Niklaus Wirth

122

Niklaus Wirth

Acta Informatica 1, 35-63 (1971)
© by Springer-Verlag 1971

The Programming Language Pascal
N. WIrTH*

Received October 30, 1970

Summary. A programming language called Pascal is described which was developed
on the basis of Arcor 60. Compared to ALGOL 60, its range of applicability is con-
siderably increased due to a variety of data structuring facilities. In view of its
intended usage both as a convenient basis to teach programming and as an efficient
tool to write large programs, emphasis was placed on keeping the number of funda-
mental concepts reasonably small, on a simple and systematic language structure,
and on efficient implementability. A one-pass compiler has been constructed for the
CDC 6000 computer family; it is expressed entirely in terms of Pascal itself.

1. Introduction

The development of the language Pascal is based on two principal aims. The
first is to make available a language suitable to teach programming as a systematic
discipline based on certain fundamental concepts clearly and naturally reflected
by the language. The second is to develop implementations of this language which
are both reliable and efficient on presently available computers, dispelling the
commonly accepted notion that useful languages must be either slow to compile
or slow to execute, and the belief that any nontrivial system is bound to contain
mistakes forever.

There is of course plenty of reason to be cautious with the introduction of yet
another programming language, and the objection against teaching programming
in a language which is not widely used and accepted has undoubtedly some justi-
fication —at least based on short-term commercial reasoning. However, the choice
of a language for teaching based on its widespread acceptance and availability,
together with the fact that the language most widely taught is thereafter going
to be the one most widely used, forms the safest recipe for stagnation in a subject
of such profound paedagogical influence. I consider it therefore well worth-while
to make an effort to break this vicious circle.

Of course a new language should not be developed just for the sake of novelty;
existing languages should be used as a basis for development wherever they meet
the chosen objectives, such as a systematic structure, flexibility of program and
data structuring, and efficient implementability. In that sense ALGOL 60 was used
as a basis for Pascal, since it meets most of these demands to 2 much higher
degree than any other standard language [1]. Thus the principles of structuring,
and in fact the form of expressions, are copied from ALcoLr 60. It was, however,
not deemed appropriate to adopt ALGOL 60 as a subset of Pascal; certain con-
struction principles, particularly those of declarations, would have been incom-

* Fachgruppe Computer-Wissenschaften, Eidg. Techniscﬁe Hochschule, Ziirich,
Schweiz.

Original Historic Documents

patible with those allowing a natural and convenient representation of the ad-
ditional features of Pascal. However, conversion of ALGOL 60 programs to Pascal
can be considered as a negligible effort of transcription, particularly if they obey
the rules of the IFIP ArgoL Subset [2].

The main extensions relative to ALGOL 60 lie in the domain of data structuring
facilities, since their lack in ALGOL 60 was considered as the prime cause for its
relatively narrow range of applicability. The introduction of record and file
structures should make it possible to solve commercial type problems with Pascal,
or at least to employ it successfully to demonstrate such problems in a pro-
gramming course. This should help erase the mystical belief in the segregation
between scientific and commercial programming methods. A first step in extending
the data definition facilities of ALGOL 60 was undertaken in an effort to define
a successor to ALGOL in 1965 [3]. This language is a direct predecessor of Pascal,
and was the source of many features such as e.g. the while and case statements
and of record structures.

Pascal has been implemented on the CDC 6000 computers. The compiler is
written in Pascal itself as a one-pass system which will be the subject of a sub-
sequent report. The ““dialect” processed by this implementation is described by
a few amendments to the general description of Pascal. They are included here
as a separate chapter to demonstrate the brevity of a manual necessary to
characterise a particular implementation. Moreover, they show how facilities are
introduced into this high-level, machine independent programming language,
which permit the programmer to take advantage of the characteristics of a
particular machine.

The syntax of Pascal has been kept as simple as possible. Most statements and
declarations begin with a unique key word. This property facilitates both the
understanding of programs by human readers and the processing by computers.
In fact, the syntax has been devised so that Pascal texts can be scanned by the
simplest techniques of syntactic analysis. This textual simplicity is particularly
desirable, if the compiler is required to possess the capability to detect and
diagnose errors and to proceed thereafter in a sensible manner.

2. Summary of the Language

An algorithm or computer program consists of two essential parts, a description
of actions which are to be performed, and a description of the data which are
manipulated by these actions. Actions are described in Pascal by so-called stafe-
ments, and data are described by so-called declarations and definitions.

The data are represented by values of variables. Every variable occuring in
a statement must be introduced by a variable declaration which associates an
identifier and a data type with that variable. The data type essentially defines
the set of values which may be assumed by that variable. A data type may in
Pascal be either directly described in the variable declaration, or it may be
referenced by a type identifier, in which case this identifier must be described
by an explicit type definition.

The basic data types are the scalar types. Their definition indicates an ordered
set of values, i.e. introduces an identifier as a constant standing for each value

123

124

Niklaus Wirth

in the set. Apart from the definable scalar types, there exist in Pascal four
standard scalar types whose values are not denoted by identifiers, but instead
by numbers and quotations respectively, which are syntactically distinct from
identifiers. These types are: ¢nfeger, real, char, and alfa.

