
Eidgenössische Departement Informatik
Technische Hochschule Institut für
Zürich Computersysteme

Niklaus Wirth Hardware Compilation

The Translation of Programs
into Circuits

January 1998

286

0

Hardware Compilation:
The Translation of Programs into Circuits

N. Wirth, 6.12.97

Abstract

We explain how programs specified in a sequential programming language can be translated

automatically into a digital circuit. The possibility to specify which parts of a program are to be

compiled into instruction sequences for a conventional processor, and which ones are to be

translated into customized circuits has gained relevance with the advent of large

programmable gate arrays (FPGA). They open the door to introduce massive, fine−grained

parallelism. In order to demonstrate the feasibility of this approach, we present a tiny

programming language featuring the basic programming and circuit design facilities.

1. Introduction

The direct generation of hardware from a program − more precisely: the automatic translation of a

program specified in a programming language into a digital circuit − has been a topic of interest for a

long time. So far it appeared to be a rather uneconomical method of largely academic but hardly practical

interest. It has therefore not been pursued with vigour and consequently remained an idealist's dream. It

is only through the recent advances of semiconductor technology that new interest in the topic has

re−emerged, as it has become possible to be rather wasteful with abundantly available resources. In

particular, the advent of programmable components − devices representing circuits that are easily and

rapidly reconfigurable − has brought the idea closer to practical realization by a large measure.

Hardware and software have traditionally been considered as distinct entities with little in common in

their design process. Focussing on the logical design phase, perhaps the most significant difference is that

programs are predominantly regarded as ordered sets of statements to be interpreted sequentially, one

after the other, whereas circuits − again simplifying the matter − are viewed as sets of subcircuits

operating concurrently ("in parallel"), the same activities reoccurring in each clock cycle forever. Programs

"run", circuits are static.

Another reason for considering hard− and software design as different is that in the latter case

compilation ends the design process (if one is willing to ignore "debugging"), whereas in the former

compilation merely produces an abstract circuit. This is to be followed by the difficult, costly, and tedious

phase of mapping the abstract circuit onto a physical medium, taking into account the physical properties

of the selected parts, propagation delays, fanout, and other details.

With the progressing introduction of hardware description languages, however, it has become evident

that the two subjects have several traits in common. Hardware description languages let specifications of

circuits assume textual form like programs, replacing the traditional circuit diagrams by texts. This

developent may be regarded as the analogy of the replacement of flowcharts by program texts several

decades ago. Its main promoter has been the rapidly growing complexity of programs, ehibiting the

limitations of diagrams spreading over many pages.

In the light of textual specifications, variables in programs have their counterparts in circuits in the form

of clocked registers. The counterparts of expressions are combinational circuits of gates. The fact that

programs mostly operate on numbers, whereas circuits feature binary signals, is of no further

significance. It is well understood how to represent numbers in terms of arrays of binary signals (bits),

and how to implement arithmetic operations by combinational circuits.

1

In a recent paper, I. Page [1] has demonstrated that direct compilation of hardware is actually fairly

straight−forward, at least if one is willing to ignore aspects of economy (circuit simplification). We follow

in his footsteps and formulate this essay in the form of a tutorial. As a result, we recognize some principal

limitation of the translation process, beyond which it may still be applicable, but not be realistic. Thereby

we perceive more clearly what should better be left to software. We also recognize an area where

implementation by hardware is beneficial − even necessary: parallelism. Hopefully we end up in

obtaining a better understanding of the fact that hardware and software design share several important

aspects, such as structuring and modularization, that may well be expressed in a common notation.

Subsequently we will proceed step by step, in each step introducing another programming concept

expressed by a programming language construct.

2. Variable Declarations

All variables are introduced by their declaration. We use the notation

VAR x, y, z: Type

In the corresponding circuit, the variables are represented by registers holding their values. The output

carries the name of the variable represented by the register, and the enable signal determines when a

register is to accept a new input. We postulate that all registers be clocked by the same clock signal, that

is, all derived circuits will be synchronous circuits. Therefore, clock signals will subsequently not be drawn

and assumed to be implicit.

