
FFF97 1

FFF97 – Oberon in the Real World

Dr. Josef Templ

Software Templ OEG

Abstract

The Oberon programming language and system, subsequently called the Oberon

technology, are well known in the software research community. Few applications,

however, exist outside academic institutions. This paper describes one of them

(FFF97), which constitutes a database front end application that has been in

mission critical use by more than 25 concurrent users since 1998. FFF97 makes

full use of Oberon’s innovations including dynamic loading, commands, garbage

collection, type extension, integrated text and form system, component

technologies, model/view separation, low resource consumption, etc. It is claimed

that choosing the Oberon technology and a particular approach to software

construction, known under the term ‘Prototyping’, was of vital importance for this

project, which, as one of the rare examples of custom software development

projects, was completed within the scheduled time and budget without

compromising quality or functionality.

1. Introduction

The successful application of research results to real world problems can be considered

the ultimate justification for spending money on pure research and as a proof of the

correctness and relevance of the research results. In the field of software engineering, one

controversial research project was the Oberon project [1], carried out by N. Wirth and J.

Gutknecht at ETH Zurich starting in the late 80s. Many computer professionals still doubt

the advantages and relevance of this technology because it started from scratch and

ignored industry standards, and because it appears to be too simple to compare favorably

against industry standard technologies. This paper describes the story of FFF97, a

database front end application based on the Oberon technology, that has been in mission-

critical use by more than 25 persons since 1998. FFF97 embodies a perfect example of

applying the results of the Oberon project to the real world, not because it shows that the

problem could equally well be solved in Oberon, but because it shows that the problem

could better be solved in Oberon. In fact, we are not aware of any other system that would

have been suited better to this particular task.

In the following chapters we will describe the application domain, the chosen approach

to software development, the rationale for choosing the Oberon technology, architectural

and implementational aspects of the developed system. We will also present a summary of

vital points and some general remarks.

2 Josef Templ

2. The Application Domain

FFF97 is a tool to manage funding for applied research projects by an Austrian

governmental organisation (FFF, Forschungsförderungsfonds der gewerblichen

Wirtschaft). Activities include registration of all sorts of received postal matter (most

notably applications for funding), grading applications with respect to technical, economic

and other properties, requesting additional or missing information, maintaining groups of

applicants for joint applications, association of FFF staff with individual applications and

subtasks, maintenance of funding proposals and funding decisions, maintenance of a

calendar of monthly presidential decision sessions, communication with applicants,

answering ad-hoc queries for applicants, automatic or semi-automatic production of

printed letters to applicants, automatic reminders for various purposes, full text search in

text documents, printer management, checking access rights based on user roles, keeping

track of travels to applicants and other travels, generating address lists for a large volume

of letters, maintaining variables for current interest rates for various purposes,

maintenance of third party funds and communication funding proposals and decisions with

third parties, grading the project outcome and monitoring how money is spent, carrying

out payments, maintaining liabilities, automatic statistics for the yearly funds report and

for accounting purposes as well as for the distribution of workload among the FFF staff,

automatic account creation and booking in an electronic accounting system, automatic

payments in both directions, etc.

The above list is by no means complete and is continually extended with new services

and refinements to existing services. However, it should be sufficient to show that it is a

real world problem and it is non-trivial by the sheer amount of different activities. At first

glance it appears to be a typical database application where one of the many existing 4GL

tools would provide the perfect development environment. However, complications arise

when the target platform and environment is taken into account and the need for text

integration is investigated further.

3. The Target Platform

FFF97 was supposed to run in an existing Windows PC network, featuring Intel i486

CPUs at 33 or 40 MHz with 16 MB of main memory. The operating system being used

was Windows 3.1 with a Novell file server. In 1996 this was no longer on the cutting

edge, but quite common in offices that cannot afford to upgrade all their PCs every two

years. Upgrading the CPUs was not possible for technical reasons, because the low-cost

motherboards were simply not compatible with any CPU upgrade available then. Given

the tough hardware limitations, 4GL tools were ruled out completely, because they tend to

create bulky and slow solutions as can be seen by the project history.

4. The Project History

FFF97 3

FFF had been using a Philips P4000 database system with dumb terminals for applications

management and accounting parallel to a Windows PC network for other typical office

activities. It decided to move to a unified PC solution in order to

• upgrade to state of the art client-server technology,

• get rid of the dependency on no longer supported P4000 systems,

• increase the speed of database operations,

• eliminate the duality of two completely incompatible systems (P4000 and the

Windows PC network) on every desktop,

• provide for more flexibility in respect to new services,

• improve client interaction, and to

• improve integration of text documents.