The set of values of type ckar is the character set available on the printers
of a particular installation. Alfa type values consist of sequences of characters
whose length again is implementation dependent, i.e. is the number of characters
packed per word. Individual characters are not directly accessible, but alfa quan-
tities can be unpacked into a character array (and vice-versa) by a standard
procedure.

A scalar type may also be defined as a subrange of another scalar type by
indicating the smallest and the largest value of the subrange.

Structured types are defined by describing the types of their components and
by indicating a structuring method. The various structuring methods differ in the
selection mechanism serving to select the components of a variable of the struc-
tured type. In Pascal, there are five structuring methods available: array struc-
ture, record structure, powerset structure, file structure, and class structure.

In an array structure, all components are of the same type. A component is
selected by an array selector, or computable ndex, whose type is indicated in
the array type definition and which must be scalar. It is usually a programmer-
defined scalar type, or a subrange of the type integer.

In a record structure, the components (called fields) are not necessarily of the
same type. In order that the type of a selected component be evident from the
program text (without executing the program), a record selector does not contain
a computable value, but instead consists of an identifier uniquely denoting the
component to be selected. These component identifiers are defined in the record
type definition.

A record type may be specified as consisting of several variants. This implies
that different variables, although said to be of the same type, may assume
structures which differ in a certain manner. The difference may consist of a
different number and different types of components. The variant which is assumed
by the current value of a record variable is indicated by a component field which
is common to all variants and is called the fag field. Usually, the part common
to all variants will consist of several components, including the tag field.

A powerset structure defines a set of values which is the powerset of its base
type, i.e. the set of all subsets of values of the base type. The base type must
be a scalar type, and will usually be a programmer-defined scalar type or a
subrange of the type integer.

A file structure is a sequence of components of the same type. A natural
ordering of the components is defined through the sequence. At any instance,
only one component is directly accessible. The other components are made acces-
sible through execution of standard file positioning procedures. A file is at any
time in one of the three modes called input, output, and neutral. According to
the mode, a file can be read sequentially, or it can be written by appending
components to the existing sequence of components. File positioning procedures
may influence the mode. The file type definition does not determine the number
of components, and this number is variable during execution of the program.

Original Historic Documents

The class structure defines a class of components of the same type whose
number may alter during execution of a program. Each declaration of a variable
with class structure introduces a set of variables of the component type. The set
is initially empty. Every activation of the standard procedure alloc (with the class
as implied parameter) will generate (or allocate) a new component variable in the
class and yield 2 value through which this new component variable may be ac-
cessed. This value is called a pointer, and may be assigned to variables of type
pointer. Every pointer variable, however, is through its declaration bound to a
fixed class variable, and because of this binding may only assume values pointing
to components of that class. There exists a pointer value nil which points to no
component whatsoever, and may be assumed by any pointer variable irrespective
of its binding. Through the use of class structures it is possible to construct data
corresponding to any finite graph with pointers representing edges and com-
ponent variables representing nodes.

The most fundamental statement is the assignment statement. It specifies that
a newly computed value be assigned to a variable (or component of a variable).
The value is obtained by evaluating an expression. Pascal defines a fixed set of
operators, each of which can be regarded as describing a mapping from the
operand types into the result type. The set of operators is subdivided into
groups of

1. arithmetic operators of addition, subtraction, sign inversion, multiplication,
division, and computing the remainder. The operand and result types are the
types nteger and real, or subrange types of inleger.

2. Boolean operators of negation, union (or), and conjunction (and). The
operand and result types are Boolean (which is a standard type).

3. set operators of union, intersection, and difference. The operands and
results are of any powerset type.

4. relational operators of equality, inequality, ordering and set membership.
The result of relational operations is of type Boolean. Any two operands may
be compared for equality as long as they are of the same type. The ordering
relations apply only to scalar types.

The assignment statement is a so-called simple statement, since it does not
contain any other statement within itself. Another kind of simple statement is
the procedure statement, which causes the execution of the designated procedure
(see below). Simple statements are the components or building blocks of structured
statements, which specify sequential, selective, or repeated execution of their
components. Sequential execution of statements is specified by the compound
statement, conditional or selective execution by the if stalement and the case
statement, and repeated execution by the repeat statement, the while statement,
and the jor statement. The if statement serves to make the execution of a statement
dependent on the value of a Boolean expression, and the case statement allows
for the selection among many statements according to the value of a selector.
The for statement is used when the number of iterations is known beforehand,
and the repeat and while statements are used otherwise.

A statement can be given a name (identifier), and be referenced through that
identifier. The statement is then called a procedure, and its declaration a procedure

125

126

Niklaus Wirth

declaration. Such a declaration may additionally contain a set of variable declara-
tions, type definitions and further procedure declarations. The variables, types
and procedures thus defined can be referenced only within the procedure itself,
and are therefore called local to the procedure. Their identifiers have significance
only within the program text which constitutes the procedure declaration and
which is called the scope of these identifiers. Since procedures may be declared
local to other procedures, scopes may be nested.

