corrupt information stored on an accessable disk and thereby to enlarge the number

of faults. Lilith and many other personal computers provide no absolute protection

mechanisms. Any erroneous program may for example overwrite the file system's

code and data. To reduce the probability of an overwritten operating system, little

can be done but to improve the encapsulation mechanisms (introduce "firewalls").
This can be achieved both by software (more "safe" programming languages, code

interpretation) and by modifying the machine architecture (instruction set,

hardware). Another independent approach is to tackle the problem of existing faulty
information. This problem must be solved anyway in a reliable system, as any

computer system may corrupt information in main memory. By introducing

redundant information in stored data, inconsistencies may hopefully be detected by

simple checks (assertions). The detection of faults enables the file system to

prevent the generation of new faults and thereby to keep a local fault local or even to

correct the fault. Module DiskSystem makes heavy use of this technique. A third

method to reduce the probability of information destruction in secondary storage is

to make the disk controller sufficiently intelligent that it can itself check the validity of

disk operations. Such validity checks can be made nearly uncircumventable. The

Alto computer [TML79] minimizes damages caused by software failures in this way.

The main drawbacks of this approach are that a standard disk drive and/or disk

controller cannot be used and that the validity checks make the allocation and

deallocation of disk sectors (pages) of a file awkward. The controller must typically

read and check the addressed sector's header before the header may be changed

after a further disk rotation (overhead!).

The second group of problems which may cause inconsistencies on a disk concerns

the interruption of processing at improper moments. Hardware and software errors

as well as users pressing the boot-button or switching off the power may cause the

processor to stop proper execution. Beside hardware problems, which may make

sectors detectably unreadable, the required atomicity property of file operations may

also be affected by an unexpected or enforced system crash. Module DiskSystem

provides high reliability in such cases (failure atomicity) by merely pasive, atomic

operations on directories (i.e. atomic oprerations without additional data structures

or data accesses) [SMB79].

Data Integrity Aspects of the Chosen Data Structures on Disk

In order to control the global damage that could result from local errors on the disk,

the information must be stored such that an error on the disk affects as few files as

possible. Within affected files, an error should corrupt as few Byte as possible. This

ordering of importance is essential for the user of the file system: Files and Byte are

the logical units of information which the file system stores for the user and which

may be affected by errors. It is, however, better to loose, for example, 256 Byte in

one file than to loose one Byte each in 256 files. This is because one damaged Byte

in a file may have the consequence that the whole file is useless for its user. One

72

Byte lost in each of 256 files will in most cases have more serious (i.e. less local)

consequences for the user of the disk than 256 Byte lost in one file.

Most hardware mechanisms which may cause data corruption on a disk affect the

data stored in one or a few sectors. With two exceptions, module DiskSystem stores

in each disk sector information of (or about) a single file only.

The first exception is the name directory in which the names of eight files may be

stored in a single sector. The loss of a file's textual name does, however, not mean

that the file itself is lost. The old or a new name can later be assigned to a nameless

permanent file.

The second exception concerns the directory file. A file is described by a file

descriptor stored in one sector of the directory file. This conforms to the desired

property of describing merely one file per disk sector. The exception is that the

directory file itself is also described as a file in one sector. If the information in the

sector describing the directory file is corrupted and no precautions are taken, all files

stored on the disk may be lost. This problem is solved by allocating the directory file

as a contiguous file with a fixed length at a fixed location on the disk. The file

descriptor of the directory file can therefore be considered as a constant. It can be

reconfigured at any time, and it is only seldom inspected and never changed by

ordinary software.

It follows from the above explanations that a corrupted sector affects at most one file

seriously.

The atom icy property of file system operations is achieved by merely passive means:

The data structures of the two directories are defined such that the state of a file,

with one minor execption, always can be changed from one externally consistent

state to the next by overwriting only one sector. The consequence is that, apart from

the exception, the information describing files on the disk is always in a consistent

state. Software crashes (or machine stops) therefore causes no serious recovery

problems. If a disk write operation fails for some reason (boot-button, power failure,

etc.), the addressed sector will probably be unreadable. One such damaged sector

generally affects at most one file as was explained above. Two minor consistency

problems may arise if a crash (or stop) occurs at an unexpected moment:

Opened temporary files remain described in the file directory after the crash,

although it is defined in module FileSystem that a temporary file is removed when its

owning program terminates execution. This problem is solved by removing

temporary files in the file directory when the disk is mounted the next time, i.e. during

the initialization of the page allocation table in module DiskSystem.

The second problem - the minor exception mentioned above - concerns the name

directory. Renaming a named file causes no problems as this is done with only one

write operation. The insertion of the local filename of a nameless (and temporary)

file into the name directory and the removal of the local filename of a permanent file

and thereby converting the file to a temporary file cause problems because the file's

local filename is stored in the name directory file and the boolean flag indicating a

files permanency is stored in the file directory file. The corresponding file descriptor

and name descriptor cannot be updated by merely one disk write operation. The

73

required atomic property of the insertion and removal operations is solved in the

following way: When a nameless file is given a local filename, its name is first

inserted into the name directory whereafter the file's permanency is changed to be

permanent. If the system crashes (or stops) after the insertion of the file's name but

before it is set permanent, the result will be that the (still temporary) file is removed

the next time the disk is mounted. The name directory will hereafter contain an entry

describing the local filename of a not existent file. This local filename is removed the

first time a file with the corresponding name is looked up (but cannot be opened) or

when a file described by the corresponding entry in the file directry is given a name.

The removal of a file's local filename is handled similarly between the two

operations, but in the opposite order. The file's state is first changed to be

temporary whereafter it's name is removed in the name directory. The recovery from

a crash is identical to that for a name insertion.

Detection of Corrupted Information by Module DiskSystem

Files on the Honewell Bull D120/140 disk drive are described by two directories on

the disk cartridge (see Chapter 6.2). A mounted disk and the files stored on the

mounted disk are also described by data structures local to module DiskSystem.
Both the information on the (mounted) disk as well as the information kept locally to

module DiskSystem may be erroneous. In order to guarantee the integrity of the

information stored on the disk, it is essential that corrupted information about stored

files be detectable because the use of such erroneous information may cause a

disaster [Lam8l]. Module DiskSystem mainly improves its robustness to misuse,

corrupted information, and hardware failures by checking implicit or explicitly stored

redundancies at many placej in the program. Examples of such redundancy checks

are listed below:

Parameter-checking: All provided routines thightly check the legality of a call and

the validity of the arguments. For example, all opened files handled by module

DiskSystem are described by a virtual disk descriptor (see 6.2) within module

DiskSystem. A variable of type File passed as a parameter to procedure

FileCommand is checked against the information stored in the corresponding virtual

disk descriptor before the operation is performed.

Page-Pointers: A page-pointer (see 6.2) describes the address of a disk page, i.e. of

eight sectors on a disk. The actual value stored in a page-pointer is the

page-number * 13, where the page-number is the disk address of the first sector of a

page divided by eight (0 <= page-number < 4704). Whenever a page-pointer is

interpreted, it is checked that it is divisble by 13 (without remainder). All single-bit

errors in a page-pointer and generally 12 out of 13 arbitrarily modified page-pointers

are thus detected.

Page Allocation Table: The page allocation table (see 6.2) describes the free pages

of the mounted disk. The table is introduced for efficiency reasons. It allows both a

fast and a good allocation of free pages to a file. The use of faulty information in the

page allocation table is disasterous, if the fault causes a page to be allocated to

several files (so-called crossing files). Module DiskSystem (and the hardware)

provide no lower level checks preventing the allocation of a sector (or page) to two

74

or more files as does, for example, the Alto computer [TML79]. The information

stored in the page allocation table is treated as the absolute truth about free pages

on the mounted disk. In order to detect damages caused by memory errors and

erroneous programs (overwritten page allocation table), each word of the page

allocation table is checked like page-pointers: One word of the page allocation table

describes the allocation of merely 12 pages. This can be done with 12 bit. In stead

of storing the 12 bit directly in a word of the page allocation table, the 12 bit are

treated as a number ranging from 0 to 4095 and are multiplied by 13. Before an entry
in the page allocation table is used, its divisibility by 13 is checked, and it is

converted to a set of 12 bit. This check detects all single-bit errors and generally 12

out of 13 arbitrary modifications of a single entry of the page allocation table.

Furthermore, a free page is represented by a zero-bit. A word set to zero by

erroneous software would therefore indicate 12 allocated pages, which is not

critical. A page marked free in the page allocation table must be free in order to

prevent a disaster. The opposite is not necessary: A page may be marked allocated

in the page allocation table although it is not allocated to any file. A disk merely
looks full before all pages are truly allocated.

File Descriptors: The number of a file's file descriptor in the file directory file (see

6.2) is stored in the file descriptor itself. Most read or write errors to the file directory
file are detectable by checking the correctness of the file number and the divisibility

of the page-pointers in the descriptor.

6.4 File Buffering

More than a decade ago, Gene Amdahl [Amd70] speculated that the I/O bandwidth

required by a computer system is proportional to its instruction execution rate.

Although the required I/O bandwidth also depends heavily on other factors (e.g. the

actual application of the computer), it is obvious today that a floppy disk drive used

as the main secondary storage device for an otherwise high-performing work station

like Lilith, PERQ, or Alto would downgrade the overall performance of the work

station unnecessarily. Beside using a better performing hard disk drive, buffering

together with a good allocation of sectors to files are the main techniques for

achieving higher I/O performance to secondary storage in Medos-2. Section 6.4.1

briefly presents the file buffering concept in Medos-2. Section 6.4.2 gives an

estimate of how buffers should be distributed among opened files. Read-ahead for

sequentially and randomly accessed files is discussed in 6.4.3, and the organisation

of the buffer pool is presented in 6.4.4. Section 6.4.5 shows the results of some

performance measurements.

6.4.1 The File Buffering Concept in Medos-2

All I/O appears completely synchronous in Medos-2's file system. Necessary

buffering is performed by the file implementations, i.e. by the modules implementing

files on supported media or providing an access path to supported media. For the

normal programmer, the buffering therefore seems to be provided by the file system.

The size of the buffers, the number of buffers, and the buffering method

(read-ahead, write-behind, LRU-replacement, etc.) may freely be chosen by each file

75

implementation and is, with the exception of the buffer size, invisible to file system

clients. The exception being four address fields in the client's file variable which

describe the buffer containing the Byte at the file's current position. Please refer to

section 6.1 and to module FileSystem in Appendix 1 for more details.

Although many programmers and especially implementors of database management

systems [Sto8l] argue against operating systems providing file buffering for

secondary storage devices, many operating systems (including Medos-2) provide

system buffering of files (e.g. DEMOS [Pow77], UNIX [RT78, and Pilot [Red8o]). The

main reasons for this are first, that I/O to secondary storage often turns out to be the

bottleneck of a computer system, limiting its throughput and its performance and,

second, that experience (of operating system designers) indicates an intolerably

large gap between what implementors of l/O-packages (run-time systems, database

management systems, etc.) claim can be optimized by them (knowing about actual

applications) and what is actually optimized in typical (i.e. most often used)

l/O-packages.

Besides the possibility to provide a better overall system performance by system

buffering, mainly the following arguments speak in favour of system buffering in

Medos-2:

Files are used within Medos-2 itself. The resident loader reads object-code files and

module DiskSystem accesses both directory files (see 6.2) and ordinary files.

System buffering saves both code and buffer space otherways used if no system

buffering were provided. For example, an operation on a disk-file might cause an

access to the file directory file. This simply invokes a possibly recursive call of a file

system routine.

The local management of buffers by each file implementation (e.g. module

DiskSystem) makes it possible to tailor the buffering mechanism to the

characteristics of the concrete secondary storage device and the dominant mode of

accessing files on it.

Typical arguments from database management system implementors against

system buffering, like high overhead for system calls, marginally performing buffer

management for sequential accesses to files, or no possibility to flush the contents

of system buffers to the secondary storage medium [Sto81] are hardlto the

secondary storage medium [Sto8l] are hardly applicable to Medos-2. Medos-2 has

no additional system call overhead (parameter checking should also be made by
user-written l/O-routines), the routines defined in the file system interface make it

possiand the buffer manager in module DiskSystem recognizes sequential accesses

to a file which causes a changed read-ahead, toss-immediatly strategy to be used for

the file's buffers (see section 6.4.2). Medos-2 was, however, not designed to

especially support substantial database applications.

6.4.2 Distribution of Buffers to Disk Files

Currently, the buffer manager in module DiskSystem has 16 permanently allocated

buffers, each with space for one sector (256 Byte). The number of buffers is fixed

because no dynamic allocation of variables is available to module DiskSystem (see

76

Chapter 5.1). The number of buffers must be larger or equal to the maximum

number of simultaneously open disk files because each opened file may lock one

buffer. The number must be as small as possible (acceptable) in order not to waste

memory space. Experience shows, however, that programs typically uses only a few

files at the same time (zero, one or two, seldom more). As disks for the Honeywell
Bull D120 disk drive are the main secondary storage medium for Lilith, and as it

turned out that several programs (at least during shorter periods) are l/O-bound

(e.g. the Modula-2 compiler, the editor, the debugger and others), it is advantageous
to improve the I/O throughput to the disk by better buffering techniques.

In Medos-2, most file accesses are sequential, and only a relatively small buffer pool
is available (16 * 256 Byte = 4096 Byte). These facts indicate that it is not

worthwhile to try to reduce the number of disk accesses by using the few buffers as

a simple disk cache, managed by a least recently used (LRU) or second chance

(SCH) replacement algorithm.

If the number of disk accesses cannot be significantly reduced, the only other

method to improve the I/O bandwidth to a single given disk is to reduce the average

time needed for a disk access. From inspection of the different timings of the

Honeywell Bull D120 disk drive, it can be seen that the average time needed for an

arbitrary head movement is about eight times longer than the average arbitrary
rotational delay (latency).

- average of arbitrary head movement (seek) 65 ms

- average of arbitrary rotational delay (latency) 8.33 ms

- sector transfer time (to interface buffer) .333 ms

The average time needed for a disk access can therefore be reduced most

effectively by reducing the number of head movements or by reducing the distance

of an average head movement. This can generally be achieved by ordering
(scheduling) requests for disk accesses such that the total time needed for head

movements is minimized. More "general" disk scheduling strategies, such as the

scan algorithm [Hoa74], are, however, not applicable, because there is no

unrestricted competition among concurrent processes accessing files in Medos-2

(or in other typical single-user environments).

In module DiskSystem, the problem is tackled by a good allocation of sectors to files

and by read-ahead (prefetching):

Sectors allocated for one file are allocated almost contiguously on the disk. The

eight sectors of a page (the allocation unit) are allocated equally spaced around a

track (interleaving factor = 12, i.e. 1/4 disk rotation from one logical sector to the

next). When a free page is appended to a file, the page is, whenever possible,
allocated on the same track as the page allocated at the end of the file. If there is no

free page in the same track, a free page in the same cylinder is searched.

(Unfortunately, it costs a seek-operation to change the track in the same cylinder on

the used drives.) If still no free page is found, the cylinder with free pages nearest to

the cylinder of the page at the end of the file is searched and a page is allocated from

that cylinder. The almost contiguous allocation of sectors to files obviously

minimizes the time needed for head movements, if only one file is sequentially
accessed. This is a frequent case (e.g. searching a local filename in the name

77

directory file, loading programs from object-code files). If more than one file is

sequentially accessed, reading-ahead respectively writing-behind on a file would

decrease the average number of head movements and/or their average length,

provided that sectors of a file are allocated close to each other. This technique

requires, however, more than one buffer for one or several of the sequentially

accessed files.

To answer the question of how to distribute buffers to files, the following three

methods were considered. An active file is a file which is either read, written, or

modified. The activity of a file means the number of sectors read or written for the

file in a certain period:

a) Distribute the available buffers equally among active files.

b) Distribute the available buffers proportional to the activity of active files.

c) Distribute the available buffers proportional to the squareroot of the activity of

active files.