A first attempt by a subsidiary of an Austrian bank corporation to create a solution based

on Oracle Forms4 failed due to unbearable response times and other user acceptance

problems. The system used Microsoft Word as a text component and was able to create

texts with database information included, which was quite reasonable in principle. For

unknown reasons, however, it took several minutes and thousands of database requests

until a simple data input form opened on a user’s desktop PC. This behavior, among other

problems, could not be repaired, so the solution was abandoned and the project was started

again from scratch.

5. Restarting From Scratch

Given the tough hardware limitations and previous experience with Oracle’s 4GL tool

reported to us, we decided to rule out 4GL tools altogether and focus on an efficient and

innovative general purpose programming system available then under the brand Oberon/F

from the ETH spin-off company Oberon microsystems [2]. Oberon/F (later called

BlackBox Component Builder) incorporated all the innovative ideas of the Oberon project

in a form that was well suited for Windows PC users. In particular it used standard

Windows look and feel (overlapping windows, menus and other GUI elements), supported

Windows file systems and provided a database interface. Dynamic loading, command

activation, garbage collection, an efficient compiler for a slightly extended version of the

Oberon language and, most notably, text integration were preserved. Given these

prerequisites, we estimated the initial development work as two man-years and the

development time as one calendar year.

6. Prototyping

In order to avoid repeating the mistakes of the failed predecessor project it was decided to

base the new project on prototyping. This means that there is no written detailed

specification of the functions to be implemented. Instead, the developer creates a

4 Josef Templ

prototype of a functional unit based on a vague specification of the tasks to be performed.

The working prototype is presented to the users and leads to more detailed requirements

based on user feed-back. This takes into account that it is virtually impossible to specify

the requirements of a complex system in detail and has the advantage that the user sees

what (s)he will get long before the project is finished, thereby avoiding unpleasant

surprises. An unbiased judge is installed that both parties (developers and users) agree to

call if there is no agreement in the termination of the feed-back loop. The decision for one

particular offer among several companies was also made based on prototyping a subset of

the required functionality in order to demonstrate the availability of adequate development

tools and skills. For more details on prototyping see [3].

A few years later, refined variants of this approach to software development became

known under the term Extreme Programming [8], which is based on four guiding

principles in order to embrace change: Communication, Simplicity, Feedback, and

Courage. Since we used the term prototyping throughout the project we shall stay with this

term in the following.

7. Integrated Development and Execution Environment

A rapid application developement system (RAD) is the technical foundation of any

prototyping approach. Obviously, slow compilers and linkers as well as bulky executables

are contradictory to prototyping. Even state of the art integrated development

environments (IDEs) such as Visual Studio or Delphi are not sufficient. They provide a

graphical user interface and sophisticated wizards for various common tasks, but under the

hood they are little more than point-and-click interfaces for traditional command line tools

and do not exceed the traditional application development model. They still need to link

an application even if linking can make use of dynamic link libraries (DLLs). In order to

run a modified version of a program, the program has to be rebuilt and started from the

main entry point. Any internal program state between multiple executions is lost.

Oberon’s idea of an integrated development and execution environment (IDEE) makes it

much more efficient to perform incremental changes to a program. Only the modules that

have been changed are reloaded, the rest of the program is retained and preserves its state.

Furthermore, any kind of repeating activity can be automated by means of user-defined

commands, which can be executed from within the IDEE.

With BlackBox’s form subsystem it is even possible to make many user interface

changes by simply editing the form (just like editing graphics). There is no code generator

involved. The form is stored as a document in a file and can be reloaded and used from

there. This idea is based on the Gadgets[4] user interface toolkit of the ETH Oberon

System 3 project and turned out to be an invaluable simplification of the development

process. It clearly separates user interface concerns from the functionality of a program

and permits real time GUI changes interactively with users, without even restarting the

application.

FFF97 5

Another aspect of rapid application development is the production of documentation in

the form of online help texts. We used BlackBox’s integrated text subsystem for writing

help texts (as well as program texts) which avoids the need for external tools that make it

slow, inconvenient and unreliable to create online documentation, especially for a large

project.