A procedure may have a fixed number of parameters, which are classified
into constant-, variable-, procedure-, and function parameters. In the case of a
variable parameter, its type has to be specified in the declaration of the formal
parameter. If the actual variable parameter contains a (computable) selector,
this selector is evaluated before the procedure is activated in order to designate
the selected component variable.

Functions are declared analogously to procedures. In order to eliminate side-
effects, assignments to non-local variables are not allowed to occur within the
function.

3. Notation, Terminology, and Vocabulary

According to traditional Backus-Naur form, syntactic constructs are denoted
by English words enclosed between the angular brackets {and). These words
also describe the nature or meaning of the construct, and are used in the ac-
companying description of semantics. Possible repetition of a construct is indicated
by an asterisk (0 or more repetitions) or a circled plus sign (1 or more repetitions).
If a sequence of constructs to be repeated consists of more than one element,
it is enclosed by the meta-brackets {and}.

The basic vocabulary consists of basic symbols classified into letters, digits,
and special symbols.

Qettery::= 4|B|C| D|E|F|G|H|I|J| K|L| M|N|0| P|Q|R|S|T|U|V|W|X|Y|Z|
alblclalelflg|rlili| k| I m|n]o|plg|r|s|t|u|v]|w]x|y]|z

(digit) ::=0[1]2[3]4]5|6] 7|89

(special symboly = +{ | /| v| Al 2] =] <1 <|> | <| 2| (D LTI} =
wol-1.13 11| 4] div] mod] nil |in|
if|then | else| case | of | repeat | until | while | do |
for|to| downto | begin | end | with|goto |
var | type|array | record | powerset |file | class |
function | procedure | const

The construct

{<any sequence of symbols not containing "}’ }
may be inserted between any two identifiers, numbers (cf. 4), or special symbols.

It is called a comment and may be removed from the program text without
altering its meaning.

Original Historic Documents

4. Identifiers and Numbers

Identifiers serve to denote constants, types, variables, procedures and func-
tions. Their association must be unique within their scope of validity, i.e. within
the procedure or function in which they are declared (cf. 10 and 11).

{identifier) ::= (letter) (letter or digit)*
(letter or digit) ::= (letter) | <digit}

The decimal notation is used for numbers, which are the constants of the data
types tnteger and real. The symbol ,, preceding the scale factor is pronounced
as “times 10 to the power of”’.

{number) ::= (integer) | (real number)
{integer) ::= (digit)®
real number) ::= (digit)>® . (digit)>®|
(digit)® . <digit)®,, {scale factor) | {integer},, {scale factor
(scale factor) ::= (digit>® | <sign) (digit)®
{sign) ii=+| —

Examples:

1 100 0.1 510_3 87-3 510+8

5. Constant Definitions
A constant definition introduces an identifier as a synonym to a constant.

(unsigned constant) ::= (number) | ‘(character>®’ | (identifier) | nil
{constant) ::= (unsigned constant) | (sign) (number)
{constant definition) ::= (identifiery = {constant)

6. Data Type Definitions

A data type determines the set of values which variables of that type may
assume and associates an identifier with the type. In the case of structured
types, it also defines their structuring method.

{type) ::= (scalar type) | (subrange type) | <array type) | (record type) |
{powerset type) | (file type) | class type) | {pointer type}|
{type identifier)

{type identifier) ::= (identifier)
(type definition ::= (identifier) = {type)

6.1. Scalar Types

A scalar type defines an ordered set of values by enumeration of the identifiers
which denote these values.

{scalar type) ::= (<identifier) {, (identifier)}*)

127

128

Niklaus Wirth

Examples:

(red, orange, yellow, green, blue)

(club,

diamond, heart, spade)

(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday)

Functions applying to all scalar types are:

succ
pred

6.1.1.

the succeeding value (in the enumeration)
the preceding value (in the enumeration)

Standard Scalar Types

The following types are standard in Pascal, i.e. the identifier denoting them
is predefined:

integer

real

Boolean
char

alfa

the values are the integers within a range depending on the particular
implementation. The values are denoted by integers (cf. 4) and not by
identifiers.

the values are a subset of the real numbers depending on the particular
implementation. The values are denoted by real numbers as defined in
paragraph 4.

(false, true)

the values are a set of characters depending on a particular implementa-
tion. They are denoted by the characters themselves enclosed within
quotes.

the values are sequences of # characters, where # is an implementation
dependent parameter. If « and § are values of type alfa

e=a,...a,...4a,

f=b...5,...b,,
then

«=f, ifandonlyif a,=b, for i=1...4%,

a<f, ifandonlyif a;,=b;, for f=1...k—1 and a,<b,
«>f, ifandonlyif a;,=8;, for 1=1...k—1 and a,>b,.
Alfa values are denoted by sequences of (at most) # characters enclosed
in quotes. Trailing blanks may be omitted. Alfa quantities may be

regarded as a packed representation of short character arrays (cf. also
10.1.3.).

6.1.2. Subrange Types

A type may be defined as a subrange of another scalar type by indication
of the least and the highest value in the subrange. The first constant specifies
the lower bound, and must not be greater than the upper bound.