The following idealized assumptions are made:

1) All necessary seeks need equally much time.

2) Rotational delays and data transfer times can be ignored.

3) Files are accessed sequentially.

4) The cost of reading or writing all buffers of a file is one seek operation.

Denotations

Squareroot function: sqrt(<Expression>)

Square function: sqr(<Expression>)

Sum function: sum(<Expression> | <Range>)

Number of active files: F

Number of buffers allocated to file i: Bi

Total number of buffers: B = sum(Bi | i = 1.. F)

Activity of file i: Ai

Total activity: A = sum(Ai | i = 1.. F)

Seek frequency for file i: Si = Ai / Bi

Total seek frequency: S = sum(Si | i = 1.. F)

It follows for the total seek frequencies Sa, Sb, and Sc of the three considered

strategies:

Strategy a.- Bi = B/F

Sa = sum(Ai/Bi|i = 1.. F) = F*A/B

Strategy b: Bi = B » Ai / A

Sb = sum(Ai/Bi|i = 1
.. F) = sum(A/B|i = 1.. F) = F«A/B = Sa

Strategy c- Bi = sqrt(Ai) * B / sum(sqrt(Aj) | j = 1
.. F)

Sc = sum(Ai/Bi|i = 1 ..F) = sqr(sum(sqrt(Ai) | i = 1 ..F))/N

78

The probability of two (sequences of) disk accesses next to each other being for the

same file and need therefore no seek beetween them should also be taken into

account. This probability is estimated to be Si/S for file /. From this estimate it

follows that the frequency of real seeks Sri for file / and the total frequency of real

seeks Sr are:

Sri = Si • sqr(Si) / S

Sr = sum(Sri|i = 1.. F) or

Sr = S- sum(sqr(Si) | i = 1.. F) /S

It follows for the three total real seek frequencies Sra, Srb, and Src:

Sra = (1 -sum(sqr(Ai)|i = 1
.. F)/sqr(A)). F* A/B

Srb = (1-1/F)*F»A/B = (F-1)«A/B
Src = (sqr(sum(sqrt(Aj)|j = 1

.. F))/(A. F)-1 /F) * F* A/B

Discussion

If Ai = A/F for all active files i, it follows that Sa = Sb = Sc and Sra = Srb = Src.

From the iequalities

1 /F<= sum (sqr(Ai) | i = 1.. F) / sqr(A) < = 1 and

1<= sqr(sum(sqrt(Ai) | i = 1..F))/A<= F

it follows that Sra <= Srb and Src <= Srb, i.e. the distribution of buffers

proportionally to the files' activities is not optimal compared to the two other

allocation strategies. If F = 2, it can easily be shown that Sra <= Src, i.e. if two files

are active, it is better to distribute the available buffers equally among the active

files.

Motivation for Strategy c

The total seek frequency is minimized by setting the following derivative to zero:

dS / dBi = - Ai / sqr(Bi) • sum((Aj / sqr(Bj)). (dBj / dBi) | i <> j)

Assumption: Only Si and Bk are changed. It follows that

Bk = B-Bi-sum(Bj|j # i, k)

dBk/dBi = -1

dS / dBi = - Ai / sqr(Bi) + Ak / sqr(dBk)

Strategy c follows by setting dS / dB\ = 0, i.e. strategy c minimizes the total seek

frequency:

Bi / Bk = sqrt(Ai) / sqrt(Ak)

It has be shown that strategy a) and c) under the given assumptions cause fewer

head movements than strategy b). This is interesting because simple intuition

79

favours strategy b). Commonly used LRU-like buffer replacement strategies tend to

distribute buffers proportional to file activity, i.e. tend also to use strategy b).

Buffer distribution strategies a) and c) are difficult to compare, but for reasons given
below, it was decided to distribute available buffers equally among active files, i.e. to

prefer strategy a):

- Strategy c) is awkward to implement.
- It can be shown that strategy a) performs better than c) if merely two files are

accessed.

- All three strategies distribute buffers the same way if the activities of all active files

are equal.
- The number of buffers is small (16). Each active file locks one buffer and it makes

sense to reserve at most 8 buffers for a file. It follows that both strategies tend to

distribute buffers similarly if more than two files are active.

6.4.3 Read-Ahead for Sequentially and Randomly Accessed Files

Mainly for reasons of (logical) complexity (memory space!) and reliability, it was

decided not to employ a write-behind buffering strategy. Write-behind buffering is

also less important than read-ahead because only a minor fraction of ail disk

accesses are write operations. On the other hand, it was decided the refine the

read-ahead strategy by distinguishing between sequentially and randomly accessed

files.

In the current version of module DiskSystem, the distinction between the two access

modes is based on a statistic over the most recent 16 disk accesses for each file.

From the number of non-sequential disk accesses among those 16 accesses a

rough (rapidly adapting) figure is derived for the number of sequentially accessed

sectors on each active file, the so-called sequence-length. If the sequence-length of

a file is relatively small compared to the number of buffers allocated to it, the file is

considered to be randomly accessed, otherwise sequentially.

The buffer management (see next section) and the read-ahead are treated

differently for the two access modes:

For randomly accessed files, at most sequence-length sectors are read ahead.

Buffers containing information from such files are handled by a LRU-similar strategy

(generalized clock algorithm, see next section).

For sequentially accessed files, more sectors may be read ahead as buffers are

reserved for it. Whenever a buffer has been used by the file, it is set free

(toss-immediately strategy). The number of read ahead sectors is chosen such that

the average number of buffers filled with information for the file is (roughly) equal to

the number of buffers reserved for it. The derivation of the number of sectors to

read ahead is given below:

80

Denotations:

Number of available buffers (for one sector): B

Number of active (sequentially accessed) files: F

Number of sectors to read ahead: L

After the last L read in sectors have been processed, the next L sectors are read in

from the disk. A processed buffer is freed immediately. An active file has always one

buffer locked to it. From this the average number of filled buffers can be estimated

to be (L + 1)/2 buffers. The value for L can therefore be chosen higher than B/F.

L should be chosen such that at the moment when sectors must be read again for a

file, just L buffers are free. The file for which the sectors must be read occupies no

buffers, all other F -1 files an average of (L + 1)/ 2. It follows from this

L = B-(F-1)*(L + 1)/2

or

L = 2.(B + 1)/(F + 1)-1

With this choice of L in place ofB/F the number of buffers is virtually increased by
the factor

(2*(B + 1)/(F + 1)-1)/(B/F)!

For B = 16 and 2 < = F < = 10 the virtual increase in the number of buffers is in the

range 29% - 45%.

6.4.4 The Organization of the Buffer Pool

Module DiskSystem includes a relatively small pool of buffers which are managed by

the so-called buffer manager. Besides the memory space needed for the buffering
of one disk sector (256 Byte) each buffer also contains some information needed for

the administration of the buffer. The data structure of a buffer is called a buffer

descriptor, one of which is shown in Figure 6.2. A buffer is either unused or it used

for the buffering of a disk sector allocated to a certain (opened) file. In module

DiskSystem, an opened file is represented by its virtual disk descriptor. Please refer

to section 6.2. In the buffer, the buffered sector is identified by a pointer to the

virtual disk descriptor of the file, to which the buffered sector is allocated, and by its

number relative to the beginning of the file. An opened file may lock at most one

buffer at the same time. The remaining, unlocked buffers are managed by a

generalized clock buffer replacement algorithm assigning dynamically calculated

weights [Smi78, EH82]. The generalized clock algorithm was chosen mainly

because it is simple to implement and enables different buffer replacement

strategies to be provided at the same time. The buffer manager uses the generalized
clock algorithem in the following way:

With each buffer a count-field is associated, the so-called clock. The buffers are

arranged in a circular list. A globally declared pointer, called last, points to the most

recently referenced buffer. Whenever a buffer is unlocked (from an opened file), it is

inserted into the circular list, the buffer's clock is set to /, and last is set to point to it.

81

/ is a parameter to the unlock-routine.

When a buffer for a certain (logical) sector is locked to a file, the sector is first

searched among the linked buffers. If a buffer storing the searched for sector is

found, it is removed from the circular list, the pointer to the virtual disk descriptor
and the sector number are stored in the buffer, and the buffer is linked to the

corresponding virtual disk descriptor. Otherwise, the /asf-pointer circles around the

circular list. If the clock of a pointed to buffer is zero, then the buffer is removed

from the circular list and locked to the file. Otherwise, the clock is decremented by
one, the /asf-pointer advanced to the next buffer, and the process repeated. The

disk-address of a buffered sector is represented by a page-pointer, also stored in the

buffer. If the page-pointer of a locked buffer does not correspond to a valid

disk-address, an unused buffer was locked for the file. If that is the case and if the

corresponding sector on the disk contains information belonging to the file, the

sector must be read from the disk before the buffer may actually be referenced. Just

before a buffer is unlocked, its contents are written to the disk if the file is written or

modified, i.e. a write-through algorithm is used for writing back modified buffers.

By chosing different values for / when a buffer is unlocked, different replacement

strategies can be achieved. For example, the FIFO strategy is obtained if the clock is

always set to zero. In this case the clock field is not needed as its value is always
zero. The second chance (SCH) strategic is obtained if the clock is set to one

whenever a buffer is unlocked. The buffer manager distinguishes between three

different cases when a buffer is unlocked: unlocking a buffer reserved for a

sequentially accessed file or for a file in write-mode, unlocking a read ahead buffer,
and unlocking a buffer referenced by a randomly accessed file.

When a buffer which has been processed by a sequentially accessed file or by a file

upon which information is written, is unlocked, its clock is set to zero in order to

indicate that the buffer should be considered free (toss-immediately strategy).

The remaining number of sectors to read ahead for a file is indicated by a variable

remaining sectors. Whenever a sector is read from the disk its value is decremented

by one. The clock of a read ahead buffer is set to number of active files +

remaining sectors. (An active file is a file which is read, written, or modified.) This

way, the first read ahead sector gets the highest clock value and the clock of the last

read ahead buffer gets the value number of active files + 1. The intention of this

setting of the clock is to indicate that read ahead sectors are very likely to be

referenced in the near future. If, however, one buffer storing a read ahead sector

must be dropped, the buffer most recently read ahead should be taken.

When a buffer of a randomly accessed file is unlocked, its clock is set to number of

randomly accessed files DIV2 + 1. This setting of the clock intends to provide a

LRU-like buffer replacement strategy for buffers storing sectors of randomly
accessed files and to reserve about the same number of buffers for a randomly
accessed file as are on the average "reserved" for a sequentially accessed file (i.e.
(L + 1) / 2, see section 6.4.3). The buffer manager includes two essential

modifications to the generalized clock algorithm for handling unlocked buffers

mentioned above, namely a possibility to clear buffers and a possibility to

conditionally lock a buffer for a file:

82

Beside the possibility to lock and unlock a buffer storing a certain sector of a file, a

third routine is provided to clear buffers storing sectors whose sector numbers are

greater than or equal to a given value. This routine is called whenever an opened file

is closed or its length shortened.

A parameter to the lock routine indicates whether a buffer must be locked to the

opened file or only if a free buffer exists in the buffer pool. A buffer is considered

free if its clock is zero. Only free buffers are used to buffer read ahead sectors.

6.4.5 Performance Measurements

The value of a nearly contiguous allocation of sectors to files and of reading ahead

sectors from sequentially accesssed files can be derived from Figure 6.3 and Figure
6.4. The time needed to read a 131 '072 Byte file twice and the time needed to copy

the same file on a system without read-ahead is shown in Figure 6.3. The time

needed to copy a 131 '072 Byte file is shown, measured on a system with and without

read-ahead on disk-files. The following program-piece was used to copy a file:

REPEAT

ReadByteArea(infile, buffer, buffersize, gotbytes);

WriteByteArea(outfile, buffer, gotbytes);
UNTIL infile.eof;

A similar program-piece was used to read a file twice. The copy time and read time

were measured for series of different buffer sizes, ranging from 2 Byte to 32768 Byte

and the size of the next larger buffer being twice the size of the previous buffer. The

differences in the time needed for copying a file by a system not including

read-ahead and for reading the source file twice by the same system is mainly due to

the reduced time needed for seeks when only one file is accessed and to the nearly

contiguous allocation of files on disks. How the read-ahead on sequentially read

files reduces the copying time is illustrated by Figure 6.4. The increasing copying
time towards smaller buffer sizes (< 8 Byte) is due to the execution time for the

routines ReadByteArea and WrheByteArea. These routines need an atypically high

initialization time before the first Byte is transferred. The decrease of the copying

time for buffer sizes between 256 Byte and 2048 Byte on the system with read-ahead

illustrates nicely the combined effect of system provided read-ahead (of at most

2048 Byte = 8 sectors) and a comparable large user-program provided buffer. The

higher copying time of the system with read-ahead when larger buffers are used (>

2048 Byte) is caused by lost rotations. The eight read ahead buffers cannot be

copied fast enough from the system buffers to the user-provided buffer. Figure 6.5

shows the relative copying time of the two systems. This figure illustrates clearly

that the read-ahead strategy only helps when relatively small data elements are

transferred at a time. This is, however, the typical case for most programs using

Medos-2.

83

How the execution time of typical programs may be influenced by the read-ahead

buffering strategy is shown by three examples: the compiler, the editor, and the

debugger.

Column 1 in the following table lists the execution time of the compiler passes on a

system without read-ahead of disk files and with all inter-pass files stored on the

disk. The previous version of module DiskSystem was compiled (about 1700 source

lines). Columns 2,3,4, and 5 lists relative improvements in percent to column 1.

Column 2: Reading ahead at most 4 sectors.

Column 3: Reading ahead at most 8 sectors.

Column 4: Memory resident inter-pass files.

Column 5: Memory resident inter-pass files and reading ahead at most 8 sectors.

1 2 3 4 5

s % % % %

Pass 1 36 8.5 17.8 30.6 30.6

Pass 2 24 31.0 35.4 62.5 62.5

Pass 3 26 28.0 32.0 28.8 28.8

Pass 4 15 23.0 23.0 46.7 46.7

Lister 40 20.0 27.5 0.0 27.5

Total 140 20.5 27.7 28.6 30.0

Columns 4 and 5 only differ when program Lister is executed. If the compiler uses

memory resident files, the Lister is the only program in the compiler accessing more

than one disk file at the same time! From the given figures, it can be derived that for

the compiler the improved buffering technique for disk files yields a similar

improvement in the compilation time as do memory resident inter-pass files

(columns 3 and 4).

At the end of an edit session the edited file is constructed by copying text fragments
from two or more files together. The time needed to terminate an edit session is

reduced 30 % - 50 % by the modified system. For example when editing module

DiskSystem the termination time is reduced from around 48 sec to 27 sec.

The debug program inspects a file containing a dump of the main memory. The

dump file is randomly accessed by the debugger. The time needed by the debugger

to set up its internal tables is reduced by around 50 % by the modified system.