In summary, with BlackBox we essentially end up with an “IDDEE”, an integrated

development, documentation and execution environment, which goes beyond what

standard tools support.

8. Component Interaction

The following illustration gives an overview of FFF97’s interaction with other

components.

Database

MS SQL Server 6.5

- FffDB

- FibuDB

user N

user 2

user 1

FFF97

Telebanking

for automatic payments

syska SQL REWE

accounting system

access via ODBC

Printer N

Printer 2

Printer 1

file (V2,

Edifact)

Laptop Database

MS SQL Server 6.5

- FffDB
Windows registry

clipboard

file system

Simple MAPI

e-mail, SMS

OLE Objects

e.g. Spelling Checker

6 Josef Templ

There is a common database server for both the FFF projects database and the database of

the accounting system. This simplification has become possible by selecting an accounting

system that is based on a client-server architecture (syska SQL REWE [5]) and supports

Microsoft SQL Server [6], which we also managed to connect with FFF97. It allows us to

access both databases from within FFF97 using only one database connection and even

allows SQL commands that access both databases within one command. A second

database connection is used for optional selective export of data to a local laptop database

for users who use a laptop when travelling to applicants. So far, modified data cannot be

imported from a laptop database, since this would require additional version control

mechanisms (merge replication) not provided by MS SQL Server 6.5.

A standard telebanking program is used for carrying out automatic payments. The

interface is simply a file that follows a particular syntax (called V2 or „Normdatenträger“

and in the future will be an EDIFACT interchange consisting of PAYMUL and DIRDEB

messages).

FFF97 can access any Windows file system and load and store files in various formats

(ASCII formats, RTF, etc.). It can also import and export data using the Windows

clipboard and can print to any Windows printer.

The Windows registry is used to store default settings per user, such as configurable

window positions, settings for automatic logins, printer configurations, etc. The Windows

registry turned out to be a rather volatile database, especially when Windows is run in a

Novell network, because with nearly every Novell upgrade or reconfiguration (carried out

by a professional network administration company) all registry settings have been lost so

far.

Since the FFF staff is distributed across multiple offices on multiple floors, each user

has access to different printers and FFF97 allows each user to configure printers for

various kinds of paper, e.g. blank paper on Printer 1, letter paper on Printer 2 and so on.

Whenever a document is printed that is known to need letter paper, the preconfigured

letter printer (defined by printer name, input tray and orientation) is provided as a default,

which speeds up printing and avoids using the wrong kind of paper. Printer selection is not

part of the standard BlackBox libraries, so we had to go through the intricacies of the

Windows API for this purpose.

BlackBox supports integration of COM/OLE objects and we made use of this for

connecting the Microsoft office spelling checker. This worked in principle but requires

one of the Office Applications (e.g. Excel) to be loaded in order to get access to the

spelling checker. The result is some waste of memory, startup delays, memory leaks

(inside Excel) and slow communication with the spelling checker. The built-in BlackBox

text subsystem also supports integration of OLE objects, which we used mainly for bitmap

objects, but which the users also use sometimes to include Excel spreadsheets or other

objects.

9. FFF97 Program Architecture

FFF97 7

FFF97 is a 32 bit Windows application which runs under Win 3.1 (in the Win32s

subsystem) and under Windows 95/98/NT. Under Win3.1 it uses 16-bit ODBC drivers

that run under a ‘generic thunk’, under Windows 95/98/NT it uses 32 bit ODBC drivers.

The syska SQL REWE accounting system also supports ODBC, but in 1996 it was a 16 bit

application which needed 16 bit ODBC drivers also under Windows 95/98/NT. This

caused conflicts with 32 bit drivers in various situations. Figuring out working

combinations of server OS, client OS, client applications and ODBC drivers was a hard

task at the beginning and took weeks of trial and error.

At the level of the development system there is a subsystem called fff, which is

represented by its own root directory at the same level as the text, forms, sql or

development tools subsystem. A running application is the combination of all available

subsystems. The directory fff contains subdirectories for the source code, the object code,

symbol files, resource files, documentation and more. For the task of migrating legacy

data, we introduced a second subsystem called P4000.

Any user of FFF97 has zero or more roles that allow access to selected parts of the

program. The roles are maintained within FFF97 by a system administrator, which again

is a special user role. Currently there are 28 different roles that can be freely combined.