{subrange type) ::= {constant).. {constant)

Original Historic Documents

Examples:

1..100
—10..4-10
Monday .. Friday

6.2. Structured Types

6.2.1. Array Types

An array type is a structure consisting of a fixed number of components
which are all of the same type, called the component type. The elements of the
array are designated by indices, values belonging to the so-called ¢ndex fype.
The array type definition specifies the component type as well as the index type.

{array type) ::= array [(index type) {, {index type >}*] of {component type)
{index type) ::= (scalar type) | (subrange type) | {type identifier)
{component type) ::= {type)

If » index types are specified, the array type is called #n-dimensional, and a
component is designated by # indices.

Examples:

array[1..100] of real
array[41..10,1..20] of 0..99
array [—10..+10] of Boolean
array [Boolean] of Color

6.2.2. Record Types

A record type is a structure consisting of a fixed number of components,
possibly of different types. The record type definition specifies for each component,
called field, its type and an identifier which denotes it. The scope of these so-
called field identifiers is the record definition itself, and they are also accessible
within a field designator (cf. 7.2) refering to a record variable of this type.

A record type may have several wvariants, in which case a certain field is
designated as the ‘ag field, whose value indicates which variant is assumed by
the record variable at a given time. Each variant structure is identified by a
case label which is a constant of the type of the tag field.

(record type) ::= record (field list) end

(field list} ::= (fixed part) | (fixed part); (variant part} | {variant part)
(fixed part) ::= (record section) {; {record section>}*

(record section) ::= (field identifier) {, (field identifier)}*: (type)

{variant part) ::= case {tag field) : (type identifier) of {variant) {; (variant)}*
{variant) ::= {{case label) :}® (<field list}) | { {case label}}®

{case label} ::= {unsigned constant)

(tag field) ::= (identifier)

129

130

Niklaus Wirth

Examples:
record day: 1..31;
month: 1..12;
year: 0..2000

end

record name, firstname: alfa;

age: 0..99;
end

record x, y: real;
area: real;

case s: Shape of
triangle: (side: real;

nclination, anglel, angle2: Angle);
rectangle: (sidel, side2: real;

skew, angle3: Angle);
circle: (diameter: real)
end

6.2.3. Powerset Types

A powerset type defines a range of values as the powerset of another scalar
type, the so-called dase type. Operators applicable to all powerset types are:

v union

A Intersection

— set difference

in membership

{powerset type) ::= powerset (type identifier) | powerset (subrange type)

6.2.4. File Types

A file type definition specifies a structure consisting of a sequence of com-
ponents, all of the same type. The number of components, called the length of
the file, is not fixed by the file type definition, i.e. each variable of that type
may have a value with a different, varying length.

Associated with each variable of file type is a file position or file pointer
denoting a specific element. The file position or the file pointer can be moved
by certain standard procedures, some of which are only applicable when the file
is in one of the three modes: input (being read), output (being written), or neutral
(passive). Initially, a file variable is in the neutral mode.

(file type) ::= file of (type>

6.2.5. Class Types
A class type definition specifies a structure consisting of a class of components,

- all of the same type. The number of components is variable; the initial number

Original Historic Documents

upon declaration of a variable of class type is zero. Components are created
(allocated) during execution of the program through the standard procedure alloc.
The maximum number of components which can thus be created, however, is
specified in the type definition.

{class type) ::= class {(maxnum) of {type)

{maxnum) ::= {integer)

6.2.6. Pointer Types

A pointer type is associated with every variable of class type. Its values are
the potential pointers to the components of that class variable (cf. 7.5), and the
pointer constant nil, designating no component. A pointer type is said to be
bound to its class variable.

{pointer type) ::= 4{class variable)
{class variable) ::= (variable)

Examples of type definitions:

Color = (red, yellow, green, blue)

Sex = (male, female)

Charfile = file of char

Shape = (triangle, rectangle, circle)

Card = array[1..80] of ckar

Complex = record realpart, imagpart: real end
Person = record name, firstname: alfa;

age: integer;

married: Boolean;

father, youngestchild, eldersibling: 4 family;
case s: Sex of
male: (enlisted, bold: Boolean);
female: (pregnant: Boolean;

size: array[1..3] of integer)
end

7. Declarations and Denotations of Variables

Variable declarations consist of a list of identifiers denoting the new variables,
followed by their type.

{variable declaration) ::= {identifier) {, {(identifier)}*: (type)
Two standard file variables can be assumed to be predeclared as
input, output: file of char

The file input is restricted to input mode (reading only), and the file output is
restricted to output mode (writing only). A Pascal program should be regarded
as a procedure with these two variables as formal parameters. The corresponding

131

132 Niklaus Wirth

actual parameters are expected either to be the standard input and output media
of the computer installation, or to be specifyable in the system command activating
the Pascal system.

Examples:
x,y,2: real
u, v: Complex
1,1: inieger
k: 0.9
$, g: Boolean
operator: (plus, times, absval)
a: array[0..63] of real
b: array [Color, Boolean] of
record occurrence: integer;
appeal: real
end
c: Color
f: file of Card
huel, hue2: powerset Color
family: class 100 of Person
1, p2: Afamily
Denotations of variables either denote an entire variable or a component of a
variable.