3. Assignment Statements

An assignment is expressed by the statement

y := f(x)

where y is a variable, x is (a set of) variables, and f is an expression in x. The assignment statement is

translated into the circuit according to Fig. 1, with the function f resulting in a combinational circuit (i.e.

a circuit neither containing feedback loops nor registers). e stands for enable; this signal is active when

the assignment is to occur.

Given a time t when the register(s) have received a value, the combinational circuit f yields the new value

f(x) after a time span pd called the propagation delay of f. This requires the next clock tick to occur not

before time t+pd. In other words, the propagation delay determines the clock frequency f < 1/pd. The

concept of the synchronous circuit dictates, that the frequency is chosen according to the circuit f with

the largest propagation delay among all function circuits.

The simplest types of variables have only 2 possible values, say 0 and 1. They are said to be of type BIT (or

Boolean). However, we may just as well also consider composite types, that is, variables consisting of

several bits. A type Byte, for example, might consist of 8 bits, and the same holds for a type Integer. The

translation of arithmetic functions (addition, subtraction, comparison, multiplication) into corresponding

combinational circuits is well understood. Although they be of considerable complexity, they are still

purely combinational circuits.

4. Parallel Composition

We denote parallel composition of two statements S0 and S1 by

S0, S1

The meaning is that the two component statements are executed concurrently. The characteristic of

parallel composition is that the affected registers feature the same enable signal. Translation into a circuit

is straight−forward, as shown in Fig 1 (right side) for the example

2

x := f(x, y), y := g(x, y)

e

y

g

x

ff(x)x

f

y

f(x,y)

g(x, y)

e

Fig. 1. Single assignment, and parallel composition

The characteristic of parallel composition is that the registers feature the same enable signal.

5. Sequential Composition

Traditionally, sequential composition of two statements S0 and S1 is denoted by

S0; S1

The sequencing operator ";" signifies that S1 is to be executed after completion of S0. This necessitates a

sequencing mechanism. The example of the three assignments

y := f(x); z := g(y); x := h(z)

is translated into the circuit shown if Fig. 2, with enable signals e corrsponding to the statements.

e3e2e1e0

xh(z)

h

zg(y)

g

yf(x)

f

x

Fig. 2. Sequential composition

The upper line contains the combinational circuits and registers corresponding to the assignments. The

lower line contains the sequencing machinery assuring the proper sequential execution of the three

assignments. With each statement is associated an individual enable signal e. It determines when the

assignment is to occur, that is, when the register holding the rspective variable is to be enabled. The

sequencing part is a "one−hot" state machine. The following table illustrates the signal values before and

after each clock cycle.

e0 e1 e2 e3 x y z

1 0 0 0 x0 ? ?

0 1 0 0 x0 f(x0) ?

0 0 1 0 x0 f(x0) g(f(x0))

0 0 0 1 h(g(f(x0))) f(x0) g(f(x0))

The preceding example is a special case in the sense that each variable is assigned only a single value,

namely y is assigned f(x) in cycle 0, z is assigned g(y) in cycle 1, and x is assigned h(z) in cycle 2. The

generalized case is reflected in the following short example:

x := f(x); x := g(x)

which is transformed into the circuit shown in Fig. 3. Since x receives two values, namely f(x) in cycle 0

and g(x) in cycle 1, the register holding x needs to be preceded by a multiplexer.

3

e2e1e0

x

f

f(x)

g

g(x)

0

1

0!
1

x

x

Fig. 3. Two assignments to the same variable

e0 e1 e2 x

1 0 0 x0

0 1 0 f(x0)

0 0 1 g(f(x0))

6. Conditional Composition

This is expressed by the statement

IF b THEN S END

where b is a Boolean variable and S a statement. The circuit shown in Fig. 4 on the left side is derived

from it with S standing for y := f(x). The only difference to Fig. 1 is the derivation of the associated

sequencing machinery yielding the enable signal for y.

e1

e0

f

x f(x) y

0
1

0
!

b e1

b

S1

S00

!

e0

0
1

Fig. 4. Conditional composition

e0 e1 b x e0 e1 b x

1 0 1 x0 1 1 0 x0

0 1 1 f(x0)

It now emerges clearly that the sequencing machinery, and it alone, directly reflects the control

statements, whereas the data parts of circuits reflect assignments and expressions.