FFF97 logs in to the database server using a generic login name and password. In addition

the user types his FFF97 login name and password that is used to determine his role(s) in

FFF97 and control his access rights. We deliberately do not rely on the much less flexible

database features for access protection, thereby avoiding dependencies on the database

server product.

8 Josef Templ

From a user‘s point of view, FFF97 appears as a Windows MDI (multiple document

interface) application, which allows the user to open any number of (sub)windows in an

application window. Of course, it is also possible to start FFF97 more than once, in which

case multiple application windows are opened at the expense of starting multiple

application processes. Subwindows typically are of one of two kinds: (1) input forms, and

(2) text documents. Both kinds allow non-modal use of the system, i.e. it is possible to

switch from one window to another or to activate menu items at any time. There are

exceptions to this rule, however, which appear in the form of requests to the user to

answer a yes/no question or to acknowledge a message. Such dialog message boxes are, in

good old Windows tradition, modal.

An unexpected consequence of making input forms non-modal was the disabling of

keyboard accelerators for command buttons. Normally, under Windows, you can define a

keyboard shortcut for a button, which allows you to activate the button without leaving the

keyboard. This is not possible with non-modal windows due to Microsoft’s user interface

conventions.

10. Data Model and Legacy Data Transfer

First of all, we had to deepen our knowledge of SQL, which obviously would become of

vital importance for the implementation of the system. We also had to familiarize

ourselves with the peculiarities of MS SQL Server 6.5. This includes server installation

and administration and SQL language extensions and limitations. We learned most of the

more subtle points on demand as we proceeded with the design and implementation of the

new relational data model. We deliberately did not look at the legacy data model on the

P4000 at this time, but designed from scratch and migrated the old data model to the new

one using scripts with SQL-statements at a later stage.

Exporting the legacy data from P4000 turned out to be a rather slow process, because

the only way was to use a serial 19200 baud link and it took two days to complete data

transfer. We had to implement data format conversion routines in order to be able to

import the exported legacy data into SQL Server tables. After that, we had access to the

old data model by means of a 1:1 representation of the old tables in the SQL Server and

could apply scripts to convert the old data to the new data model. By doing that, it turned

out that the old data was highly redundant and contradictory as well as incomplete,

meaningless or incorrect. We had to prepare scripts to repair the data in many places in

order to get useful data for our new data model.

We decided not to do a full transfer of accounting data to the new accounting system

but to transfer the accounting plans and balances only, which is quite common when

switching from one accounting system to another. We also had to split several accounts to

make them compatible with the new data and accounting model. Most of the accounting

data transfer was done automatically, i.e. only a few accounts had to be opened or

corrected manually. Fortunately, accounting data was much more consistent and less

FFF97 9

redundant than project data, so we could transfer the accounts with a lot less development

effort than the project data.

All in all, the Microsoft SQL Server 6.5 turned out to be a stable product with few

surprises and was fairly easy to learn and manage even for a novice. The most unpleasant

thing is probably that empty strings are stored as a string containing a single blank

character (fixed in 7.0), which implies that all potentially empty strings must be trimmed

not only before writing but also after reading. It was possible to normalize the new data

model (with very few exceptions) without running into performance problems.

11. SCP - SQL Client Pages

One of the fundamental requirements of FFF97 was the need for text integration in the

application. It should be possible to type in texts, store them in the database, generate

read-only texts from database contents (reports) and generate writeable texts from

database contents (e.g. templates for individual letters with the letterhead and

parameterized standard texts filled in automatically). All these requirements are

essentially variations on the same theme, coping with text, and this is where Oberon (and

BlackBox) really shines. Based on the integrated text subsystem it was easy to provide for

something that might be called SQL Client Pages (SCP) in analogy to Java Server Pages

(JSP) or Active Server pages (ASP). We therefore defined a simple syntax that allows us

to mix a text with SQL-Select statements, which are executed, and to substitute text

variables with fields of the result set. The statement syntax is SQL, the SELECT

statements are executed on the database server and the text expansions and substitutions

take place on the client. The following simple template should illustrate the mechanism:

Clearing Code Name

<@SELECT code, name FROM Bank ORDER BY code;

<code> <name>

>

This defines a report consisting of underlined column titles and an ordered list of pairs of

all the banks contained in the table Bank. code is the clearing code of a bank, name is its

name. The construct <@SELECT ... > opens a scope for field names (code, name) and a

range for text expansion. The character “;” separates the SELECT statement from the text

section. The text section is instantiated and appended for every row of the result set and

within every text instance the values of the fields of the current row are available as