{variable) ::= {entire variable} | (component variable)

7.1. Entire Variables

An entire variable is denoted by its identifier.
{entire variable) ::= (variable identifier)
{variable identifier) ::= (identifier)

7.2. Component Variables

A component of a variable is denoted by the denotation for the variable
followed by a selector specifying the component. The form of the selector depends
on the structuring type of the variable.

{component variable) ::= {indexed variable) | {field designator) |
{current file component | {referenced component)

7.2.1. Indexed Variables

A component of an n-dimensional array variable is denoted by the denotation
of the variable followed by # index expressions.

(indexed variable) ::= (array variable) [{expression) {, {expression)}*]

{array variable) ::= (variable)

Original Historic Documents 133

The types of the index expressions must correspond with the index types
declared in the definition of the array type.

Examples:

a[12]

ali+7)

b [red, true]

b [succ(c), paq)
11011

7.2.2. Field Designators

A component of a record variable is denoted by the denotation of the record
variable followed by the field identifier of the component.

{field designator) ::= (record variable). (field identifier)

{record variable) ::= (variable)

(field identifier) ::= (identifier)

Examples:

u.realpart

v .realpart

blred, true}. appeal
p2 4. size

7.2.3. Current File Components

At any time, only the one component determined by the curent file position
{or file pointer) is directly accessible.

{current file component ::= (file variable} ¢

(file variable) ::= (variable)

7.2.4. Referenced Components
Components of class variables are referenced by pointers.

(referenced component) ::= (pointer variable) 4
{pointer variable) ;::= (varable)

Thus, if 1 is a pointer variable which is bound to a class vaniable v, $I denotes
that variable and its pointer value, whereas $I+4 denotes the component of v
referenced by p1.

Examples:

pl4. father
P14, eldersibling t. youngestchild

134

Niklaus Wirth

8. Expressions

Expressions are constructs denoting rules of computation for obtaining values
of variables and generating new values by the application of operators. Expressions
consist of operands, i.e. variables and constants, operators, and functions.

The rules of composition specify operator precedences according to four classes
of operators. The operator 21 has the highest precedence, followed by the so-
called multiplying operators, then the so-called adding operators, and finally,
with the lowest precedence, the relational operators. Sequences of operators of
the same precedence are executed from left to right. These rules of precedence
are reflected by the following syntax:

(factor) ::= (variable) | (unsigned constant} | function designator) |
(set) | (Cexpression}) |7 (factor)

¢set) ::= [(expression) {, {expression)>}*] | []
{term) ::= (factor) | (term) {multiplying operator) (factor)
¢simple expression) ::= (term} |
{simple expression) (adding operator) (term} |
{adding operator) {term
{expression) ::= (simple expression} |
{simple expression {relational operator)
{simple expression)

Expressions which are members of a set must all be of the same type, which
is the base type of the set. [] denotes the empty set.

Examples:

Factors: x
15
(x+y+2)
sin(x +y)
[red, ¢, green)
np
Terms: x*y
i/(1—1)
Pag
(x=y)aly<2)
Simple expressions: x + y
—x
huel v hue2
£¥7 +1

Original Historic Documents

9.1.1. Assignment Statements

The assignment statement serves to replace the current value of a variable
by a new value indicated by an expression. The assignment operator symbol
is :=, pronounced as “becomes”.

{assignment statement) ::= (variable} := (expression) |
{function identifier) : = {expression)

The variable (or the function) and the expression must be must be of identical
type (but neither class nor file type), with the following exceptions permitted:

1. the type of the variable is real, and the type of the expression is infeger
or a subrange thereof.

2. the type of the expression is a subrange of the type of the variable.

Examples:
x:=y+25
b= (1=4) A (i < 100)
2= sgr (k) — ()
hue := [blue, succ(c)]

9.1.2. Procedure Statements

A procedure statement serves to execute the procedure denoted by the pro-
cedure identifier. The procedure statement may contain a list of actual parameters
which are substituted in place of their corresponding formal parameters defined
in the procedure declaration (cf. 10). The correspondence is established by the
positions of the parameters in the lists of actual and formal parameters respec-
tively. There exist four kinds of parameters: variable-, constant-, procedure
parameters (the actual parameter is a procedure identifier), and function para-
meters (the actual parameter is a function identifier).

In the case of variable parameters, the actual parameter must be a variable.
If it is a variable denoting a component of a structured variable, the selector
is evaluated when the substitution takes place, i.e. before the execution of the
procedure. If the parameter is a constant parameter, then the corresponding
actual parameter must be an expression.

{procedure statement ::= (procedure identifier) |
{procedure identifier) ({actual parameter)
{,<actual parameter)}*)
{procedure identifier) ::= (identifier)
{actual parameter) ::= (expression) | {variable) |
{procedure identifier) | (function identifier)
Examples:
next
Transpose (a, n, m)
Bisect (sin, —1, +2, %, ¢)

135

136 Niklaus Wirth

9.1.3. Goto Statements

A goto statement serves to indicate that further processing should continue
at another part of the program text, namely at the place of the label. Labels
can be placed in front of statements being part of a compound statement (cf. 9.2.1.).