The conditional statement is easily generalized to its following form:

IF b0 THEN S0 ELSE S1 END

In its corrsponding circuit on the right side of Fig. 4 we show the seqencing part only with the enable

signals corresponding to the various statements. At any time, at most one of the statements S is active

after being triggered by e0.

7. Repetitive Composition

4

We consider repetitive constructs traditionally expressed as repeat and while statements. Since the

control structure of a program statement is refelected by the sequencing machinery only, we may omit

showing associated data assignments, and instead let each statement be represented by its associated

enable signal only.

We consider the statements

REPEAT S UNTIL b and WHILE b DO S END

b again standing for a Boolean variable, they translate into the circuits shown in Fig. 5, where e stands for

the enable signal of statement S.

ee

1 0
!0b 0

!
0

1

b
e0

e1e1

e0

S

S

Fig. 5. Repetitive compositions

8. Selective Composition

The selection of one statement out of several is expressed by the case statement, whose corresponding

sequencing circuitry containing a decoder is shown in Fig. 6.

CASE k OF

0: S0 | 1: S1 | 2: S2 | ... | n: Sn

END

e1

k

e0

1

s

e

decode

S0

S1

S2

Sn

0

1

2

n

Fig. 6. Selective composition

9. Preliminary Discussion

At this point we realize that arbitrary programs consisting of assignments, conditional and repeated

statements can be transformed into circuits according to fixed rules, and therefore automatically.

However, it is also to be feared that the complexity of the resulting circuits may quickly surpass

reasonable bounds. After all, every expression occurring in a program results in an individual

combinational circuit; every add symbol yields an adder, every multiply symbol turns into a combinational

multiplier, potentially with hundreds or thousands of gates. We agree that for the present time this

scheme is hardly practical except for toy examples. Cynics will remark, however, that soon the major

problem will no longer be the economical use of components, but rather to find good use of the

hundreds of millions of transistors on a chip [4].

Inspite of such warnings, we propose to look at ways to reduce the projected hardware explosion. The

best solution is to share subcircuits among various parts. This, of course, is equivalent to the idea of the

subroutine in software. We must therefore find a way to translate subroutines and subroutine calls. We

emphasize that the driving motivation is the sharing of circuits, and not the reduction of program text.

5

Therefore, a facility for declaring subroutines and textually substituting their calls by their bodies, that is,

handling them like macros, must be rejected. This is not to deny the usefulness of such a feature, as it is

for example provided in the language Lola, where the calls may be parametrized [2, 3]. But with its

expansions of the circuit for each call it contributes to the circuit explosion rather than being a facility to

avoid it.

10. Subroutines

The circuits obtained so far are basically state machines. Let every subroutine translate into such a state

machine. A subroutine call then corresponds to the suspension of the calling machine, the activation of

the called machine, and, upon its completion, a resumption of the suspended activity of the caller.

A first measure to implement subroutines is to provide every register in the sequencing part with a

common enable signal. This allows to suspend and resume a given machine. The second measure is to

provide a stack (a first−in last−out store) of identifications of suspended machines, typically numbers

from 0 to some limit n. We propose the following implementation, which is to be regarded as a fixed

base part of all circuits generated, analogous to a run−time subroutine package in software. The extended

circuit is a push−down machine.