<variableName> (<code> and <name> in the above example). The text may contain

arbitrary formatting attributes and embedded elements, which are preserved during

instantiation. It should also be noted that the mechanism may be nested recursively, i.e.

within a text section there may be another <@SELECT...> phrase and it is allowed to use

the variables of the enclosing SELECT within an enclosed SELECT statement and text

section. There is some additional syntax for formatting numeric fields, date values and

other special formats, for inclusion of files, for conditional text expansion, and, most

10 Josef Templ

notably, there is an extension mechanism in the form of an arbitrary command, whose

output is embedded in the text.

<@COMMAND M.P param1 param2 ... >

This construct calls command M.P and replaces itself by the result produced by M.P,

which writes text (including arbitrary elements floating within a text) into a text buffer.

Examples include inserting bitmaps for scanned signatures, inserting hyperlinks or

generation of non-static header or footer elements into the generated text.

We provide several ways of activating SCPs, including opening the resulting text in a

read-only text window, in a writeable database text window, or as a view object that is not

immediately opened in a window but may be further processed by the caller (e.g. as an

e-mail attachment). The files containing the SCP specifications are called templates and

are stored in a separate directory.

It might be argued that it should also be possible to use one of the many commercial

report generators for the task of generating reports. While this is true in principle, it would

be a tremendous waste of resources, introduce extra license costs, complicate report

definition, limit the report structure to RPG-style reports, preclude an extension

mechanism, complicate the inclusion into an application and serve only for read-only

reports. The task of creating letter templates would still require a special solution. We

have also observed that other programs switch to custom report generators after

experimenting with standard tools (the syska SQL REWE is a prominent example for

this).

12. Customized Visual Components

During the course of the project it became evident that the predefined visual objects, such

as text editor, input controls, etc. were not sufficient for our specific needs and that

customized components would become necessary.

Normal BlackBox texts, for example, are stored as a file and contain little more

document information than the location and file name. For storing texts into a database

there must be additional information available in the form of a database key which allows

modified text to be replaced at a later stage. We therefore extended the standard text views

by our own wrapper class that introduced the missing instance variables (database key,

document type and paper type). This turned out to be a straightforward process, although

it necessitated some delving into the details of handling visual components and working

with wrappers, which are the preferred method of introducing subclasses in BlackBox.

There were more visual components to be created, most notably a data grid component

(based on a simple prototype provided by Oberon microsystems) which serves to display a

database query result set and permits navigation and selection of entries. Other visual

components include an editor for grading projects with respect to certain properties,

attributed straight lines, and specialized date and currency input controls.

FFF97 11

BlackBox provided all the prerequisites necessary to create such components and it

was never necessary to switch to a different development system in order to create such

classes.

13. Meta-Programming Facilities

The original Oberon system provides meta-programming using the concept of commands

alone, which are exported procedures without parameters. BlackBox component builder

goes beyond that and provides full access to variables and commands with parameters

comparable to the one in [7]. Two important applications exist: forms with user interface

components and the database interface.

The forms subsystem allows the linking of user interface components to program

variables and procedures. A text input field, for example, is linked to a character array or

an integer variable and displays the contents of this variable. This makes it very much like

a 4GL programming system, because it allows a program to access the values contained in

user interface components as normal program variables. Optionally, two procedures, a

notifier and a guard may be linked as well. Both constitute commands with parameters.

The notifier is called whenever a particular event, such as typing a key, occurs and may

trigger related actions. The guard is called in order to inquire about the state of a

component, which may be disabled, read-only, or normal. The forms subsystem and not

the application program is responsible for activating guards and notifiers, which simplifies

programming significantly. Without such a mechanism it is hopelessly difficult to realize

self guiding forms, i.e. forms that guide the user by disabling user interface components

that are currently not applicable.

The BlackBox database interface allows the programmer to deal with whole records,

not just with individual fields, for reading query results and composing SQL commands.

When reading a row of a result set, a record variable may be used that matches the

structure of the row. After reading, the record fields contain the values of the

(positionally) corresponding fields in the result set row, which again would otherwise

require a 4GL programming system. The Sql-subsystem is not hard coded in the BlackBox

runtime system but simply uses the meta-programming facilities provided by BlackBox in

order to traverse record variables and to fill in the field values in an appropriate format.