No serious study has been made of the efficiency of Medos-2's disk I/O compared to

other systems' disk I/O. A simple experiment suggests however that Medos-2's

efficiency is comparable to that of three other systems [Rit78]: UNIX on PDP-11 /70,

DEC'S IAS for PDP-11, and Honeywell's GCOS TSS for the H6070. The experiment
consisted of timing a program that copied a file that, on the the PDP-11, contained

480 sectors with 512 Byte per sector. The file on the H6070 had the same number of

Byte, but there were 1280 Byte per sector. The file copied on Medos-2 contained

512 sectors with 256 Byte per sector. With otherwise idle machines, the real times to

copy the files were:

84

System s Byte Byte/s ms/sector remarks

Medos-2 9 131072 29100 8.8 typical
Medos-2 6.28 131072 41700 6.14 best

UNIX 21 245760 23400 21.9

IAS 19 245760 25900 19.8

GCOS 9 245760 54600 23.4

The effective transfer rates of Medos-2 compare well with the other three systems. If

the transfer rate is measured in transferred sectors per second, Medos-2's disk I/O

turns out to be significantly better. This is remarkable because the average seek

time of the disk drive used by Medos-2 is atypically long (65 ms). The good result is

mainly due to Medos-2's better allocation of sectors to files compared to the other

systems. The best average transfer time being 6.14 ms/sector should be compared
to the minimum possible time between two transfers being 4.17 ms with the current

sector interleaving. From the given figures it can be derived that the average

contribution of seeks, rotational latency, and directory inspections to the transfer

time of a sector is only 2 ms to 5 ms during a file copy in Medos-2! The variation in

the times needed to copy a file is caused by differences in the allocation of sectors to

files.

85

128
_

64

32

16_

8_

4

time [s] • Copying 128 kByte without Read-ahead

* Reading 2 • 128 kByte without Read-ahead

'16k !32k

Buffer Size [Byte]

1 '2 '4

128 + time[s]

64

32_

16

8

16l32 '64 '128 '256 '512 Hk Ik^k [8k~

Figure 6.3 Copy- and Read-times

Copying 128 kByte without Read-ahead

• Copying 128 kByte with Read-ahead

X-

1 'i ^ li [16 [32 *64 '128 '256 '512 'lk [2k" l4k^ [8k 'l6k !32k

Figure 6.4 Copy-times

1.2 + with Read-ahead / without Read-ahead

1.0

0.8

0.6

0.4

0.2

Buffer Size [Byte]

0.0

^8 T6 ii [64 '128 '256 '512 'lk S [4J< l8k 'l6k '32k

Figure 6.5 Quotient of Copy-times

Buffer Size [Byte]

86

7 Conclusions

In section 7.1 and 7.2 the more important advantages and disadvantages of Medos-2

are discussed. Evaluation of Modula-2 as a systems implementation language and

of Lilith in the environment of personal computing are given in section 7.3 and 7.4.

Section 7.5 contains some final remarks and perspectives for the future

development of Medos-2.

7.1 System Advantages

Among the more attractive attributes of Medos-2 are the following:

Full support of Modula-2. All program interfaces are presented as Modula-2

definition modules. The Modula-2 compiler and Medos-2's linking-loader check the

syntactically correct use of module interfaces at compile-time and load-time.

Simple structure. The resident part of Medos-2 consists of 15 modules. Most

programmers need to be familiar with only a few of these modules, namely Terminal

and FileSystem. These system-provided modules are used like other separate
modules such that programmers need distinguish between system modules and

library modules. System interfaces are documented by short but nevertheless quite

complete descriptions.

Moderate size. A resident operating system of less than 15'000 word is resonably

small, especially when considering that file buffers and a default-font are included in

this memory space.

Efficiency. Both program execution times and average I/O transfer rates compare

favourably with other mini-computer systems of today [Jac82], (section 6.4.5).

Reliability. Medos-2 has turned out to be quite reliable for its users. Only seldom

have programming errors in the system caused troubles for its users. Its robustness

against erroneous user-programs is also quite high, considering that no hardware

supported protection mechanisms are used. The remarkably low frequency of

system crashes are presumably due to the use of a high level programming language
supporting modularization of programs and to its compiler's inclusion of runtime

tests in the generated code (e.g. index-checks).

Openness. Medos-2 is open in many respects: Programmers may for example

directly access devices, provide their own implementation of files, activate programs

like procedures, provide their own storage-allocator. No uncircumventable

protection mechanism hinders the user from getting as much as wanted out of Lilith.

7.2 System Disadvantages

Beside the many reasonably sound principles applied during the construction of

Medos-2, several adhoc solutions to problems were less than ideal:

Memory management. The management of the heap by module Program, the

hierarchically second highest module in the resident system, was not a good idea.

As the system was designed, it was thought that a better memory utilization could be

87

achieved this way (see section 5.1). Whether a better memory utilization is

obtainable by letting the module Program perform memory allocation is an open

question without having other implementations for comparison. Now, Lilith's

memory is twice as large as it was when Lilith was conceived, and memory space is

no longer as critical as it was earlier. The consequence of allocating heap-space in

module Program is, however, that nearly no resident module can (and actually none

does) allocate memory space on demand. The task of managing the "reverse"

memory stack like a heap was left over to a nonresident module (e.g. module

Storage). The idea behind this decision was to make it possible for programmes to

implement their own heap management strategy. Having a user-provided module to

allocate heap-space excludes, however, in most cases the use of many library
modules which may also allocate heap-space, this time by use of the library module

Storage. Module Storage and the user-provided heap-allocator are in most casese

unable to coexist.

Processes. The total exclusion of processes from Medos-2 is a too restrictive

strategy. Currently, module Monitor includes a simple process scheduler in its

implementation part. It would have been a simple matter to provide a process

scheduler supporting only operating system internal processes. The main reason for

not explicitly supporting processes in Medos-2 was, besides memory space

considerations, that it was not understood how the system could recover from a

crashed program executed by more than one process by simple means. Operating
system provided processes get more important when Medos-2 is used for

programming network servers.

Adaptability. Especially module DiskSystem has been tailored closely to the

available disk drive in order both to save memory space and to get high transfer

rates. As a consequence, it may turn out to be difficult to adapt this module to other

types of disk drives storing similar amounts of information.

F;7e directories. The system includes no general interface allowing the inspection

(and manipulation) of filename directories. As long as the system was only used as a

stand-alone machine, this deficiency was not manifest. From the moment when files

stored on other machines could be accessed through the local area network

[Hop83] the importance of such an interface became clear for most users of Lilith.

7.3 Evaluation of Modula-2 as a Systems Implementation Language

The value of using a high-level language like Modula-2 for the implementation of an

operating system can almost not be overestimated. Programs written in assembly
are difficult to understand and modify. In contrast, programs written in a high level

language are much easier to understand, repair, adapt, and extend. The portability
of a program will generally also be much better if it is written in a high-level language.
All these beneficial effects of high-level languages apply to Modula-2.

The concept of separate compilation turned out to be vital for Medos-2. Separate

compilation (together with the linking-loader of Medos-2) makes it possible to easily

change the implementation of a system resident module and to add new modules to

the system without having to recompile or relink all user-written programs. The

88

checking of the use of module interfaces at compile-time is of course also very

valuable, because most trivial errors in user-programs are found in this way before a

program is executed.

The portability of the system was unplanned. Most modules of Medos-2 are,

however, portable enough that they may be compiled and executed on a PDP-11

without making any changes. For example module FileSystem and module

DiskSystem were tested and debugged on a PDP-11 before the same modules were

cross-compiled for the first execution on Lilith.

The value of the special features provided for low-level programming in Modula-2

depends of course on the actual application. In the implementation of Medos-2, all

the provided low-level facilities have been used, although very rarely. For example,

type converters are only used at about half a dozen locations in the resident system

(corresponding to about 6000 source lines).

From an operating system designer's point of view, a much better support of

abstract data types and instances of such types is desirable than is actually provided

by the so-called opaque types. As things stand now, it is very difficult (and tricky) or
even impossible to determine the exact lifetime of, for example, an opened file.

Medos-2 defines the owner of an opened file to be an activated program. This might
cause an opened file to exist either shorter or longer than actually desired.

7.4 Evaluation of Lilith's Architecture and Hardware

The M-code architecture of Lilith turned out to perform well: the code is dense and

the execution of separately compiled Modula-2 programs is supported almost

perfectly. The execution speed of programs written in a high-level language is

comparable or better than on most current mini-computers.

Some few concepts of the machine cause, however, problems for the operating

system designer:

The not uniformly addressable memory makes it difficult to make good use of the

existing physical memory. It should, however, be remembered that the addition of

65536 word of memory was an afterthought, performed primarly to accomodate the

bitmap and fonts.

Lilith has no (non trivial) mapping from virtual addresses to physical addresses. As a

consequence the operating system has no efficient way to combine several free

segments in memory to one larger segment. Several unrelated computations cannot

be supported in a reliable way under such circumstances. This was not one of the

initial goals of the system. More severe is the restriction that the operating system
itself (or generally all activated programs apart from the currently running program)
can generally not obtain memory space on demand, even if enough free memory is

available, without making the system unreliable. The quite restrictive handling of the

heap in Medos-2 is essentially due to this fact. (Only the currently running program

may allocate space in the heap.)

Nearly every designer of a device interface felt free to choose concepts for

controlling the interface. The result is that connected devices cannot even be

89

turned off in a standard way. As long as devices are controlled by resident drivers

this fact may be tolerable. The desired openness of the system requires, however,

that devices are controlled by nonresident, user-provided drivers. If such a program

crashes, the device controlled by it is generally not turned off, and the operating

system has no possibility to do it for the crashed program. Device controllers writing
into memory by direct memory accesses are especially dangerous in this respect,

because the memory space used by the next following program may be corrupted by
the wildly running device controller.

Several M-code instructions (essentially memory move instructions) are

implemented uninterruptably and have execution times as high as 50 ms. For

example, the scrolling of the display may cause the execution of such an instruction.

Such implementations of instructions generally reduce the computer's ability to

respond to real-time events.

7.5 Perspectives

From the beginning, Lilith was intended to be a purely personal computer mainly
constructed to support the development and testing of programs as well as the

preparation of documents. The sucess of Medos-2 (if it has any) is mainly due to its

simple, transparent interface for use. Nearly from the start, it was possible to

maintain the system and all applications on the system itself. The heavy use of the

system and the basic application programs like the compiler, the editor, the

debugger, and the file utilities caused the designers to become aware of deficiencies

and motivated them to correct them quickly.

A number of facilities provided in other systems are not present in Medos-2. Many of

these things would be useful, or even vital to some applications. Good arguments
exist for including new extensions in a system, especially if one can become

convinced that a proposed extension is not merely a narrowly conceived, isolated

"feature" that will not intergrate well with the rest of the system. For example, it is

necessary to realize that the limited address space of Lilith imposes severe

constraints on the size of the resident system.

Under the present view, it would be generally desirable if Medos-2 were expanded to

perform better when several computers are connected by a local area network. Both

network servers and ordinary work-stations should be adequately supported by
Medos-2. Concurrent processes, at least, must be provided by the operating system
for this purpose. A more general management of the heap is also desirable. The

support of file directories on any medium and, for the standard disk drive, of files as

large as the storage medium are toppics for improvements.

Leer - Vide - Empty

91

Appendix 1 Descriptions of the Modules in Medos-2

Appendix 1.1 Module CardinallO

Module CardinallO helps in reading octal numbers from the keyboard and writing
octal numbers on the display. The module is used for writing out error messages

and for debugging purposes within Medos-2.

DEFINITION MODULE CardinallO; (* Medos-2 Sv.E. Knudsen 25.09.80 •)

EXPORT QUALIFIED ReadOct, WriteOct;

PROCEDURE ReadOct(VAR c: CARDINAL);
PROCEDURE WriteOct(c: CARDINAL);

END CardinallO.

Explanations

ReadOct(c)

Procedure ReadOct reads in octally an cardinal number c. The terminating
character (ESC, EOL and space) is not read in.

WriteOctic)

Procedure Wr'iteOct writes out octally the cardinal number c. The format of the

written number is one space followed by six octal digits.

92

Appendix 1.2 Module DefaultFont

Module DefaultFont contains the so-called default font, the font used by module

DisplayDriver for writing text on the screen.

Note: This module should only be used by module DisplayDriver.

DEFINITION MODULE DefaultFont; (* Medos-2 W. Winiger 4.10.80 *)

FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED defaultFont;

VAR defaultFont: ADDRESS;

END DefaultFont.

Explanations

The variable defaultFont is a the address of the default font divided by four.

93

Appendix 1.3 Module DiskSystem

1 Introduction

Module DiskSystem stores files on 10 MByte cartridges for the Honeywell Bull

D120/D140 disk drive. The definition module is shown in section 2. The provided
routines are explained in section 3. The characteristics and restrictions of the

current implementation are given in section 4. Nine files are preallocated. These

files are listed in section 5. All error messages are explained in section 6.

2 Definition Module DiskSystem

DEFINITION MODULE DiskSystem; (* Medos-2 Sv.E. Knudsen 25.09.80 *)

FROM FileSystem IMPORT File, Response;

EXPORT QUALIFIED

InitVolume, OpenVolume, CloseVolume,

FileDesc, FDKind, nofile, father, son,

FileNumber, Position, Minute, Page,

FreePages,

ReadFileDesc, WriteFileDesc,

Name, External Name, NameKind, free, fname,

ReadName, WriteName;

CONST

nofile = 0; father = 1; son = 2;

maxfiller = 27;

modifyprot = 100000B;

sons = 16;

pagetablength = 96;

free = 0; fname = 1;

enlength = 24;

TYPE

FileNumber = CARDINAL;

FDKind = CARDINAL; (* nofile, father, son *)
Position = RECORD

block: CARDINAL; (* whole sectors *)
byte: CARDINAL;

END;

Minute = RECORD

day: CARDINAL; (* coded as Time in Monitor *)
minute: CARDINAL;

END;

Page = CARDINAL;

94

FileDesc = RECORD

reserved: CARDINAL;

filno: FileNumber;

versno: CARDINAL;

CASE fdt: FDKind OF

nofile:

filler: ARRAY [0..maxfiller] OF CARDINAL |
father:

length: Position;

modification: CARDINAL;

referenced: CARDINAL; (* ref'ed if <> 0 *)
protection: CARDINAL; (* prot'ed if <> 0 *)
ctime: Minute; (* creation time *)
mtime: Minute; (* last modification *)
fres: ARRAY [0..3] OF CARDINAL;

sontab: ARRAY [l..sons-l] OF FileNumber; |
son:

fatherfile: FileNumber;

fathervers: CARDINAL;

sonno: CARDINAL;

END;

pagetab: ARRAY [0..pagetablength-1] OF Page;
END; (* FileDesc *)

NameKind = CARDINAL; (* free, fname *)
ExternalName = ARRAY [0..enlength-1] OF CHAR;

Name = RECORD

en: ExternalName;

CASE nk: NameKind OF

free: |
fname:

fno: CARDINAL; (* file number *)
vno: CARDINAL; (* version number *)
fres: CARDINAL;(* reserved (set to zero) *)

END

END;

PROCEDURE Im'tVolume(VAR r: Response);
PROCEDURE OpenVolume(VAR r: Response);
PROCEDURE CloseVolume(VAR r: Response);

PROCEDURE FreePages(): CARDINAL;

PROCEDURE ReadFileDesc(no: FileNumber; VAR fd: FileDesc;

VAR r: Response);
PROCEDURE WriteFileDesc(no: FileNumber; VAR fd: FileDesc;

VAR r: Response);

95

PROCEDURE ReadName(no: FileNumber; VAR n: Name; VAR r: Response);
PROCEDURE WriteName(no: FileNumber; n: Name; VAR r: Response);

END DiskSystem.

3 Explanations

InitVolume(res)

Procedure InitVolume initializes the mounted disk, i.e. the nine preallocated system

files are initialized on the disk (see section 5). Warning: The initialization of a disk

destroys all files previously stored on it. A disk can only be initialized, if it is not

opened for ordinary file accesses.

res = done if medium is initialized,

res = notdone if module DiskSystem is opened for file accesses,

res =
...

if some other error occured.

OpenVolume(res)

Procedure OpenVolume makes module DiskSystem ready for accesses to the

mounted disk.

res = done if medium is opened,

res = notdone if module DiskSystem is opened for file accesses,

res =
...

if some other error occured.

CloseVolume(res)

Procedure CloseVolume closes module DiskSystem for accesses to files.