The stack of machine numbers (analogous to return addresses) consists of a (static) RAM of m words,

each of n bits, and an up/down counter generating the RAM−addresses. Each of the n bits in a word

corresponds to one of the circuits representing a subroutine. One of them has the value 1, identifying the

circuit to be reactivated. Hence, the (latched) read−out directly specifies the values of the enable signals of

the n circuits. This is shown in Fig. 7. The stack is operated by the push signal, incrementing the counter

and thereafter writing the applied input to the RAM, and the pop signal, decrementing the counter.

up/down

counter

0100000000 0100000000

0000100000

before call after call

enable of circuit 4 active

enable of circuit 1 active

<<
SRAM

<0100000000

circuit 1 active

after return

: :
push pop

A

D

Fig. 7. Subroutine mechanism

The push signal is activated whenever a state register belonging to a call statement becomes active. Since

a subroutine may contain several calls itself, these register outputs must be ORed. A better solution would

be a bus. The pop signal is activated when the last state of a circuit representing a subroutine is reached.

An obvious enhancement with the purpose to enlarge the number of possible subcircuits without undue

expansion of the RAM's width is to place an encoder at the input and a decoder at the output of the

RAM. A width of n bits then allows for 2n subroutines.

The scheme presented so far excludes recursive procedures. The reason is that every subcircuit must have

at most one suspension point, that is, it can have been activated at most once. If recursive procedures are

to be included, a scheme allowing for several suspension points must be found. This implies that the

stack entries must not only contain an identification of the suspended subcircuit, but also of the

suspension point of the call in question. This can be achieved in a manner similar to storing the circuit

identification, either as a bit set or an encoded value. The respective state re−enable signals must then be

properly qualified, further complicating the circuit. We shall not pursue this topic any further.

6

11. A Small Language

To conclude, we formulate a small, concrete programming language that integrates the programming

concepts listed before. Its syntax and semantics are essentially those of Pascal and its successor Oberon.

The syntax is presented in Extended BNF [2] with curly braces denoting repetition and brackets denoting

optionality.

The construct {s: x, y} denotes selection according to a Boolean valuse: if ˜s then x else y. "˜" denotes

negation (not), "&" conjunction (and), and "#" denotes "not equal". The form x := a, y := b denotes

concurrent assignment (sometimes written as x, y := a, b). Constants are not given values in the program

text, but are assumed to by specified at run time, acting as inputs.

ident = letter {letter | digit}.

integer = digit {digit}.

factor = ident | integer | "TRUE" | "FALSE" | "˜" factor | "ODD" factor |

"(" expression ")" | "{" expression ":" expression "," expression "}".

term = factor {("*" | "/" | "&") factor}.

SimpleExpression = ["+"|"−"] term {("+"| "−" | "OR") term}.

expression = SimpleExpression [("=" | "#" | "<" | ">=" | "<=" | ">") SimpleExpression].

assignment = ident ":=" expression {"," ident ":=" expression}.

IfStatement = "IF" expression "THEN" StatementSequence ["ELSE" StatementSequence] "END".

WhileStatement = "WHILE" expression "DO" StatementSequence "END".

statement = [assignment | IfStatement | WhileStatement].

StatementSequence = Statement {";" Statement}.

type = "BOOLEAN" | "INTEGER".

IdentList = ident {"," ident} ":" type.

declarations = ["CONST" {IdentList ";"}] "VAR" {IdentList ";"}.

module = "MODULE" ident ";" declarations

"BEGIN" StatementSequence "END" ident "." .

The following small sample programs illustrate the capabilities and limitations of the language. They also

serve as test cases allowing to study the feasibility of the outlined translation rules.

MODULE First; 22 gates

CONST a, b: BOOLEAN; 7 registers

VAR x, y, z: BOOLEAN;

BEGIN x := a & b; y := ˜a OR b; z := a # b

END First.

MODULE Second; 290 gates

CONST a, b: INTEGER; 26 registers

VAR x, y, z: INTEGER;

BEGIN x := a+b, y := a−b, z := a*b

END Second.

MODULE MinMax; 140 gates

CONST a, b: INTEGER; 19 registers

VAR min, max: INTEGER;

BEGIN

IF a < b THEN min := a, max := b ELSE min := b, max := a END

END MinMax.

MODULE Log; 122 gates

CONST a: INTEGER; 20 registers

VAR x, y: INTEGER;

BEGIN x := 0; y := a;

WHILE y # 0 DO x := x+1, y := y/2 END

END Log.