When executing an Sql-command, the notation :M.V, where M denotes a module and V

denotes a variable, may be used in order to expand a record to a comma separated

sequence of record fields. This saves a lot of typing especially in Insert statements, as for

example in “INSERT V VALUES (:M.V)”.

In both examples the runtime overhead introduced by using the meta-programming

facilities is marginal, the benefits for the application programs are huge.

14. Statistics

The following list contains some key measures about FFF97.

12 Josef Templ

• Source code: 86 modules with a total of 1,3 MB, 21.000 Semicolons

• Templates: 167 files with a total of 758 KB

• Resource files: 102 files with a total of 520 KB

• Documentation: 100 files with a total of 594 KB

• Object code: 86 files with a total of 1.2 MB

• Executable process size: about 6 MB

• Databases FibuDB and FffDB: 160 MB each, about 70% filled

• Number of text documents in FffDB: 19.000

• Number of database objects: 39 tables with a total of 450 fields, 1 View, 1 stored

procedure.

15. Summary of Vital Points

Let us now summarize the points which we believe were vital for the success of the

project.

• Prototyping turned out to be possible to circumvent the writing of detailed

specifications, which nobody is able to accomplish for a complex project. It depends,

however, on efficient tools and the close cooperation of all participants. The short

feed-back loop avoids developments in the wrong direction, so we never had to throw

away big pieces of work. Without an Oberon style IDDEE tool, we believe, it would

have been impossible to achieve the required number of development cycles.

• Error avoidance is of vital importance for a prototyping approach, since long

debugging times simply cannot be afforded. Oberon’s approach of using an airtight

type system and automatic garbage collection turned out to be an invaluable asset

even in the world of commercial data processing. The procedure activation stack

dump provided in case of a runtime exception and the possibility of inspecting global

variables were sufficient for debugging logical errors. This is, by the way, more than

one gets in traditional IDEs, since Oberon does not need to make a distinction

between release (without debugging) and debug version.

• Efficiency of the resulting programs in terms of time and memory consumption can

only be achieved with a compiled general purpose programming language and

reasonably designed libraries. Both is the case with BlackBox, which made it possible

to run the application on i486/33Mhz with 16MB main memory. It is still an

advantage after switching to bigger PCs, because it allows the user to start more than

one FFF97 process or other office tools in order to perform certain parallel tasks. It is

also an advantage when working offline on a Laptop, which must host a database

server locally. A small disk footprint is also an advantage when starting a program via

a network from a central file server.

• Oberon’s dynamic loading strategy turned out to be of three-fold benefit to us: (1) it

avoids the extra linking step during development, (2) it allows the application to be

installed on a central file server and to be loaded incrementally with almost

unnoticeable loading delays even on a 10Mbit network with about 30 active users,

FFF97 13

and (3) it allows us to maintain and update the system incrementally via remote

access over a single 64 Kbit ISDN line.

• Text integration pioneered by the original Oberon project and continued by BlackBox

turned out to be at the very heart of our application. A simple SCP report generator

needed just a few weeks of coding and allowed us to create text templates for a broad

range of applications including reports and letters with little effort and great

flexibility.

• Meta-programming support in BlackBox introduces many features of 4GL

programming systems and allows a tight integration of the program with databases

and user interface components. There is no extra coding required and there is also no

code generator involved.

16. Concluding Remarks

The following contains some thoughts about lessons learned during the course of the

FFF97 project. Some of the points are actually statements made by Prof. N.Wirth that

proved to be more than true in practice.

• “Keep it as simple as possible, but not simpler” (Einstein, often quoted by

Wirth) is especially important in a prototyping approach in order to be flexible

enough to incorporate additional or deviating needs. Whenever it is unclear

what the user really needs, do not invest a big effort in a preliminary solution.

• A user interface should be created using visual design tools, not by means of

lengthy statement sequences. There is no need for a code generator within such

a form editor, which simplifies development and the development system

significantly. It also provides a clear separation of concerns, GUI design on the

one hand and functionality behind the buttons on the other. Programmed user

interfaces are only justified in exceptional cases, where dynamic layouts are

needed.

• The lack of static typing in the database world constitutes a major problem for

client applications whenever the data model needs to be changed. It is

impossible to test all dependent programs systematically. With the common

approach of using dynamic SQL inside a general purpose programming

language, this situation cannot be expected to change in the near future.