CloseVolume can only be called from the program level from which it has been

opened previously. Module DiskSystem cannot be closed, if any file beside the

directory files are opened.

res = done if medium is closed,

res = notdone if module DiskSystem could not be closed.

FreePagesO: CARDINAL

Function FreePages returns the number of still free pages on the mounted disk.

ReadFileDesc(filenr, filedesc, res)

Procedure ReadFileDesc reads the file descriptor of file f/7enr and returns it in

variable filedesc. res indicates the success of the operation.

res = done if the file descriptor has been read,

res =
...

if some error occured.

WriteFileDescdilenr, filedesc, res)

Procedure WriteFileDesc writes filedesc as the file descriptor of file filenr. res

indicates the success of the operation.

96

res = done if the file descriptor has been written,

res =
...

if some error occured.

ReadNameffilenr, name, res)

Procedure ReadName reads the name descriptor of file ilenr and returns it in

variable name, res indicates the success of the operation.

res = done if the name descriptor has been read,

res =
...

if some error occured.

WriteNameWlenr, name, res);

Procedure WriteName writes the name descriptor nameof file ilenr. res indicates the

success of the operation.

res = done if the name descriptor has been written,

res =
...

if some error occured.

4 Main Characteristics and Restrictions

Modules DiskSystem and DUODisk implement files on cartridges for the Honeywell

Bull D120/D140 disk drives. The main characteristics of the current implementation

are listed below:

maximum number of files 768/cartridge

maximum file length 192 kByte

cartridge capacity 9408 kByte

typical transfer rates 3 - 30 kByte/s

minimum transfer rate < 10 Byte/s

maximum transfer rate > 50 kByte/s

local file name length 1 - 24 characters

maximum number of opened files 14 (16)

medium name "DK"

internal medium identification ("DK", 65535)

Each actual file can be connected to only one file variable at the same time. As long

as essentially only a single program runs on the machine, this should be acceptable,

as it is more an aid than a restriction.

The transfer rates depend mostly on the number of disk head movements needed for

the actual transfer. The positioning of a file for each transfer of one or a few Byte

might decrease the transfer rate to a few Byte per second. On the other hand,

sequential transfers of larger elements (>= 16 Byte/element) are performed with the

maximum transfer rate (50 - 60 kByte/s).

Actually, 16 files can be connected at the same time. Module DiskSystem uses two

of them internally for access to the two directories on the cartridge. The remaining

14 files may be used freely by ordinary programs.

The current version of module DiskSystem does not distinguish between cartridges.

All cartridges are simply given the same internal medium identification ("DK",

97

65535).

5 System Files

The space on a cartridge is allocated to actual files in pages of 2 kByte each (or 8

sectors). The pages belonging to a file as well as its length and other information is

stored in a file descriptor, which itself is stored in a file on the cartridge (file
directory). The local file names of all files on a cartridge are stored in another file on

the cartridge (name directory). When a cartridge is initialized, nine (system-)files
are allocated on the cartridge. These preallocated files can not be truncated or

removed. Except for the two directory files and the file containing the cartridge's
bad sectors, all files can be read and written (modified). The preallocated files are:

FS.FileDirectory

FS.FileDirectory.Back

FS.NameDirectory

FS.NameDirectory.Back

FS.BadPages
PC.BootFile

PC.BootFile.Back

PC.DumpFile

PC.DumpI File

File with file directory
Back up of file directory (not implemented)
File with name directory
Back up of file with name directory (not implemented)
File with unusable sectors

Normal boot file

Alternate boot file

File containing a dump of main memory (0.. 64k-1)
File containing a dump of main memory (64k.. 128k-l)

6 Error Handling

Normally all detected errors are handled by assigning a Response indicating the

error to field res in the file variable. Whenever a detected error cannot be related to

a file or if a more serious error is detected, an error message is written on the

display. This is done according to the following format:

- DiskSystem. procedure name : error indicating text

procedure name is the name of the procedure within the module, where the error

was detected. In the explanations of the messages, the following terms are used for

inserted values:

page number

page

file number

local file name

response

statusbits

disk address

octal number (0..137B)
octal number (0..167340B)
octal number (0.. 1377B)

string (1 .. 24)

string

Page in an affected file

Disk address of page DlV 8«13

Number of the affected file

Local file name of affected file

Text describing the response

octal number (177400..177777B) Status from disk interface

octal number (0.. 111377B) "Logical" address of sector on disk

If some of the following error messages are displayed, please consult the description
of program DiskCheckl

- DiskSystem.PutBuf: bad page: pageno = page number fno = file number

Page indicates a disk address which is allocated to a "system file", but the file is not

98

a "system file", or the page indicates a disk address for normal files, but the file is a

"system file".

- DiskSystem.GetBuf: bad buffering while reading ahead

The disk address of a certain allocated sector was not found.

- DiskSystem.FileCommand: bad directory entry: fno = file number read

An inconsistency in the file directory was detected.

- DiskSystem.OpenVolume: bad page pointer:

fno = file number pageno
= page number page = page

An inconsistency in the file directory was detected during the initialisation of Medos.

- DiskSystem.(ReadName, Wn'teName or SearchName): bad file number in

file name = local file name

found fno = file number, expected fno = file number

An inconsistency in the name directory was detected.

Warning

It must be mentioned here that among the best ways to get some of these error

messages on the screen is this one: Switch off the drive while a "harmless" program

is running, exchange the cartridge in the drive, and switch on the drive again. A

cartridge exchange is simply not detected by module DiskSystem which does not,

therefore, initialize its local information about the mounted cartridge from the new

cartridge.

99

Appendix 1.4 Module DisplayDriver

Module DisplayDriver is the lowest level interface to the raster scan display. It

actually provides an interface to four different topics, namely

1) the display hardware,

2) the default font,

3) the default bitmap and

4) the standard write procedure.

Note: This module should only be used within Medos-2 and library modules.

DEFINITION MODULE DisplayDriver; (* Medos-2 V4 N. Wirth 10.6.82 *)

EXPORT QUALIFIED

BMDescriptor, ScreenWidth, ScreenHeight, Show, BuildBMD,

DFF, CharWidth, LineHeight,

BMD, BMF, MapHeight, ChangeBitmap, Write;

TYPE BMDescriptor = RECORD f.w.h.z: CARDINAL END ;

PROCEDURE ScreenWidth(): CARDINAL;

PROCEDURE ScreenHeight(): CARDINAL;

PROCEDURE Show(VAR bmd: BMDescriptor; on: BOOLEAN);

PROCEDURE BuildBMD(fp, width, height: CARDINAL;

VAR bmd: BMDescriptor);

PROCEDURE DFF(): CARDINAL;

PROCEDURE CharWidthQ: CARDINAL;

PROCEDURE LineHeightQ: CARDINAL;

VAR BMD: BMDescriptor;

PROCEDURE BMF(): CARDINAL;

PROCEDURE MapHeight(): CARDINAL;)

PROCEDURE ChangeBitmap(height: CARDINAL; VAR done: BOOLEAN);

PROCEDURE Write(ch: CHAR);

END DisplayDriver.

Explanations

ScreenWidthO: CARDINAL

Function ScreenWidth returns width of the connected display in number of dots.

ScreenHeightO: CARDINAL

100

Function ScreenHeight returns the height of the connected display in number of

(dot-) lines.

Showfbmd, on)

Procedure Show initializes the display interface such, that it would display the

bitmap described by the bitmap descriptor bmd. If the boolean on is TRUE, the

bitmap is actually shown on the display.

BuildBMDdp, width, height, bmd)

Procedure BuildBMD initializes the bitmap descriptor bmd such, that it describes a

bitmap in frame fp with height dot lines each with height lines.

DFFO: CARDINAL

Function DFF returns the frame pointer pointing to the default font, i.e. its address

divided by four.

CharWidthO: CARDINAL

Function CharWidth returns the dot-width of the characters in the default font.

LineHeightO: CARDINAL

Function LineHeight returns the dot-height of a text line written with the default font.

BMD

Variable BMD is the bitmap descriptor of the default bitmap.

BMFO: CARDINAL

Function BMF returns the frame pointer pointing to the default bitmap, i.e. its

address divided by four.

MapHeightO: CARDINAL

Function Mapeight returns the dot-height of the default bitmap.

ChangeBitmap(height, done)

Procedure ChangeBitmap changes the height of the default bitmap to height dots. If

the change was performed, done is set TRUE.

Write(ch)

Procedure Write writes the character ch on the default bitmap with the default at the

current write position. The current write position is changed by calls to procedure
Write and ChangeBitmap. The following control characters are interpreted:

10C BS backspace one character

12C LF next line, same x position

14C FF clear page

101

15C CR return to start of line

30C CAN clear line

36C EOL next line

177C DEL backspace one characterand clear it

Implementation Restrictions

1) Show supports only two different bitmaps, namely the default bitmap and one

user-defined bitmap.

2) BuildBMD: height may not be 0 or 1; width should be divisible by 16.

3) ChangeBitmap: height must be even.

Error Handling

HALT is called if BuildBMD is called with height less than 2. No message is written

out.

102

Appendix 1.5 Module D140Disk

Module DUODisk is a driver for the Honeywell-Bull D120/D140 disk drive. The driver

is mainly intended to be used from module DiskSystem, the module implementing
files on this type of media.

DEFINITION MODULE D140Disk; (* Medos-2 V4 Sv.E. Knudsen 27.05.82 *)

FROM SYSTEM IMPORT WORD;

FROM FileSystem IMPORT Response;

EXPORT QUALIFIED

drives, tracks, sectors, sectorsize,

DiskReset, DiskStatus, DiskRead, DiskWrite;

CONST

drives = 2;

tracks = 784;

sectors = 48;

sectorsize = 128;

PROCEDURE DiskReset;

PROCEDURE DiskStatus(): Response;

PROCEDURE DiskRead(drive, diskadr: CARDINAL;

VAR buffer: ARRAY OF WORD; VAR res: Response);
PROCEDURE DiskWrite(drive, diskadr: CARDINAL;

VAR buffer: ARRAY OF WORD; VAR res: Response);

END DUODisk.

Explanations

DiskReset

Procedure DiskReset resets the disk interface and the connected disk drive. The

heads are hereby positioned over the tracks in cylinder zero.

DiskStatusO

Function DiskStatus returns the current status of the drive. The possible results (of

type Response) are listed below.

DiskReadfdrive, diskaddr, buffer, res)

Procedure DiskRead reads sector diskaddr from the disk in drive drive into the buffer

buffer. The buffer must be 128 word long. The result parameter res is done if the

operation was executed normally. Other possible values of res are listed below.

DiskWr'ite(drive, diskadr, buffer, res)

Procedure DiskWrite writes the buffer buffer to sector diskaddr on the disk in drive

103

drive. The buffer must be 128 word long. The result parameter res is done if the

operation was executed normally. Other possible values of res are listed below.

Possible values for parameter drive:

The D720 disk drive ignores the parameter drive.

The DUO disk drive has a fixed disk and a slot for a removable disk. Drive zero is the

drive for the removable disk pack, drive one is the drive with the fixed disk.

Possible values of function DiskStatus and parameter res:

done the drive is ready

notdone the drive is not ready

harderror invalid sector accessed

hardprotected the accessed pack is write-protected (DiskWrite only)

hardparityerror a CRC-error was detected (DiskRead only)

timeout the addressed sector was not found)
harderror another error type detected by the drive

softerror disk address >= 37632

Implementation Notes

The disk address of a sector [0..37631] is mapped into a physical disk address

(cylinder, surface, sector) by an algorithm similar to the following one:

cylinder := diskadr DIV (2 * sectors); (* 2 surfaces *)
surface := diskadr DIV sectors MOD 2;

sector := diskadr MOD sectors;

IF cylinder < 15 THEN

sector := 3 * sector (* boot and dump cylinders *)
ELSE sector := 12 * sector (* cylinders for normal files *)
END;

sector := sector MOD sectors + sector DIV sectors

Error Handling

Normally all detected errors are handled by assigning an error indicating Response

to the parameter res. Whenever a more serious error is detected, one of the

following error messages is written out.

- D140Disk: soft timeout in wait

A disk operation was timed out by software. This error occurs mainly, if the disk is

switched off while a disk operation is processed.

- D140Disk.DiskRead: response

diskadr = diskaddress, statusbits = statusbits

The driver detected an error, which did not disappear after three retries.

- D140Disk.DiskWrite: response

104

diskadr = disk address, statusbits « statusbits

The disk driver detected an error, which did not disappear after three retries.

In the explanations of the messages, the following terms are used for inserted

values:

response string Text describing the response

statusbits octal number (177400.. 177777B) Status from disk interface

disk address octal number (0.. 111377B) Disk address of a sector

The least significant 8 status bits have the following meanings when included:

001B invalid sector encountered

002B drive fault

004B drive ready for seek operation

010B write operation tried, but pack is write protected

020B time out

040B CRC error

100B data transfer completed

200B drive ready for a seek, read or write operation

105

Apendix1.6 Module FileMessage

Module FileMessage helps writing out error messages in the file system.

DEFINITION MODULE FileMessage; (* Medos-2 Sv.E. Knudsen 4.10.80 *)

FROM FileSystem IMPORT Response;

EXPORT QUALIFIED WriteResponse;

PROCEDURE WriteResponse(r: Response);

END FileMessage.

Explanations

IrVr/feftesponseW

Procedure WriteResponse writes a text corresponding to the response res on the

terminal.

Error Handling

If the argument res to WriteResponse is no valid response, the ordinal value of the

argument is written out octally.

106

Appendix 1.7 Module FileSystem

1 Introduction

A (Medos-2) file is a byte-sequence stored on a certain medium. Module FileSystem
is the interface the normal programmer should know in order to use files. The

definition module is listed in section 2. The explanations needed for simple usage of

sequential (text or binary) files are given in section 3. More demanding users of files

should also consult section 4. The file system supports several implementations of

files. At execution time a program may declare that it implements files on a certain

named medium. How this is achieved is mentioned in section 5.

2 Definition Module FileSystem

DEFINITION MODULE FileSystem; (* Medos-2 Sv.E. Knudsen 1.6.81 *)

FROM SYSTEM IMPORT ADDRESS, WORD;

EXPORT QUALIFIED

File, Response,

Create, Close, Lookup, Rename,

ReadWord, WriteWord, ReadChar, WriteChar,

Reset, Again, SetPos, GetPos, Length,
Command, MediumType, FileCommand, DirectoryCommand,

Flag, FlagSet,

SetRead, SetWrite, SetModify, SetOpen, Doio,

FileProc, DirectoryProc, CreateMedium, RemoveMedium;

TYPE

MediumType = ARRAY [0..1] OF CHAR;

MediumHint;

Flag = (er, ef, rd, wr, ag, bytemode);

FlagSet = SET OF Flag;

Response = (done, notdone, notsupported, callerror,

unknownmedium, unknownfile, paramerror,

toomanyfiles, eom, deviceoff,

softparityerror, softprotected,

softerror, hardparityerror,

hardprotected, timeout, harderror);

Command = (create, open, close, lookup, rename,

setread, setwrite, setmodify, setopen,

doio,

setpos, getpos, length,

setprotect, getprotect,

setpermanent, getpermanent,

get internal);

File = RECORD

bufa: ADDRESS;

ela: ADDRESS; el odd: BOOLEAN;

ina: ADDRESS; inodd: BOOLEAN;

topa: ADDRESS;

flags: FlagSet;
eof: BOOLEAN;

res: Response;
CASE com: Command OF

create, open, getinternal:

fileno, versionno: CARDINAL

| lookup: new: BOOLEAN

| setpos, getpos, length:

highpos, lowpos: CARDINAL

| setprotect, getprotect: wrprotect: BOOLEAN

| setpermanent, getpermanent: on: BOOLEAN

END;

mt: MediumType; mediumno: CARDINAL;

mh: MediumHint;

submedium: ADDRESS;

END;

PROCEDURE Create(VAR f: File; mediumname: ARRAY OF CHAR);
PROCEDURE Close(VAR f: File);

PROCEDURE Lookup(VAR f: File; filename: ARRAY OF CHAR;

new: BOOLEAN);
PROCEDURE Rename(VAR f: File; filename: ARRAY OF CHAR);

PROCEDURE ReadWord(VAR f: File; VAR w: WORD);
PROCEDURE WriteWord(VAR f: File; w: WORD);
PROCEDURE ReadChar(VAR f: File; VAR ch: CHAR);
PROCEDURE WriteChar(VAR f: File; ch: CHAR);

PROCEDURE Reset(VAR f: File);
PROCEDURE Again(VAR f: File);
PROCEDURE SetPos(VAR f: File; highpos, lowpos: CARDINAL);
PROCEDURE GetPos(VAR f: File; VAR highpos, lowpos: CARDINAL);
PROCEDURE Length(VAR f: File; VAR highpos, lowpos: CARDINAL);

PROCEDURE FileCommand(VAR f: File);
PROCEDURE DirectoryCommand(VAR f: File; filename: ARRAY OF CHAR);

PROCEDURE SetRead(VAR f: File);

108

PROCEDURE SetWrite(VAR f: File);
PROCEDURE SetModify(VAR f: File);
PROCEDURE SetOpen(VAR f: File);
PROCEDURE Doio(VAR f: File);

TYPE

FileProc = PROCEDURE (VAR File);

DirectoryProc = PROCEDURE (VAR File. ARRAY OF CHAR);

PROCEDURE CreateMedium(mt: MediumType; mediumno: CARDINAL;

fp: FileProc; dp: DirectoryProc;
VAR done: BOOLEAN);

PROCEDURE RemoveMedium(mt: MediumType; mediumno: CARDINAL;

VAR done: BOOLEAN);

END FileSystem.