MODULE Multiply; 256 gates

CONST a, b: INTEGER; 36 registers

VAR x, y, z, n: INTEGER;

7

BEGIN n := 8, x := a, y := b, z := 0;

WHILE n # 0 DO

IF ODD x THEN z := z + y END ;

x := x/2, y := y*2, n := n−1

END

END Multiply.

The experimental compiler for this language was written in Oberon and consists of two modules. It

generates a data structure, essentially a binary tree, representing the gates and registers of the circuit. This

structure is the basis of the Lola System [4], which contains various tools for mapping the abstract circuit

onto PLDs and FPGAs. The main compiler module, containing scanner, parser, and generator of the data

structure, is 500 lines long and compiles into 5200 bytes of code. The second module implements the

generator routines for integer arithmetic. It consists of 250 lines of program text, and compiles into 3500

bytes of code.

12. Conclusions

It is now evident that subroutines, and more so procedures, introduce a significant degree of complexity

into a circuit. It is indeed highly questionable, whether it is worth while considering their implementation

in hardware. It comes as no surprise that state machines, implemeting assignments, conditional and

repetitive statements, but not subroutines, play such a dominant role in squential circuit design. The

principal concern in this area is to make optimal use of the implemented facilities. This is achieved if

most of the subcircuits yield values contributing to the process most of the time. The simplest way to

achieve this goal is to introduce as few sequential steps as possible. It is the underlying principle in

computer architectures, where (almost) the same steps are performed for each instruction. The steps are

typically the subcycles of an instruction interpretation. Hardware acts as what is known in software as an

interpretive system.

The strength of hardware is the possibility of concurrent operation of subcircuits. This is also a topic in

software design. But we must be aware of the fact that concurrency is only possible by having

concurrently operating circuits to support this concept. Much work on parallel computing in software

actually ends up in implementing quasi−concurrency, that is, in pretending concurrent execution, and, in

fact, in hiding the underlying sequentiality. This leads us to contend that any scheme of direct hardware

compilation may well omit the concept of subroutines, but must include the facility of specifying

concurrent, parallel statements.

Such a hardware programming language may indeed be the best way to let the programmer specify

parallel statements. We call this fine−grained parallelism. Coarse−grained concurrency may well be left to

conventional programming languages, where parallel processes interact infrequently, and where they are

generated and deleted at arbitrary but distant intervals. This claim is amply supported by the fact that

fine−grained parallelism has mostly been left to be introduced by compilers, under the hood, so to say.

The reason for this is that compilers may be tuned to particular architectures, and they can therefore

make use of their target computer's specific characteristics.

In this light, the consideration of a common language for hard− and software specification has a certain

merit. It may reveal the inherent difference in the designers' goals. As C. Thacker expressed it succinctly:

"Programming (software) is about finding the best sequential algorithm to solve a problem, and

implementing it efficiently. The hardware designer, on the other hand, tries to bring as much parallelism

to bear on the problem as possible, in order to improve performance". In other words, a good circuit is

one where most gates contribute to the result in every clock cycle. Exploiting parallelism is not an

optional luxury, but a necessity.

8

We end by repeating that hardware compilation has gained interest in practice primarily because of the

recent advent of large−scale programmable devices. These can be configured on−the−fly, and hence be

used to directly represent circuits generated through a hardware compiler. It is therefore quite

conceivable that parts of a program are compiled into instruction sequences for a conventional processor,

and other parts into circuits to be loaded onto programmable gate arrays. Although specified in the same

language, the engineer will observe different criteria for good design in the two areas.

References

1. I. Page. Constructing hardware−software systems from a single description.

Journal of VLSI Signal Processing 12, 87−107 (1996).

2. N. Wirth. Digital Circuit Design. Springer−Verlag, Heidelberg, 1995.

3. www.Lola.ethz.ch

4. Y. N. Patt, et al. One Billion Transistors, One Uniprocessor, One Chip.

Computer, 30, 9 (Sept. 1997) 51−57.