• Modern database systems and programming interfaces exhibit a degree of

complexity that is hard to digest for someone used to the simplicity of the

Oberon system. Most of the complexity stems from irregularities and

exceptional cases that would better be omitted from the specifications. This

might free some resources for introducing higher level concepts such as types

and type extension into a database management system, which is still a long

way off.

• Wasting resources is never a good idea even if the resources appear to be

unlimited, as is the case with disk space nowadays. With a highly normalized

14 Josef Templ

data model and compact representation of text documents we were able to fit

the database into less than 160 MB, a small fraction of a modern hard disk.

There are advantages, though. Backup is fast and our database fits almost

entirely into the main memory of a modern server computer, where 256 MByte

and more are the norm. The same argument holds for every level of the memory

hierarchy.

• Compiler construction is at the very heart of computer science. Even in a

commercial data processing application, one can make good use of a simple

language and a recursive descent parser as can be seen by the SCP example.

• Custom software projects such as FFF97 are always at the technological limit.

With improved hardware and software technology user expectations are raised,

because standard software created with thousands of man-years raises the

standard of comparison to new heights. Keeping up to those expectations is

everything but easy considering the limited development resources for custom

software.

• What a user wants is not always what a user needs. Taken literally, the wishes

formulated by users range from trivial to unsolvable. They often include how to

do it, based on a particular idea, and not only what to do. It is the developer’s

task to find the intersection of realizable and powerful concepts, which in many

cases deviates significantly from what the user originally wanted.

• Sometimes the user is not able to distinguish between “always” and “often” and

between “never” and “seldom”. This can easily lead to oversimplifications that

do not take exceptional cases into account.

• Oberon microsystems Inc. did an excellent job of hiding the complexities of the

Windows API and preserving the spirit of Oberon in a Windows environment.

There are some points left to be improved (e.g. advanced GUI interface

elements), of course, which are mainly due to limited manpower. The

complexities and irregularities of the Windows API make it difficult to integrate

Windows services and components seamlessly with a reasonable effort.

• The FFF97 project would certainly not have been possible in 1996 and would

still not be possible in 2000 with the much hyped Java technology. Although

Java resembles Oberon in some aspects (e.g. garbage collection, strong typing),

its library is far from being useful for this kind of application. It would require

at least five times the memory, execution time, development effort and program

startup time, let alone the unsolved problem of text integration and printing.

17. Acknowledgements

Without the contribution and support of many people FFF97 would not have been finished

successfully. I wish to thank my business partner and brother Dipl.-Ing. Erwin Templ,

with whom I had the pleasure to work on this project. He was always a highly motivating

and inspiring discussion partner both in solving problems of detail and for developing the

big picture. Prof. Gustav Pomberger supervised and coordinated the project and played the

FFF97 15

role of the unbiased judge. Thanks to his wise project management, we rarely had reason

to call him. The FFF management deserves respect for taking the risk of charging a young,

small and unknown company with the development of their mission critical software. The

FFF staff was a patient and constructive prototype tester and did its best to communicate

its needs to us. Susanne Litschauer shouldered the burden of organizing meetings and

writing reports and was always a competent and friendly contact person. For the rare cases

where we needed help or bug fixes Oberon microsystems Inc. responded quickly. I also

want to thank Hanspeter Mössenböck and Eva Jaksch for proof reading this paper. Last

but not least I want to thank Prof. N. Wirth for the technological ground work he laid

together with J. Gutknecht in the Oberon project and for the privilege of working with him

at ETH Zurich.

References

1. N. Wirth, J. Gutknecht, Project Oberon – The design of an Operating system and Compiler, Addison

Wesley, 1992

2. Oberon microsystems Inc, http://www.oberon.ch

3. G. Pomberger, L.J. Heinrich: Prototyping-orientierte Evaluierung von Software-Angeboten., Theorie und

Praxis der Wirtschaftsinformatik, Heft 197, Sept. 1997

4. A. Fischer, H. Marais, The Oberon Companion, VDF Hochschulverlag AG, Zürich 1998

5. syska SQL REWE, http://www.syska.de

6. Microsoft SQL Server, http://www.microsoft.com/sql

7. J. Templ, Meta-programming in Oberon, PhD thesis, ETH Zurich, 1994

8. Kent Beck, Extreme Programming Explained: embrace change, Addison Wesley 1999