3 Simple Use of Files

3.1 Opening, Closing, and Renaming of Files

A file is either permanent or temporary. A permanent file remains stored on its

medium after it is closed and normally has an external (or symbolic) name. A

temporary file is removed from the medium as soon as it is no longer referenced by a

program, and normally it is nameless. Within a program, a file is referenced by a

variable of type File. From the programmer's point of view, the variable of type File

simply is the file. Several routines connect a file variable to an actual file (e.g. on a

disk). The actual file either has to be created on a named medium or looked up by its

file name. The syntax of medium name and file name is

medium name = [identifier] .

identifier = letter { letter | digit } .

file name = medium name ["." local name] .

local name = identifier { "." identifier } .

Capital and lower case letters are treated as being different. The medium name is

the name of the medium, upon which a file is (expected to be) stored. The local

name is the name of the file on a specific medium. The last (and maybe the only)

identifier within a local file name is often called the file name extension or simply
extension. The file system does, however, not treat file name extensions in a special

way. Many programs and users use the extensions to classify files according to their

content and treat extensions in a special way (e.g. assume defaults, change them

automatically, etc.).

DK.SYS.directory.OBJ

File name of file SYS.directory.OBJ on medium DK. Its extension is OBJ.

109

Created, mediumname)

Procedure Create creates a new temporary (and nameless) file on the given medium.

After the call

f.res = done if file f is created,

f.res =
...

if some error occured.

Closed)

Procedure Close terminates any actual input or output operation on file f and

disconnects the variable f from the actual file. If the actual file is temporary, Close

also deletes the file.

Lookupd, filename, new)

Procedure Lookup looks for the actual file with the given file name. If the file exists,

it is connected to f (opened). If the requested file is not found and new is TRUE, a

permanent file is created with the given name. After the call

f.res = done if file f is connected,

f.res = notdone if the named file does not exist,

f.res =
...

if some error occured.

If file f is connected, the field f.new indicates:

f.new = FALSE File f exists already
f.new = TRUE File f has been created by this call

Renamed, filename)

Procedure Rename changes the name of file f to filename. If filename is empty or

contains only the medium name, f is changed to a temporary and nameless file. If

filename contains a local name, the actual file will be permanent after a successful

call of Rename. After the call

f.res = done if file f is renamed,

f.res = notdone if a file with filename already exists,

f.res =
...

if some error occured.

3.2 Reading and Writing of Files

At this level of programming, we consider a file to be either a sequence of characters

(text file) or a sequence of word (binary file), although this is not enforced by the file

system. The first called routine causing any input or output on a file (i.e. ReadChar,

WriteChar, ReadWord, WriteWord) determines whether the file is to be considered

as a text or a binary file.

Characters read from and written to a text file are from the ASCII set. Lines are

terminated by character 36C (= eol, RS).

Reset(f)

110

Procedure Reset terminates any actual input or output and sets the current position

of file f to the beginning of f.

WrheChard, ch), WriteWordd, w)

Procedure WriteChar (WriteWord) appends character ch (word w) to file f.

ReadChard, ch), ReadWordd, w)

Procedure ReadChar (ReadWord) reads the next character (word) from file f and

assigns it to ch (w). If ReadChar has been called without success, OC is assigned to

ch. f.eof implies ch = OC. The opposite, however, is not true: ch = OC does not

imply f.eof. After the call

f.eof = FALSE ch (w) has been read

f.eof = TRUE Read operation was not successful

If f.eof is TRUE:

f.res = done End of file has been reached

f.res =
... Some error occured

Again (f)

A call of procedure Again prevents a following call to procedure ReadChar

(ReadWord) from reading the next character (word) on file f. Instead, the character

(word) read just before the call of Again will be read again.

Implementation Note

The current versions of the routines ReadWord and WriteWord do not support

reading and writing of words at odd positions (for more information on current

position, see 3.3).

3.3 Positioning of Files

All input and output routines operate at the current position of a file. After a call to

Lookup, Create or Reset, the current position of a file is at its beginning. Most of the

routines operating upon a file change the current position of the file as a normal part

of their action. Positions are encoded into long cardinals, and a file is positioned at

its beginning, if its current position is equal to zero. Each call to a procedure, which

reads or writes a character (a word) on a file, increments the current file position by
1 (2) for each character (word) transferred. A character (word) is stored in 1 (2) Byte
on a file, and the position of the element is the number of the (first) Byte holding the

element. By aid of the procedures GetPos, Length and SetPos it is possible to get

the current position of a file, the position just behind the last element in the file, and

to change explicitly the current position of a file.

SetPosd, highpos, lowpos)

A call to procedure SetPos sets the current position of file f to highpos * 2**16 +

lowpos. The new position must be less or equal the length of the file. If the last

111

operation before the call of SetPos was a write operation (i.e. if file f is in the writing

state), the file is cut at its new current position, and the elements from current

position to the end of the file are lost.

GetPosd, highpos, lowpos)

ProcedureGefPos returns the current file position. It is equal to highpos * 2**16 +

lowpos.

Lengthd, highpos, lowpos)

Procedure Length gets the position just behind the last element of the file (i.e. the

number of Byte stored on the file). The position is equal to highpos * 2**16 +

lowpos.

3.4 Examples

Writing a Text File

VAR

f: File;

ch: CHAR; endoftext: BOOLEAN;

Lookup(f, "DK.newfile", TRUE);
IF (f.res <> done) OR NOT f.new THEN

(* f was not created by this call to "Lookup" *)
IF f.res = done THEN Close(f) END

ELSE

LOOP

(* find next character to write —> endoftext, ch *)
IF endoftext THEN EXIT END;

WriteChar(f, ch)
END;

Close(f)
END

Reading a Text File

VAR

f: File;

ch: CHAR;

Lookup(f, "DK.oldfile", FALSE);
IF f.res <> done THEN

(* file not found *)
ELSE

LOOP

ReadChar(f, ch);
IF f.eof THEN EXIT END;

112

(* use ch

END;

Close(f)
END

4 Advanced Use of Files

4.1 The Procedures FileCommand and DirectoryCommand

In the previous sections, the file variable served, with few exceptions, simply as a

reference to a file. The exceptions were the fields eof, res and new within a file

variable. Generally, however, all operations on a file are implemented by either

inspecting or changing fields within the file variable directly and/or by encoding the

needed operation (command) into the file variable followed by a call to either routine

FileCommand or DirectoryCommand. Commands requiring (part of) a filename as

parameter are executed by DirectoryCommand, all others by FileCommand. An

implementation of SetPos and Lookup should illustrate this:

PROCEDURE SelPos(VAR f: File; highpos, lowpos: CARDINAL);
BEGIN

f.com := setpos;

f.highpos := highpos; f.lowpos := lowpos;

FileCommand(f);
END SetPos;

PROCEDURE Lookup(VAR f: File; filename: ARRAY OF CHAR; new: BOOLEAN);
BEGIN

f.com := lookup;

f.new := new;

DirectoryCommand(f, filename)
END Lookup;

The commands lookup and rename must be executed by DirectoryCommand, other

commands may be executed either by FileCommand or by DirectoryCommand.
Unless the command is lookup or rename, a call to DirectoryCommand will be

converted by the file system to a call to FileCommand. This facility is only useful for

the commands create and open (see also 4.2).

Below is a list of all commands and a reference to the section where each is

explained:

create create a new temporary (and nameless) file (3.1)

open open an existing file by IFI (4.2)
close close a file (3.1)

lookup look up (or create) a file by file name (3.1)
rename rename a file (3.1)
setread set a file into state reading (4.5)

setwrite set a file into state writing (4.5)

113

setmod'rfy set a file into state modifying

setopen set a file into state opened

doio get next buffer

setpos change the current position of the file

gefpos get the current position of the file

length get the fengfft of the file

setprotect change theprotection of the file

getprotect get the current protection of the file

setpermanent change the permanency of the file

getpermanent get the permanency of the file

getinternal get the LFI of the file

(4.5)

(4.5)

(4.5)

(3.3)
(3.3)

(3.3)

(4.4)

(4.4)

(4.3)

(4.3)

(4.2)

After the execution of a command, field res of the file reflects the success of the

operation. Other fields of the file variable might, however, contain additional return

values, depending on the executed command and the state of the file (see 4.5).

Here, the normal way of setting the fields before a return from procedure

FileCommand is given:

WITH f DO

(* set other fields *)

res := "...";

flags := flags - FlagSet{er, ef, rd, wr};
IF "state = opened" (* see 4.5 *) THEN

NIL; (* no buffer assigned *)
NIL; elodd := FALSE;

NIL; inodd := FALSE;

bufa

ela

ina

topa

eof

ELSE

bufa

ela

elodd

ina

inodd

topa •

eof

NIL;

TRUE

:= ADR("buffer"); (* buffer at current position of file *)

ADR("word in buffer at current position");
:= ODD("current position");

ADR("first not (completely) read word in buffer");
"word at ina contains one Byte";

:= ADR("first word after buffer");

:= "current position = length";
IF "(state=reading)OR(state=modifying)" THEN INCL(flags, rd) END;

IF "(state=writing)OR(state=modifying)" THEN INCL(flags, wr) END;

IF elodd OR ODD("length") THEN INCL(flags, bytemode) END;

END;

IF res <> done THEN eof := TRUE; INCL(flags, er) END;

IF eof THEN INCL(flags, ef) END

END

The states of a file and the file buffering are explained in 4.5. The field flags enables

a simple (and therefore efficient) test of the state of the file, whenever it is accessed.

The "flag" ag is set by routine Again and cleared by read routines.

114

4.2 Internal File Identification and External File Name

All files supported by the file system have a unique identification, the so called

internal file identification (IFI) and might also have an external (or symbolic) file

name.

Both the internal file identification and the file name consist of two parts, namely a

part identifying the medium upon which a file is (expected to be) stored, and a part

identifying the file on the selected medium.

The two parts of an internal file identification are called the internal medium

identification (IMI) and the local file identification (LFI). The two parts of a file name

are called the medium name and the local file name.

The IFI of a connected (opened) file may be obtained at any time: The IMI is always

stored in the fields mt and mediumno of the file variable. The LFI is stored in the

fields fileno and versionno after the execution of command create or getinternal.

A file f can be opened, if it exists and its IFI is known:

f.mt := ...; f.mediumno := ...;

f.fileno := ...; f.versionno := ...;

f.com := open;

FileCommand(f)

The identification of a file by a user selected or computed name (a string) is however

both commonly accepted and convenient. The syntax of a file name is given in 3.1.

The routines Create, Lookup, Rename and D/rectoryCommand all have a parameter

specifying the file name.

If the medium name is contained in the file name, it is "converted" into an IMI and

stored into the file variable, except when the rename command is used. In this case,

the "converted" IMI is checked against the IMI stored in the file variable. If the

medium name is missing in the actual file name parameter, it is assumed that the

corresponding IMI is already stored in the file variable.

The local file name part of the file name will be handled by the routine implementing

DirectoryCommand for the medium given by the IMI (see also 5.).

Implementation Notes

The current version of module FileSystem supports only medium names according

to the following syntax:

medium name = letter [letter] { digit } .

When a medium name is "converted" to an internal medium identification, the

letter(s) is (are) copied to the MediumType pari (field mf), and the digits are

considered as a decimal number whose value is assigned to the medium number

part (field mediumno). If the medium name contains no digits, medium number

65'535 (= 177777B) is assumed.

"DK" => ("DK", 65535)

115

"DKO" => ("DK", 0)
"DK007" => ("DK", 7)

4.3 Permanency of Files

As explained in 3.1, a file is either temporary or permanent. The rule is that, when a

file is closed (explicitly, implicitly, or in a system crash), a temporary file is deleted

and a permanent file will remain on the medium for later use. Normally, a

"nameless" file is temporary, and a "named" file is permanent. It is, however,

possible to control the permanency of a file explicitly. This is useful, if for some

reason, it is better to reference a file by its IFI instead of its file name (e.g. in data

base systems, other directory systems).

Set File Permanent

f.on := TRUE; f.com := setpermanent;

FileCommand(f)

Set File Temporary

f.on := FALSE; f.com := setpermanent;

FileCommand(f)

Get File Permanency

f.com := getpermanent;

FileCommand(f);

(* f.on = TRUE if and only if f is permanent *)

4.4 Protection of Files

A file can be protected against changes only (length, information, name, etc.). The

only exception to this rule is, of course, that the protection of a protected file may be

changed.

Protect File

f.wrprotect := TRUE; f.com := setprotect;

F1leCommand(f)

Unprotect File

f.wrprotect := FALSE; f.com := setprotect;

F1leCommand(f)

Get File Protection

f.com := getprotect;

FileCommand(f);

(* f.wrprotect = TRUE if and only if f is protected *)

116

4.5 Reading, Writing, and Modifying Files

A file can be in one of four possible I/O states (or simply, states), namely in state

opened, reading, writing or modifying. Just after a file has been connected (e.g. by a
call to procedure Create), a file is in state opened, and its current position is zero.

The state of a file can only be changed by a direct or indirect call to one of the

routines SetOpen, SetRead, SetWrite, and SetModHy or by executing one of the

commands setopen, setread, setwrhe, and setmodify. The actual state of a file may

be inspected in field flags of the file:

opened flags * FlagSet{rd, wr} = FlagSetQ
reading flags * FlagSet{rd, wr} = FlagSet{rd}
writing flags • FlagSet{rd, wr} = FlagSet{wr}
modifying flags * FlagSet{rd, wr} = FlagSet{rd, wr}

The buffers needed for the transfer of data to and from files are supplied and

managed by the file system. The changes of a file's I/O state and normally the

command doio (or procedure Doio resp.) control the system's buffering. The

commands setread, setwrite, setmodify, setopen, and doio (and the corresponding

routines) do, however, not change the current position of a file as a side effect.

In state opened, no buffer is assigned to a file (seen from a user's point of view). Any
internal buffer with new or changed information has been written back onto the

medium on which the file is physically stored. The addresses describing the buffer in

the file variable (bufa, ela, ina, and topa) are all equal to NIL. Any written or changed
information within a file can therefore be forced out (flushed) to the corresponding
medium by a call to SetOpen.