{goto statement) ::= goto (label)

(label} ::= (integer)
The following restriction holds concerning the applicability of labels:

The scope (cf. 10) of a label is the procedure declaration within which it
is defined. It is therefore not possible to jump into a procedure. .

9.2. Structured Statements

Structured statements are constructs composed of other statements which
have to be executed either in sequence (compound statement), conditionally
{conditional statements), or repeatedly (repetitive statements).

¢structured statement) ::= {compound statement | ;
{conditional statement) | (repetitive statement }|
{with statement)

9.2.1. Compound Statements

The compound statement specifies that its component statements are to be
executed in the same sequence as they are written. Each statement may be
preceded by a label which can be referenced by a goto statement (cf. 9.1.3.).

{compound statement) ::=
begin {component statement) {; (component statement}* end

{component statement) ::=
(statement) | (label definition) (statement

{label definition) ::= <label) :

Example:

begin:z:=2x; x:=y; y:=zend

9.2.2. Conditional Statements

A conditional statement selects for execution a single one of its component
statements.

{conditional statement) ::= if statement) | {case statement)

9.2.2.1. If Statements

The if statement specifies that a statement be executed only if a certain
condition (Boolean expression) is ¢rue. If it is false, then either no statement is
to be executed, or the statement following the symbol else is to be executed.

(if statement) ::= if (expression) then (statement) |
if (expression) then (statement) else (statement)

The expression between the symbols if and then must be of type Boolean.

Original Historic Documents

Note: The syntactic ambiguity arising from the construct

if (expression—1) then if {expression—23 then (statement—1)
else (statement—2)

is resolved by interpreting the construct as equivalent to

if (expression—1) then
begin if (expression—2) then (statement—1) else (statement--2)
end

Examples:

ifx<<t5thenz:=x+yelsez:=1.5
if p = nil then p:= 4. father

9.2.2.2. Case Statements

The case statement consists of an expression (the selector) and a list of state-
ments, each being labeled by a constant of the type of the selector. It specifies
that the one statement be executed whose label is equal to the current value of
the selector.

{case statement) ::= case {expression) of
{case list element) {; {case list element)}* end
(case list element ::= {(case label}:}® {statement) | {{case label}:}®

Example:
case operator of
plus: zx:i==x-+ty;
times: x:i=x*y;
absval: if x<Othen x:= —x
end

9.2.3. Repetitive Statements

Repetitive statements specify that certain statements are to be executed
repeatedly. If the number of repetitions is known beforehand, i.e. before the
repetitions are started, the for statement is the appropriate construct to express
this situation; otherwise the while or repeat statement should be used.

{repetitive statement) ::= {while statement} |
(repeat statement) | (for statement)

9.2.3.1. While Statements

{while statement) ::= while (expression) do (statement}
The expression controlling repetition must be of type Boolean. The statement is
repeatedly executed until the expression becomes false. If its value is false at
the beginning, the statement is not executed at all. The while statement

whilesdo S

137

138 Niklaus Wirth

is equivalent to

if ¢ then
begin S;
whilecdo S
end

Examples:

while (a[i}+x)ali<n)doi:=7+1
while : >0 do
begin if odd (i) then z:= z* x;
1:=1 div 2;
x 1= sgr(x)
end

9.2.3.2. Repeat Statements

(repeat statement) ::=
repeat (statement) {; (statement)}* until {expression}

The expression controlling repetition must be of type Boolean. The sequence of
statements between the symbols repeat and until is repeatedly (and at least
once) executed until the expression becomes frue. The repeat statement

repeat S until ¢
is equivalent to

begin S;
if 7 ¢ then
repeat S until ¢
end

Examples:

repeat 2:=1i mod j;
1i=71;
ji=k

until =0

repeat get(f)
until ({4 =a) v eof (f)

9.2.3.3. For Statements

The for statement indicates that a statement is to be repeatedly executed
while a progression of values is assigned to a variable which is called the conirol
variable of the for statement.

(for statement) ::= for {control variable) : = {for list> do {statement)
(for list) ::= (initial value) to (final value) |
{initial value) downto (final value)

Original Historic Documents

{control variable) ::= (identifier)

(initial value) ::= {expression)

(final value) ::= ({expression}
The control variable, the initial value, and the final value must be of the same
scalar type (or subrange thereof).

A for statement of the form

forvi=celtoe2do S
is equivalent to the statement

if e1<¢2 then
begin v:=¢l; S;
for v:=succ(v) to e2 do S
end
and a for statement of the form
for v:=cl downto c2do S
is equivalent to the statement
if el = ¢2 then
beginv:=¢I; S;
for v:= pred (v) downto ¢2 do S
end

Note: The repeated statement S must alter neither the value of the control
variable nor the final value.

Examples:

for i:= 2 to 100 do if a[¢] > max then max:= a[i]
fori:=1tondo
forj:=1 to n do

begin x:=0;
fork:=1tondo x:==x+tafs, K]*b[k, 7];
cli,fli=x

end

for ¢ := red to blue do try(c)

9.2.4. With Statements
{with statement) ::= with (record variable) do {statement)

Within the component statement of the with statement, the components (fields)
of the record varable specified by the with clause can be denoted by their field
identifier only, i.e. without preceding them with the denotation of the entire
record variable. The with clause effectively opens the scope containing the field
identifiers of the specified record variable, so that the field identifiers may occur
as variable identifiers.