In the other three states (reading, writing and modifying), a buffer is assigned to the

file. The following figure shows how bufa, ela, elodd, ina, inodd, and topa describe

the buffer supplied by the system:

File

bufa

ela

elodd

ma

TRUE

inodd

topa

FALSE

t

Buffer

first word in buffer

byte at current position

information read into buffer

currently unused part of buffer

first word behind buffer

bufa address of the first word of the buffer

topa address of the first word behind the buffer

ina address of the first not (completely) read in word from the file

117

inodd TRUE, if the last read Byte is a high order Byte

ela address of the word containing the Byte at the current position

elodd TRUE, if the Byte at the current position is a low order Byte

The following two assertions should always hold for bufa, ela, ina, and topa:

bufa <= ela <= topa

bufa <= ina <= topa

The fields bufa, ina, inodd, and topa are read-only, as they contain information which

must never be changed by any user of a file.

If the file is not in state opened, the Byte at the current position will be in the buffer

after procedure FileCommand has been executed. The read information is stored in

the buffer between bufa and (ina, inodd). The pair (ela, elodd) always points to the

Byte at the current position of the file, i.e. to the Byte (or to the first Byte of the

element) to read, write, or modify next in the file. If (ela, elodd) points outside the

buffer, and no other command has to be executed, the Byte at the current position

can be brought into the buffer by a call to Doio or by the execution of command doio

respectively.

The following two assertions also hold after a call to FileCommand, if the state of the

file is reading, writing, or modifying.

(ela. elodd) <=

ela <

(ina, inodd)

topa

The current position of a (connected) file can only be changed by either an (explicit
or implicit) execution of command setpos or by changing ela and/or elodd (implicitly
or explicitly). In the latter case of course, the file system "knows" the exact value of

the current position only after an activation of the routine FileCommand.

Restates

^-(open

r+(lookupi)—.

{ create)—-»| opened^

^-»(setmodify>-»fmodHyina |

.—*(8etwriie")—H writing | ,

<-*{setread")—*\ reading |—,

*-»(setopen")-^ opened
1

Kclose >-»

Command

—»(command)->

State

—*\ state [-»

This figure shows how the I/O state of a file is changed when different commands

are executed. Commands not shown in the figure do not affect the I/O state of a file.

118

Whenever the command setopen is omitted, the system might execute setopen

before executing the following command.

SetOpenff)

A call to SetOpen flushes all changed buffers assigned to file f, and the file is set into

state flushes all changed buffers assigned to file f, and the file is set into state

opened. A call to SetOpen is needed only if it is desirable for some reason to flush

the buffers (e.g. within database systems or for "replay" files), or if the file If an I/O

error occured since the last time the file was in state opened, this is indicated by field

res.

f.res = done Previous I/O operations successful

f.res =
...

An error has occured since the last time the file was in state op

SetReadd)

A call to SetRead sets the file into state reading. This implies that a buffer is

assigned to the file and the Byte at the current position is in the assigned buffer.

SetWriteit)

A call to SetWr'ite sets the file into state writing. In this state, the length of a file is

always (set) equal to its current position, i.e. the file is always written at its end, and

the file will be truncated, if its current position is set to a value less than its length. A

buffer is assigned to the file, and the information between the beginning of the buffer

and the current position (= length) is read into the buffer. Information in the buffer

up to the location denoted by (ela, elodd) is considered as belonging to the file and

will be written back onto the actual file.

SetModify(f)

A call to SetModify sets the file into state modifying. This implies that a buffer is

assigned to the file and the Byte at the current position is read into the buffer. In this

state, information in the buffer up to MAX((ela,elodd), (ina,inodd)) is considered as

belonging to the file and will therefore be written back onto the actual file. The

length of the file might hereby be increased but never decreased!

Doio(f)

If the state of the file is reading, writing or modifying, the buffer with the Byte at

current position is assigned to the file after a call to Doio. A call to Doio is essentially

needed, if (ela.elodd) points outside the buffer and no other command has to be

executed.

4.6 Examples

Procedure Reset(f)

PROCEDURE Reset(VAR f: File);
BEGIN

119

SetOpen(f);

SetPos(f, 0, 0);
END Reset;

Write File f

(* assume that file f Is correctly positioned »)

SetWrite(f);
WHILE "word to write" DO

IF ela = topa THEN Do1o(f) END;

elat := "next word to write";

INC(ela);
END;

SetOpen(f);
IF f.res <> done THEN

(* some write error occured *)

END;

Read File f

(* assume that file f is correctly positioned *)

SetRead(f);
WHILE NOT f.eof DO

WHILE ela < ina DO

"use elat";

INC(ela);
END;

Doio(f);

END;

SetOpen(f);
IF f.res <> done THEN

(* Some read error occured *)
END;

Procedure WriteChar

PROCEDURE WriteChar(VAR f: File; ch: CHAR); (* SEK 15.5.82 *)

PROCEDURE SXB(a: ADDRESS; oddpos: BOOLEAN; ch: CHAR);

(* Store indeXed Byte *)
CODE 225B END SXB;

BEGIN

WITH f DO

LOOP

IF flags * FlagSet{wr,bytemode,er} <> FlagSet{wr,bytemode} THEN

IF er IN flags THEN RETURN END;

IF NOT (wr IN flags) THEN

IF rd IN flags THEN

120

(* Forbid to change directly from reading to writing! *)
res := call error; eof := TRUE;

flags := flags + FlagSet{er, ef}
ELSE SetWrite(f)
END

END;

INCL(flags, bytemode)
ELSIF ela >= topa THEN Doio(f)
ELSIF elodd THEN

SXB(ela, TRUE, ch);

INC(ela, TSIZE(WORD)); elodd := FALSE;

RETURN

ELSE

SXB(ela, FALSE, ch);
elodd := TRUE;

RETURN

END

END

END

END WriteChar;

5 Implementation of Files

A program may implement files on a certain medium and make these files accessible

through the file system (that is, through module FileSystem). This is done with a call

to procedure CreateMedium. The medium which the calling module will support, is

identified by its internal medium identification (IMI). The two procedures given as

parameters should essentially implement procedure FileCommand (fileproc) and

DirectoryCommand (directoryproc) for the corresponding medium. Whenever a

command is executed on a file, module FileSystem activates the procedure which

handles the command for the medium upon which the file is (expected to be) stored.

The commands lookup and rename will cause procedure directoryproc to be called;

all other commands will cause procedure fileproc to be called. The string supplied as

parameter to procedure directoryproc contains only the local file name part of the

original file name. The corresponding IMI is stored in the file variable. The field

submedium in the file variable may be used freely by the module implementing files

(e.g. as an index into a table of connected files).

After a call to procedure RemoveMedium, the indicated medium is no longer known

by the file system. This procedure can, however, be called only from the program

which "created" the medium. A medium will automatically be removed, if the

program within which it was "created" is removed.

As connected files should have "lifetimes" like Modula-2 pointers (dynamically
created variables), a medium should only be declared from an unshared program

(i.e. if SharedLevelO = CurrentLeveH), see module Program, chapter 9.2.).

121

CreateMediumfmediumtype, mediumnumber, fileproc, directoryproc, done)

Procedure CreateMedium announces a new medium to the file system, done is

TRUE if the new medium was accepted.

RemoveMedium(mediumtype, mediumnumber, done)

After a call to RemoveMedium, the given medium is no longer known to the file

system, done is TRUE if the medium was removed.

Implementation Note

Eight is the highest number of media that the current version of module FileSystem
can support at any one time.

122

Appendix 1.8 Module Frames

Module Frames serves the allocation and deallocation of main memory segments

(frames) referenced by so-called frame pointers. The allocated frames reside at a

fixed location and have life times like segments allocated from the normal heap. In

contrast to heap segments which are referenced by (Modula-2) pointers, frames are

accessed by a few M-code instructions only. Frames may, however, reside in the

whole main memory and not just in its normally addressable part.

DEFINITION MODULE Frames; (* Medos-2 V4 Sv.E. Knudsen 4.6.82 *)

EXPORT QUALIFIED

FramePointer, nil,

Allocate, Deallocate, ChangeSize, Size;

TYPE FramePointer = CARDINAL;

CONST nil = 177777B;

PROCEDURE Allocate(VAR fp: FramePointer; size: CARDINAL);
PROCEDURE Deallocate(VAR fp: FramePointer);
PROCEDURE ChangeSize(fp: FramePointer; newsize: CARDINAL; VAR done:

PROCEDURE Size(fp: FramePointer): CARDINAL;

END Frames.

Explanations

Allocatedp, size)

Procedure Allocate allocates a frame of the given size and assigns its address

divided by 4 to fp. If the space is not available, fp gets the value nil.

Deallocate(fp)

Procedure Deallocate frees the given frame.

ChangeSizedp, newsize, done)

Procedure ChangeSize changes the size of the given frame to the indicated size.

done is set TRUE if the change was done.

Size(fp): CARDINAL

Function Size returns the allocated size of the given frame.

Error Handling

A detected error causes HALT to be called. No message is written out. If an error is

detected during the clean-up after the execution of a program, Medos-2 might be

forced to commit suicide.

Appendix 1.9 Module Monitor

Module Monitor enables

1) to set and get the internal clock,

2) to read characters from the keyboard,

3) to activate (call) and terminate execution of coroutines like procedures, and

4) to recover from crashes by so-called termination procedures.

Module Monitor hides for most programmers the existence of (driver-) processes

within Medos-2.

Note: This module should only be used within Medos-2 and library modules.

DEFINITION MODULE Monitor; (* Medos-2 Sv.E. Knudsen 1.6.81 *)

FROM SYSTEM IMPORT PROCESS;

EXPORT QUALIFIED

Call, Terminate, Status,

CurrentLevel, SharedLevel,

TermProcedure,

SetTime, GetTime, Time,

Read;

TYPE

Status = (normal, instructionerr, priorityerr,

spaceerr, rangeerr, addressoverflow,

realoverflow, cardinaloverflow,

integeroverflow, functionerr,

halted, asserted, warned, stopped,

callerr);

Time = RECORD

day: CARDINAL; (* ((year-1900)*20B + month)*40B + day «)
minute: CARDINAL; (* hour*60 + minute *)
millisecond: CARDINAL; (* second*1000 + msecond *)

END;

PROCEDURE Call(VAR p: PROCESS; shared: BOOLEAN; VAR st: Status);
PROCEDURE Terminate(st: Status);

PROCEDURE CurrentLevel(): CARDINAL;

PROCEDURE SharedLevel(): CARDINAL;

PROCEDURE TermProcedure(term: PROC);

PROCEDURE SetTime(t: Time);

124

PROCEDURE GetTime(VAR t: Time);

PROCEDURE Read(VAR ch: CHAR);

END Monitor.

Explanations

CalKprocess, shared, status)

Procedure Call executes the coroutine process like a parameterless procedure.

Current level is incremented by one during the execution of the coroutine. If the

parameter shared is true, shared level of the called coroutine remains unchanged
otherwise it is set equal to the called coroutine's current level. After the execution of

the coroutine, status inditates the termination cause.

Terminate(status)

The currently running program level can be terminated by a call of procedure

Terminate. The parameter status indicates the termination cause, and will be

handled over as status to the resumed program. (Please refer to the description of

procedure Call.)

CurrentLeveK): CARDINAL

Function CurrentLevel returns the level number of the currently executed program.

SharedLevelO: CARDINAL

Function SharedLevel returns the level number of the lowest program sharing

resources with the currently executed program.

TermProcedure(termproc)

A call to procedure TermProcedure causes that the procedure given as parameter

will be called whenever a program on a higher level is terminated. These so-called

termination procedures are called just before the termination of the execution level

in question (i.e. before current level and shared level are reset) and in reverse order

of their announcement.

SetTimedime), GetTimedime)

The internally maintained clock can be set or read by calls of the procedures

SetTime and GetTime. As long, as the time has not been set, the field day has the

value zero.

Read(ch)

Procedure Read gets the next character from the keyboard. If no character has

been typed, OC is returned. Character 36C is the last character of a line (eol

character).

125

Appendix 1.10 Module Program

1 Introduction

A Modula-2 program consists of a main module and of all separate modules

imported directly or indirectly by the main module. Module Program provides

facilities needed for the execution of Modula-2 programs upon Medos-2. The

definition module is given in chapter 2. The program concept and explanations
needed for the activation of a program are given in chapter 3. The heap and two

routines handling the heap are explained in chapter 4. Possible error messages are

listed in 5. The object file format may be inspected in 6.

2 Definition Module Program

DEFINITION MODULE Program; (* Medos-2 Sv.E. Knudsen 1.6.81)

FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED

Call, Terminate, Status,

MainProcess,

CurrentLevel, SharedLevel,

AllocateHeap, DeallocateHeap;

TYPE

Status = (normal,
instructionerr, priorityerr, spaceerr, rangeerr,

addressoverflow, realoverflow, cardinaloverflow,

integeroverflow, functionerr,

halted, asserted, warned, stopped,

callerr,

programnotfound, programalreadyloaded, modulenotfound,

codekeyerr, incompatiblemodule, maxspaceerr,

maxmoduleerr, filestructureerr, fileerr, loaderr);

PROCEDURE Call(programname: ARRAY OF CHAR; shared: BOOLEAN;

VAR st: Status);
PROCEDURE Terminate(st: Status);

PROCEDURE MainProcess(): BOOLEAN;

PROCEDURE CurrentLevel(): CARDINAL;

PROCEDURE SharedLevelO: CARDINAL;

PROCEDURE AllocateHeap(quantum: CARDINAL): ADDRESS;

PROCEDURE DeallocateHeap(quantum: CARDINAL): ADDRESS;

END Program.

126

3 Execution of Programs

A Modula program consists of a main module and all separate modules imported

directly and/or indirectly by the main module. Within Medos-2, any running program

may activate another program just like a call of a procedure. The calling program is

suspended while the called program is running, and it is resumed, when the called

program terminates.

All active programs form a stack of activated programs. The first program in the

stack is the resident part of the operating system, i.e. the (resident part of the)
command interpreter together with all imported modules. The topmost program in

the stack is the currently running program.

Dynamic

Activation

Level

Comint edit

Init Passl Pass2 Symfile Lister

modula (compiler base)

SEK (resident program)

time

The figure illustrates, how programs may be activated. At a certain moment, the

dynamic activation level or simply the level identifies an active program in the stack.

Some essential differences exist, however, between programs and procedure

activations.

A program is identified by a computableprogram name (a string).

The calling program is also resumed, if a program terminates by a crash (exception

handling).

Resources like memory and connected files are owned by programs and are

retrieved again, when the owning program terminates (resource management).

A program can only be active once at any one time, i.e. there are no instances, no

recursion (programs are not reentrant).

The code for a program is loaded when the program is activated and is removed

when the program terminates.

A program is activated by a call to procedure Call. Whenever a program is activated,

its main module is loaded from a file. All directly or indirectly imported modules are

also loaded from files, if they are not used by already active programs i.e. if they are

127

not already loaded. I n the latter case, the just called program is bound to the already
loaded modules. This is analog to nested procedures, where the scope rules

guarantee, that objects declared in an enclosing block may be accessed from an

inner procedure.

After the execution of a program, all its resources are returned. The modules, which

were loaded, when the program was activated, are removed again.

The calling program may, with a parameter to Call, specify that the called program

shares resources with the calling program. This means, that all sharable resources

allocated by the called program actually are owned by the active program on the

deepest activation level, which still shares resources with the currently running

program. The most common resources, namely dynamically allocated memory

space (from the heap) and (connected) files, are sharable. Any feature implemented

by use of procedure variables can essentially not be sharable, since the code for an

assigned routine may be removed, when the program containing it terminates.

A program is identified by a program name, which consists of an identifier or a

sequence of identifiers separated by periods. At most 16 characters are allowed for

program names. Capital and lower case letters are treated as being different.

Program name = Identifier { "." Identifier } .
/ At most 16 character

Identifier = Letter { Letter | Digit } .

In order to find the object code file, from which a program must be loaded, the

program name is converted into a file name as follows: The prefix DK. is inserted

before the program name, and the extension .OBJ is appended. If no such file

exists, the prefix DK. is replaced by the prefix DK.SYS., and a second search is

carried out.

An object code file may contain the object code of several separate modules.

Imported but not already loaded modules are searched sequentially on the object

code file, which the loader is just reading.

Missing object code to imported modules is searched for like programs. The (first 16

characters of the) module name is converted to a file name by inserting DK. at the

beginning of the module name and appending the extension .OBJ to it. If the file is

not found, a second search is made after the prefix DK. has been replaced by the

prefix DK.LIB.. If the object code file is not yet found, the object code file for another

missing module is searched. This is tried once for all imported and still not loaded

modules.

Programname directory
First searched file DK. di rectory. OBJ

Second searched file DK.SYS.directory.OBJ

Module name Storage
First searched file DK.Storage.OBJ
Second searched file DK.LIB. Storage. OBJ

CalKprogramname, shared, status)

Procedure Call loads and starts the execution of program programname. If shared is

128

TRUE, the called program shares (sharable) resources with the calling program. The

status indicates if a program was executed successfully.

status = normal Program executed normally
status in {instructionerr.. stopped}Some execution error detected

status in {callerr.. loaderr} Some load error detected

Terminate(status)

The execution of a program may be terminated by a call to Terminate. The status

given as parameter to Terminate is returned as status to the calling program.

CurrentLeveKh CARDINAL

Function CurrentLevel returns the (dynamic activation) level of the running program.

SharedLevelO: CARDINAL

Function SharedLevel returns the level of the lowest program, which shares

resources with the current program.

MainProcessO: BOOLEAN

Function MainProcess returns TRUE if the currently executed coroutine (Modula-2

PROCESS) is the one which executes the initialisation part of the main module in the

running program.

Implementation Notes

The current implementation of procedure Call may only be called from the mam

coroutine, i.e. the coroutine within which function MainProcess returns TRUE.

The module Storage may be loaded several times by module Program. This is the

only exception to the rule, that a module may be loaded only once. Module Storage

may be loaded once for each set of shared programs (i.e. once for each heap).

Only up to 96 modules may be loaded at any time. The resident part of Medos-2

consists of 15 modules.

The loader can handle up to 40 already imported but not yet loaded modules.

The maximum number of active programs is 16.

Related Program

The program link collects the object code from several separate modules onto one

single object code file, link enables the user to substitute interactively an object

code file with a non-default file name. "Linked" object code files might also be

loaded faster and be more robust against changes and errors in the environment.

129

Example: Command Interpreter

MODULE Comint; (* SEK 15.5.82 *)

FROM Terminal IMPORT Write, WriteString, WriteLn;

FROM Program IMPORT Call, Status;

CONST

programnamelength = 16;

VAR

programname: ARRAY [0..programnamelength-1] OF CHAR;

st: Status;

BEGIN

LOOP

Write('*');

(* read programname *)

Call(programname, TRUE, st);
IF st <> normal THEN

WriteLn;

WriteString("- some error occured"); WriteLn

END

END (» LOOP *)
END Comint.

4 Heap

The main memory of Lilith is divided into two parts, a stack and a heap. The stack

grows from address 0 towards the stack limit, and the heap area is allocated

between the stack limit and the highest address of the machine (64k-l). The stack

and the heap are separated by the stack limit.

The area between the actual top of stack and the stack limit is free and may be

allocated for both the stack and the heap.

Module Program handles the heap simply as a "reverse" stack, which may be

enlarged by decrementing the stack limit address or reduced by incrementing it. This

may be achieved by the routines AllocateHeap and DeallocateHeap.

Whenever a program is called, an activation record for that program is pushed onto

the stack. Currently the activation record contains beside the "working stack" (main

process) also the code and data for all modules loaded for the called program. The

activation record of the running program is limited at the high end by top of stack.

If the call is a shared call, i.e. if the parameter shared of procedure Call is set TRUE,

nothing specially is made with the heap: The heap may grow and shrink as if no new

program had been activated. If the call is not shared, however, (parameter shared

set to FALSE) the current value of stack limit is saved, and a new heap is created for

the program on the top of the previous heap, i.e. at stack limit.

130

When a program terminates, its activation record is popped from the stack, and if the

program is not shared with its calling program, its heap is released as well.

AllocateHeap(quantum): ADDRESS

Function AllocateHeap allocates an area to the heap by decrementing stack limit by

MINfavailable space, quantum). The resulting stack limit is returned.

DeallocateHeap(quantum): ADDRESS

Function DeallocateHeap deallocates an area in the heap by incrementing stack limit

by MIN(size of heap, quantum). The resulting stack limit is returned.

Implementation Note

The current implementation of the functions AllocateHeap and DeallocateHeap may

only be called from the main coroutine, i.e. the coroutine, within which function

MainProcess returns TRUE.

Related Module

Module Storage is normally used for the allocation and dislocation of variables

referenced by pointers. It maintains a list of free areas in the heap.

Example: Procedures ALLOCATE and DEALLOCATE

PROCEDURE ALL0CATE(VAR addr: ADDRESS; size: CARDINAL);
VAR top: ADDRESS;

BEGIN

top := AllocateHeap(O); (* current stack limit *)
addr := AllocateHeap(size);
IF top - addr < size THEN

top := DeallocateHeap(top - addr);

WriteStringC'- Heap overflow"); WriteLn;

Terminate(spaceerr)
END

END ALLOCATE;

PROCEDURE DEALL0CATE(VAR addr: ADDRESS; size: CARDINAL);

BEGIN

addr := NIL

END DEALLOCATE;

5 Error Handling

All detected errors are normally handled by returning an error indicating Status to

the caller of procedure Call. Some errors detected by the loader are also displayed
on the screen in order to give the user more detailed information. This is done

according to the following format:

131

- Program.Call: error indicating text

The number of hyphens at the beginning of the message indicates the level of the

called program.

- Program.Call: incompatible module

'modulename' on file 'filename'

Imported module module name found on file file name has an unexpected module

key.

- Program.Call: incompatible module

'modulelname' imported by 'module2name' on file 'filename'

Module modulel name imported by module2 name on file file name has another key

as the already loaded (or imported but not yet loaded) module with the same name.

- Program.Call: module(s) not found:

modulel name

module2 name

The listed modules were not found.

132

Appendix 1.11 Module SEK

Module SEK (Sequential Executive Kernel) is the main program of the operating

system Medos-2. The module is actually the resident part of the standard command

interpreter. Currently the two nonresident parts of the command interpreter are the

program Comint and CommandFile. The module also serves the configuration of the

system by importing (directly or indirectly) the needed modules.

DEFINITION MODULE SEK; (* Medos-2 V4 Sv.E. Knudsen 27.05.82 *)

FROM Program IMPORT Status;

EXPORT QUALIFIED

CallComint,

PreviousStatus,

NextProgram, SetParameter, GetParameter,

Login, LeaveLogin,

TestDK;

PROCEDURE CV1Comint(loop: BOOLEAN; VAR st: Stu..,.,),
PROCEDURE PreviousStatus(): Status;

PROCEDURE NextProgram(programname: ARRAY OF CHAR);
PROCEDURE SetParameter(param: ARRAY OF CHAR);
PROCEDURE GetParameter(VAR param: ARRAY OF CHAR);

PROCEDURE Login(): BOOLEAN;

PROCEDURE LeaveLogin;

PROCEDURE TestDK(actualstate: BOOLEAN): BOOLEAN;

END SEK.

Explanations

CallComintdoop, st)

A call to procedure CallComint activates the standard command interpreter. IF loop

is TRUE, the command interpreter repeatedly reads in commands and activates the

corresponding programs. The loop is terminated when the command interpreter

reads an ESC character. If loop is FALSE only one single command is interpreted.

The return parameter st reflects the success of the most recently executed program.

PreviousStatusO: Status

Function PreviousStatus returns the status of the most recently executed program.

NextProgram(programname)

A program actvated by module SEK may by a call to procedure NextProgram define,

133

which program should be executed after its own termination. If a program make no

call to NextProgram, the command interpreter will be executed after the termination

of the program.

SetParameter(param)

By a call to procedure SetParameter, a program may pass over a textual parameter

to the following program.

GetParameter(param)

By a call to procedure GetParameter, a program receives the parameter passed over

to it from the previous program.

LoginO: BOOLEAN

The function Login is true during the login period, i.e. from system initialization time

until procedure LeaveLogin has been called.

LeaveLogin

A call to procedure LeaveLogin terminates the login period, i.e. the period in which

the function Login is TRUE.

TestDK(actualstate): BOOLEAN

Function TestDK senses the state of the Honeywell-Bull D120/D140 disk drive. If the

argument actualstate is TRUE, the value of the function is the sensed state,

otherwise TestDK is only TRUE, if the current state of the drive is ok and all

activations of TestDK since the most recent system initialization found the state of

the drive to be ok.

Implementation Notes

Procedure GetParameter acceptes only the first 64 characters of the argument

param. If the argument to param is "smaller" than the string handled over by
SetParameter was, the actual argument is truncated to the length of the argument to

GetParam.

Error Handling

Whenever module SEK initializes the system, it writes the version number of the

system followed by a point or a slash. If the slash is written, this indicates that the

initialization wasn't successful. Some informative messages might be written out

just before the slash.

If the disk drive has been in an not ready state since the last system initialization, and

this has been detected by a call to TestDK, the system is reinitialized when the

program on level one is terminated.

134

Appendix 1.12 Module System

Module System is the runtime system needed to execute Modula-2 programs on

Lilith. It provides an implementation of procedure NEWPROCESS in the predefined

module SYSTEM. Several variables defined at fixed locations by the firmware are

also declared by the module. The communication from the linker generating the

resident part of Medos-2 to module System and to the resident loader, as well as

from the resident operating system to a debugger is also handled by variables

declared in this module.

Note: Module System should never be imported.

DEFINITION MODULE System; (* Modula-2 Compiler Ch. Jacobi.

Medos-2 V4 Sv.E. Knudsen 26.1.82)

FROM SYSTEM IMPORT PROCESS, ADDRESS;

EXPORT QUALIFIED

EndProcess, NewProcess,

dataFrameLength,

ProcedureMark, ProcessDescriptor, ProcessPointer, Vector,

deviceMask, pRegister, savePRegister,

interruptVectors, dataFrameTable,

userProgram, codeKey, loadedModules,

prevLoadedModules, prevProcess;

CONST dataFrameLength = 128;

TYPE

ProcedureMark =

RECORD

g: ADDRESS;

1: ADDRESS;

pc: CARDINAL;

msk: BITSET

END;

ProcessDescriptor =

RECORD

mark: ProcedureMark;

s: ADDRESS;

h: ADDRESS;

errCode: CARDINAL;

trapMask: BITSET

END;

ProcessPointer = POINTER TO ProcessDescriptor;

135

Vector =

RECORD

CASE CARDINAL OF

0: driver, interrupted: PROCESS |
1: drlverPtr, InterruptedPtr: ProcessPointer

END

END;

PROCEDURE EndProcess;

PROCEDURE NewProcess(P: PROC; a: ADDRESS; s: CARDINAL; VAR PI: PROC

(* firmware locations *)

VAR deviceMask:

pRegister:

savePRegister:
interruptVectors:

dataFrameTable:

BITSET; (* process scheduler to firmware *)
ProcessPointer; (*abs. linker to firmware*)
ProcessPointer; (* firmware to debugger *)
ARRAY [7..15] OF Vector;

ARRAY [0..dataFrameLength-l] OF ADDRESS;

(* reserved for operative system, post mortem dump *)

VAR userProgram: PROC;

codeKey: CARDINAL

loadedModules: CARDINAL

prevLoadedModules: CARDINAL

(* abs. linker to System *)
(* abs. linker to loader *)

(* abs. linker to loader *)

(* loader to debugger *)
prevProcess: ProcessPointer; (* loader to debugger *)
residentModules: CARDINAL; (* modules in Medos-2 *)

END System.

Explanations

Module System is given module number zero and linked to be loaded at memory

location zero by the so-called absolute linker (i.e. the linker generating the ooof file).
The compiler compiles a call of SYSTEM.NEWPROCESS into the code sequence

call external module 0 procedure 2 (CX 0 2).

The procedure number 2 is given by the compiler because procedure NewProcess is

declared as the second procedure in the definition module.

The variables declared in module System should simply be considered as

space-holders. One exception is variable userProgram. This procedure variable is

initialized to be the initialization part of the resident system. After the booting of a

program, the initialisation code of module System is executed. By a call of

procedure UserProgram, the main module of resident system is activated (normally
module SEK).

136

Appendix 1.13 Module Terminal

Module Terminal provides the routines normally used for reading from the keyboard

(or a commandfile) and for the sequential writing of text on the screen.

DEFINITION MODULE Terminal; (» Medos-2 Sv.E. Knudsen 1.6.81 *)

EXPORT QUALIFIED

Read, BusyRead, ReadAgain,
Write, WriteString, WriteLn;

PROCEDURE Read(VAR ch: CHAR);
PROCEDURE BusyRead(VAR ch: CHAR);
PROCEDURE ReadAgain;

PROCEDURE Write(ch: CHAR);
PROCEDURE WriteString(string: ARRAY OF CHAR);
PROCEDURE WriteLn;

END Terminal.

Explanations

Read(ch)

Procedure Read gets the next character from the keyboard (or the commandfile)
and assigns it to ch. Lines are terminated with character 36C (= eol, RS). The

procedure Read does not "echoe" the read character on the screen.

BusyRead(ch)

Procedure BusyRead assigns OC to ch if no character has been typed. Otherwise

procedure BusyRead is identical to procedure Read.

ReadAgain

A call to ReadAgain prevents the next call to Read or BusyRead from getting the next

typed character. Instead, the last character read before the call to ReadAgain will be

returned again.

Write(ch)

Procedure Write writes the given character on the screen at its current writing

position. The screen scrolls, if the writing position reaches its end. Besides the

following lay-out characters, it is left undefined what happens, if non printable ASCII

characters and non ASCII characters are written out.

eol 36C Sets the writing position at the beginning of the next line

CR 15C Sets the writing position at the beginning of the current line

LF 12C Sets the writing position to the same column in the next line

FF 14C Clears the screen and sets the writing position into its upper left corner

137

BS 10C Sets the writing position one character backward

DEL177C Sets the writing position one character backward and erases the chara

WriteString(string)

Procedure WriteString writes out the given string. The string may be terminated with

character OC.

WriteLn

A call to procedure WriteLn is equivalent to the call Wr'rte(eol).

138

Appendix 1.14 Module TerminalBase

Module TerminalBase makes it possible for programs to define their own read and

write procedures for module Terminal. For example, this facility is needed, if the

normal keyboard input has to be substituted by the text in a command file or if the

terminal output has to be written to a log file.

DEFINITION MODULE TerminalBase; (* Medos-2 V4 Sv.E.Knudsen 7.6.82 *)

EXPORT QUALIFIED

ReadProcedure, AssignRead, Read,

WriteProcedure, AssignWrite, Write;

TYPE ReadProcedure = PROCEDURE(VAR CHAR);
PROCEDURE AssignRead(rp: ReadProcedure; VAR done: BOOLEAN);
PROCEDURE Read(VAR ch: CHAR);

TYPE WriteProcedure = PROCEDURE(CHAR);
PROCEDURE AssignWrite(wp: WriteProcedure; VAR done: BOOLEAN);
PROCEDURE Write(ch: CHAR);

END TerminalBase.