139

140 Niklaus Wirth

Example:

with date do
begin
if month= 12 then
begin month :=1; year := year +1
end else month := month +1
end

This statement is equivalent to

begin
if date.month=12 then
begin date.month :=1; date.year := date . year +1
end else date . month .= date . month + 1

end '

10. Procedure Declarations
Procedure declarations serve to define parts of programs and to associate
identifiers with them so that they can be activated by procedure statements.
A procedure declaration consists of the following parts, any of which, except
the first and the last, may be empty:

{procedure declaration) ::=
{procedure heading)
{constant definition part) (type definition part)
{variable declaration part)
{procedure and function declaration part) (statement part)

The procedure heading specifies the identifier naming the procedure and the
formal parameter identifiers (if any). The parameters are either constant-,
variable, procedure-, or function parameters (cf. also 9.1.2.).

{procedure heading) ::= procedure {identifier) ; |
procedure (identifier) ((formal parameter section)
{; {formal parameter section)}*);
{formal parameter section) ::=
{parameter group) |
const (parameter group) {; {parameter group)}* |
var (parameter group) {;(parameter group)}* |
function (parameter group) |
procedure {identifier) {, (identifier)}*
{parameter group) ::= (identifier) {, (identifier>}*: {type identifier)

A parameter group without preceding specifier implies constant parameters.
The constant definition part contains all constant synonym definitions local
to the procedure.
{constant definition part) ::= {empty) |
const {constant definition) {,{constant definition)}*;

Original Historic Documents

The type definition part contains all type definitions which are local to the
procedure declaration.

(type definition part) ::= {empty) |
type (type definition) {; (type definition>}*;

The variable declaration part contains all variable declarations local to the
procedure declaration.

{variable declaration part) ::= {empty) |
var (variable declaration) {; (variable declaration)}*;

The procedure and function declaration part contains all procedure and function
declarations local to the procedure declaration.

{procedure and function declaration part) ::=

{ {procedure or function declaration) ;}*
{procedure or function declaration) ::=

(procedure declaration) | <function declaration)

The statement part specifies the algorithmic actions to be executed upon an
activation of the procedure by a procedure statement.

{statement part) ::= {(compound statement)

All identifiers introduced in the formal parameter part, the constant definition
part, the type definition part, the variable-, procedure or function declaration
parts are local to the procedure declaration which is called the scope of these
identifiers. They are not known outside their scope. In the case of local variables,
their values are undefined at the beginning of the statement part.

The use of the procedure identifier in a procedure statement within its
declaration implies recursive execution of the procedure.

Examples of procedure declarations:

procedure readinfeger (var x: integer);
var i, §: inleger;

begin i:=0;
while (inputt =0°) A (input+ <'9’) do
begin §:= int(inputt) —int(‘0’);

1:=1*1047;
get (inpul)
end;
xi=1
end

procedure Bisect (function f: real; const low, high: real;
var, zero: real; p: Boolean);
var a, b, m: real;

begin a:= low; b:= high;
if (f(a) = 0) v (/(b) = 0) then p := false else

141

142 Niklaus Wirth

begin p:= true;
while abs(a —b) > ¢ps do
begin m := (a 1 3)/2;
iff(mj>0thenb:=melsea:=m
end;
zer0:=a
- end
end

procedure GCD (m, n: integer; var, x, y, 2: integer); {m=0, n>0}
var al, a2, b1, b2, ¢, d, q, r: integer;
begin{Greatest Common Divisor x of m and #,
Extended Euclid’s Algorithm, cf. [4], p. 14}
ci=m; d:=mn,
al:=0; a2:=1; bl:=1; b2:=0;
while 4=-0 do
begin{al*m + bl*n=4d, a2%m 4 n2%n=c,
ged (c, d) =ged (m, n)}
g:=cdivd; r:=cmod d;
{e=g*d +7, ged(d, r) = ged (m, n)}
a2:= a2 —qg*al; b2:= b2 — q*bl;
{a2%m + b2*n =7, al*m + b1*n =d}
c:=d; d:=7r;
ri=al; al:=a2; a2:=r;
ri=0bl; bl:=0b82;, b2:=r7r;
{al*m + bI*n=d, a2*m + b2*n =c,
ged (e, d) =ged (m, n)}
end;
{ged (¢, 0) = c = ged (m, n)}
xi=c¢c; yi=a2; z:=102
{x=gcd(m, n), y*m + z%n = ged (m, n)}
end

10.1. Standard Procedures

Standard procedures are supposed to be predeclared in every implementation
of Pascal. Any implementation may feature additional predeclared procedures.
Since they are, as all standard quantities, assumed as declared in a scope sur-
rounding the Pascal program, no conflict arises form a declaration redefining
the same identifier within the program. The standard procedures are listed and
explained below.