Explanations

AssignRead(rp, done)

By a call to AssignRead, the terminal input procedure for the current program is set

to be procedure rp. The procedure rp must be similar to procedure BusyRead in

module Terminal, i.e. it must return character OC, if no input is available. A previous

assignment of a read procedure will be overwritten by a new call to AssignRead in

the same program. The result parameter done is set TRUE, if the assignment was

done.

Read(ch)

Procedure Read reads in the next character. If no character is available, character

OC is returned. Read normally activates the read procedure belonging to the highest

program level, within which AssignRead has been called. If, however, Read is called

from an assigned read procedure, that read procedure is activated, which was

assigned on the highest program level below the level, on which the current

executing read procedure was assigned.

AssignWrhe(wp, done)

By a call to AssignWrite, the terminal output procedure for the current program level

is set to be procedure wp. A previous assignment of a write procedure will be

overwritten by a new call to AssignWrite on the same program level. The result

parameter done is set TRUE, if the assignment was done.

139

Write(ch)

Procedure Write writes out the next character. Write normally activates the write

procedure belonging to the highest program level, within which AssignWrite has

been called. If, however, Write is called from an assigned write procedure, that write

procedure is activated, which was assigned on the highest program level below the

level, on which the current executing write procedure was assigned.

Implementation Restriction

Read procedures and write procedures can "only" be assigned on five different

program levels. The return parameter done is set FALSE, if a futher assignment
would exceed this limit.

140

Appendix 1.15 Module Userldentification

The module Userldentification serves the identification of (not necessarly) human

users within Medos-2. A user is uniquely identified by a pair of numbers, namely the

group and the memoer-of-group number. A user-chosen password is also encoded

into a pair of numbers.

DEFINITION MODULE Userldentification; (* Medos-2 V4 SEK 7.10.1982 •)

EXPORT QUALIFIED

User, GetUser, SetUser, ResetUser;

TYPE

User = RECORD

group, member: CARDINAL;

passwordl, password2: CARDINAL

END;

PROCEDURE GetUser(VAR u: User);
PROCEDURE SetUser(u: User; VAR done: BOOLEAN);
PROCEDURE ResetUser;

END Userldentification.

Explanations

A program is executed on behalf of a certain user, the so-called real user of a

running program.

Each process executes, however, on behalf of a so-called current user.

The current user and the real user are handled according to the following rules:

1) The real user of a program is set when the program is called (activated) and

cannot be changed. It is set equal to the current user of the calling process.

2) The current user of a process activating a program is not changed by the

activated program (i.e. the current user of a process just after a program activation is

equal to its current user just before the program activation).

3) The current user of a new process is initially set equal to the current user of its

creator process.

GetUser(u)

Procedure GetUser returns the current user of the current process.

SetUser(u)

Procedure SetUser sets the current user of the current process. If the assignment
contradicts a security rule, the assignment is not done and the parameter done is set

FALSE. (See next page!)

141

ResetUser

Procedure ResetUser sets the current user of the current process equal to the real

user of the program, within which it executes.

The Assignment of Group and Member

The (group, member) pair has the following semantic:

group = 0 no user

1 <= group <= 77777B normal user groups (* clients *)
100000B <= group <= 177777B trusted user groups (* servers *)

group = 100000B os group

Members of a group may have any member number. The current user cannot be set

to a user of a trusted group, if the real user is not from a trusted group.

The Assignment of Password 1 and Password2

The (password 1, password2) pair has the following semantic:

passwordl 0 no password

1 <= passwordl < 177777B normal password

passwordl = 177777B special password

Password2 may have any value. The internal password (passwordl, password2) is

encoded from a string by the following algorithm. The password string should be

restricted to an identifier beginning with a letter and followed by letters or digits.

Note, that the procedure ConvertPassword does not generate a special password!

PROCEDURE ConvertPassword(password: ARRAY OF CHAR;

VAR pwl, pw2: CARDINAL);
VAR c, h: CARDINAL;

BEGIN

pwl := 0; pw2 := 0;

c := 0;

WHILE (c <= HIGH(password)) AND (password[c] <> OC) DO

h := pw2; pw2 := pwl;

pwl := (h MOD 509 + 1) * 127 + ORD(password[c]);

INC(c)
END

END ConvertPassword

Restriction

Module Userldentification supports "only" 8 program levels. If procedure SetUser

or procedure ResetUser is called from programs with level number >= 8, HALT is

called. No message will be displayed.

142

Appendix 2 Format of Object Code Files

The format of the object code file generally has the following syntax:

LoadFile = { Frame }.
Frame = FrameType FrameSize { FrameWord }.
FrameType = "200B" | "201B" |.... | "377B".

FrameSize = Number, /number of FrameWords/

FrameWord = Number.

The load file is a sequence of word, with FrameType and Number each represented
in one word.

The object code file obeys a syntactic structure, called ObjectFile.

ObjectFile

Module

VersionFrame

FrameSize

VersionNumber

HeaderFrame

ModuleName

Moduleldent

ModuleKey
DataSize

CodeSize

Flags

ImportFrame
ModuleCode

CodeFrame

WordOffset

Codeword

FixupFrame

ByteOffset
DataFrame

DataWord

VERSION

MODULE

IMPORT

CODETEXT

DATATEXT

FIXUP

= Module { Module }.
= [VersionFrame] HeaderFrame [ImportFrame]

{ModuleCode | DataFrame }.
= VERSION FrameSize VersionNumber.

= Number.

= Number.

= MODULE FrameSize ModuleName DataSize [CodeSize Flags]
= Moduleldent ModuleKey.
= Letter { Letter | Digit} {"OC"}. /exactly 16 characters/

= Number Number Number.

= Number, /in word/

= Number, /in word/

= Number.

= IMPORT FrameSize {ModuleName}.
= CodeFrame [FixupFrame].
= CODETEXT FrameSize WordOffset { Codeword }.
= Number, /in word from the beginning of the module/

= Number.

= FIXUP FrameSize {ByteOffset}.
= Number, /in Byte from the beginning of the module/

= DATATEXT FrameSize WordOffset { DataWord }.
= Number.

= "200B".

- "201B".

= "202B".

= "203B".

= "204B".

= "205B"

Currently the VersionNumber is equal to 3.

Currently the Flags are set to 0.

The ByteOffsets in FixupFrame point to bytes in the code containing local module

numbers. The local module numbers must be replaced by the actual numbers of the

143

corresponding modules. Local module number 0 stands for the module itself, local

module number i (i > 0) stands for the i'th module in the ImportFrame.

A program is activated by a call to procedure 0 of its main module.

Leer - Vide - Empty

References

[Abe79] R. B. Abel, A Diske Cashe, EURO IFIP 79,

North-Holland Publishing Company, 1979, pp. 575-580.

[Amd70] G. M. Amdahl, Storage and I/O Parameters and Systems Potential,

Proceedings of the IEEE Computer Group Conference,

Washington D. C, June 1970.

[BBF82] G. Beretta, H. Burkhardt, P. Fink, J. Nievergelt, J. Stelovsky, H. Sugaya.
A. Ventura, J.Weydert, XS-1: An Integrated Interactive System and its

Kernel, Proc. 6th International Conference on Software Engineering,

Tokyo, September 1982, pp. 340-349.

[BH73] P. Brinch Hansen, Operating System Principles, Prentice-Hall,

Englewood Cliffs, N.J., 1973, cf. p. 1.

[BH75] P. Brinch Hansen, The Programming Language Concurrent Pascal,

IEEE Transaction on Software Engineering 1,2, June 1975, pp. 199-207.

[BH77] P. Brinch Hansen, The Architecture of Concurrent Programs,

Printice-Hall, Inc, Englewood Cliffs, N. J., 1977.

[BH81] P. Brinch Hansen, Edison--A Multiprocessor Language,

Software - Practice and Experience, April 1981, pp 325-362.

[Den82] P. J. Denning, Are Operating Systems Obsolete?

CACM, Vol 25 Nr 4, April 1982, pp. 225-227.

[DMN68] O.-J. Dahl, B. Myhrhaung, K. Nygaard, The Simula 67 Common

Base Language, Norwegian Computing Center, Oslo, 1968.

[EH82] W. Effelsberg, T. Haerder, Principles of Database Buffer Management,
Interner Bericht, Fachbereich Informatik, Universitat Kaiserslautern,

April 1982.

[Gei83] L. Geissmann, Separate Compilation in Modula-2 and the Structure of

the Modula-2 Compiler on the Personal Computer Lilith,

Diss. 7286, ETH Zurich, 1983.

[Han82] L. Geissmann, J. Hoppe, C. Jacobi, S. E. Knudsen, W. Winiger, N. Wirth,

Lilith Handbook, Institut fur Informatik, ETH, Zurich. October, 1982.

[Hoa74] C. A. R. Hoare. Monitors: an Operating System Structuring Concept,

CACM, Vol 17 Nr 10, October 1974, pp. 549-557.

[Hoe82] J. Hoeg. DAMOS System Specification, CSS/006/PSP/0044,

Christian Rovsing A/S, Ballerup, Denmark, 1982.

146

[Hop83] J. Hoppe, Magnet: A Local Network for Lilith Computers,

Institut fur Informatik, ETH, Zurich, A planned report.

[Ich80] J. D. Ichbia, et al, Reference Manual for the Ada Programming

Language, U. S. Department of Defence, July 1980.

[Jac82] Ch. Jacobi, Code Generation and the Lilith Architecture,

Diss. 7195, ETH Zuerich, 1982.

[Jon78] A. K. Jones, The Object Model: A Conceptual Tool for Structuring

Software, Operating Systems, An Advanced Course, Lecture Notes in

Computer Science 60, Springer-Verlag, Berlin Heidelberg 1978, pp. 7-16

[Jon79] A. K. Jones, et al, StarOS, a MultiprocessorOperating System for the

Support of Task Forces, Proc. of the Seventh Symposium on Operating

System Principles, ACM SIGOPS, December 1979, pp. 117-127.

[JW75] K. Jensen, N. Wirth, Pascal User Manual and Report,

Springer-Verlag, New York, 1977.

[Kah81] K. C. Kahn, et al, iMAX: A Multiprocessor Operating System for an

Object-Based Computer, Proc. of the Eight Symposium on Operating

System Principles, ACM SIGOPS, Vol 15 Nr 5, December 1981, pp. 127-

[Kat78] J. A. Katzmann, A Fault-Tolerant Computing System,

Eleventh Hawaii International Conference on System Science,

January 1978, pp. 85-102.

[KMP83] J. Koch, M. Mall, P. Puffaken, M. Reimer, VJ. W. Schmidt, C. A. Zehnder,

Modula/R Report Lilith Version,

Institut fur Informatik, ETH, Zurich, Feburary 1983.

[Lam74] B. W. Lampson, An Open Operating System for a Single-User Machine,

Lecture Notes in Computer Science 16,

Springer-Verlag, Berlin Heidelberg, 1974, pp. 208-217.

[Lam81] B. W. Lampson, Atomic Transactions, In G. Goos and J. Hartmanis

(editors), Distributed Systems - Architecture and Implementation: An

Advanced Course, Springer-Verlag, Berlin Heidelberg, 1981.

[LSAS77] B. Liskov, A. Snyder, R. Atkinson, C. Schaffert, Abstraction Mechanisms

in CLU, CACM, Vol 20 Nr 8, August 1977, pp. 564-576.

[MMS78] J. G. Mitchell, W. Maybury, and R. Sweet, Mesa Language Manual,

Report CSL-78-1, Xerox PARC, Palo Alto, California, 1978.

[Nae79] H. H. Naegeli, Programmieren mit PORTAL,

Landis und Gyr, Zug, Switzerland, Juli 1979.

[Par72] D. Parnas, A Technique for Software Module Specifications with

Examples, CACM, Vol 15 Nr 5, May 1972, pp. 330-336.

[Pow77] M. L. Powell, The DEMOS File System,

Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 1977.

[RRU82] J. Rebsamen, M. Reimer, P. Unsprung, C. A. Zehnder,

LIDAS - A Database System for the Personal Computer Lilith,

Report 50, Institut fur Informatik, ETH, Zurich, June 1982.

[Red80] D. D. Redell, et al, Pilot: An operating system for a personal computer,

CACM, Vol 23 Nr 4, Febuary 1980, pp. 81 -92.

[Rit78] D. M. Ritchie, A Retrospective,
The Bell System Technical Journal, Vol 57 Nr 6, Part 2,

Whippany, N.J., 1978, pp. 1947-1969.

[RT78] D. M. Ritchie, K. Thompson, The UNIX Time-Sharing System,
The Bell System Technical Journal, Vol 57 Nr 6, Part 2,

Whippany, N.J., 1978, pp. 1905-1927.

[Ruc82] H. Ruckstuhl, Erweiterung des Dateisystems der Lilith,

Diplomarbeit, Institut fur Informatik, ETH, 1982.

[SMB79] D. Swinehart, G. McDaniel, D. Boggs, WFS: A Simple Shared File

System for a Distributed Environment, Proceedings of the 7th

Symposium on Operating Systems Principles, ACM, Dec. 1979.

[Smi78] A. J. Smith, Sequentiality and Prefetching in Database Systems,

ACM Transactions on Database Systems, Vol 3 Nr 3, September 1978,

pp. 223-247.

[SMI80] H. E. Sturgis, J. G. Mitchell, and J. Israel,

Issues in the Design and Use of a Distributed File System,

Op. Sys. Rev., Vol 14 Nr 3, July 1980, pp. 55-59.

[Sto81] M. Stonebraker, Operating System Support for Database Management,

CACM, Vol 24 Nr7, July 1981, pp. 412-418.

[Sug82] H. Sugaya, Tree File: A Data Organisation for Interactive Programs,

Diss. 6944, ETH Zurich, 1982.

[TB74] D. C. Tsichritzis, P. A. Bernstein, Operating Systems,

Academic Press, New York, 1974, cf. p. 8.

148

[TML79] C. T. Tacker, E. M. McCreight, B. W. Lampson, R. F. Sproull, D. B. Boggs,

Alto: A Personal Computer,

Xerox, Palo Alto Research Center, Palo Alto, California, 1979.

[Wir7l] N. Wirth, The programming language PASCAL, Actalnformatical,

1971, pp. 35-63.

[Wir77] N. Wirth, Modula: a language for modular multiprogramming,
Software - Practice and Experience, January 1977, pp. 3-35.

[Wir81] N. Wirth, The Personal Computer Lilith, A.I. Wassermann Ed.,

Software Development Environments,

IEEE Computer Society Press, 1981.

[Wir82] N. Wirth, Programming in Modula-2,

Springer-Verlag, Berlin Heidelberg, 1982, pp. 139-170.

[WN79] M. V. Wilkes, R. M. Needham, The Cambridge CAP Computer and its

Operating System, North Holland, New York, 1979.

Curriculum Vitae

I was born on the 19th of October 1947 in Fredriksberg, Denmark. From 1954 to

1959 I attended the primary school in Vallensbaek, and from 1959 to 1962 the

"realsko/e" in Roskilde. From 1962 to 1963 I attended school in Buchs/SG,

Switzerland. In 1963 I entered the "gymnasium" in Vaduz, Liechtenstein where I

obtained the "Matura" in 1970.

From spring to autumn 1970 I worked with ultra-high vacuum, mass-spectrometry,

and sputtering at BALZERS AG in Balzers, Liechtenstein.

In the fall of 1970 I began my studies in physics at the Swiss Federal Institute of

Technology (ETH) in Zurich and finished in the fall 1975 with the diploma "Dipl. Phys.
ETH". As a diploma-thesis I measured the direction and energy dependency of

lowenergy, photo-emitted electrons from solid and liquid mercury.

Since January 19761 have worked as an assisatent at the "Institute fur Informatik"

of ETH Zurich in the research group of Prof. N. Wirth on the CDC-Pascal and the

Lilith projects.