10.1.1. File Positioning Procedures

put(f) advances the file pointer of file f to the next file component. It is
only applicable, if the file is either in the output or in the neutral
mode. The file is put into the output mode.

Original Historic Documents

get(f) advances the file pointer of file / to the next file component. It is
only applicable, if the file is either in the input or in the neutral mode.
If there does not exist a next file component, the end-of-file condition
arises, the value of the variable denoted by f4 becomes undefined, and
the file is put into the neutral mode.

reset(f) the file pointer of file } is reset to its beginning, and the file is put
into the neutral mode.

10.1.2. Class Component Allocation Procedure

alloc(p) allocates a new component in the class to which the pointer variable p
is bound, and assigns the pointer designating the new component to .
If the component type is a record type with variants, the form

alloc(p,t) can be used to allocate a component of the variant whose tag field
value is 2. However, this allocation does not imply an assignment to
the tag field. If the class is already compleately allocated, the value
nil will be assigned to 2.

10.4.3. Data Transfer Procedures

Assuming that a is a character array variable, z is an alfa variable, and 7 is
an integer expression, then

pack(a, i,2z) packs the n characters a[z] ... a[¢ +n —1] into the alfa variable 2
(for z cf. 6.1.4.), and

unpack(z, a, +) unpacks the alfa value z into the variables a(7]...a[s +7n—1].

11. Function Declarations

Function declarations serve to define parts of the program which compute a
scalar value or a pointer value. Functions are activated by the evaluation of a
function designator (cf. 8.2) which is a constituent of an expression. A function
declaration consists of the following parts, any of which, except the first and
the last, may be empty (cf. also 10.).

{function declaration) ::=
{function heading)
{constant definition part) (type definition part)
{variable declaration part)
(procedure and function declaration part) {(statement part)

The function heading specifies the identifier naming the function, the formal
parameters of the function (note that there must be at least one parameter),
and the type of the (result of the) function.

(function heading ::= function (identifier) {{formal parameter section)
{; {formal parameter section)}*) : {result type);

(result type) ::= (type identifier)

143

144 Niklaus Wirth

The type of the function must be a scalar or a subrange type or a pointer type.
Within the function declaration there must be at least one assignment statement
assigning a value to the function identifier. This assignment determines the
result of the function. Occurrence of the function identifier in a function designator
within its declaration implies recursive execution of the function. Within the
statement part no assignment must occur to any variable which is not local to
the function. This rule also excludes assignments to parameters.

Examples:

function Sgrt(x: real): real;
var x0, x1: real;

begin x1:=x; {x>1, Newton’s method}
repeat x0:= x1; xI:= (x0+ x/x0)*0.5

{02 —2*x1*x0 + x =0}

until abs (21 — x0) < eps;
{ (%0 —eps) < x1< (20 + eps),
(v —2*eps*x0) < x0° < (x + 2*eps*x0) }
Sgrt:= 20

end

function Max(a: vector; n: integer): real;
var x: real; i:integer;
begin x:=a[1];
fori:=2to#n do
begin {x=max(a, ... a;_,)}
if x<a[i] then x:=a[7]
{x=max(a;...a)}

end;
{x=max(a,...a,)}
Max:= =z

end

function GCD (m, n: integer): integer;
begin if n =0 then GCD := m else GCD := GCD (n, m mod n)
end

function Power (x: real; y: integer): real; {y =0}
var w, z: real; 1: integer;
beginw:=1zx; z:=1; i:=y;
while 1=0 do
begin {s*v' = x7}
if 0dd (i) then z .= 2*w;
i :=1{div2; {*w¥=x"}
wi=sqr(w) {z*w*=2"}
end;
{‘i =0, z= x"}
Power: = z
end

Original Historic Documents

11.1. Standard Functions

Standard functions are supposed to be predeclared in every implementation
of Pascal. Any implementation may feature additional predeclared functions
(cf. also 10.1.).

The standard functions are listed and explained below:

11.1.1. Arithmetic Functions

abs(x) computes the absolute value of x. The type of x must be either real
or integer, and the type of the result is the type of x.

sqr(x) computes x2. The type of x must be either real or infeger, and the
type of the result is the type of x.

stn (x)

cos (%)

exp(x) |the type of x must be either real or integer, and the type of the result

In(x) is real

sqrt tx)
arctan (x)

11.1.2. Predicates
odd (x) the type of x must be infeger, and the result is x mod 2 =1
eof {f) indicates, whether the file f is in the end-of-file status.

11.1.3. Transfer Functions

trunc(x) x must be of type real, and the result is of type inieger,
such that abs(x) —1 << trunc (abs (x)) < abs (%)

1t (x) x must be of type char, and the result (of type integer) is the ordinal
number of the character x in the defined character set.

chr (%) % must be of type integer, and the result (of {ype char) is the character
whose ordinal number is x.

14.1.4. Further Standard Functions

succ(x) x is of any scalar or subrange type, and the result is the successor
value of x (if it exists).

pred(x) x is of any scalar or subrange type, and the result is the predecessor
value of x (if it exists).

12. Programs

A Pascal program has the form of a procedure declaration without heading
(cf. also 7.4.).

{program} ::= {constant definition part) {type definition part}
{variable declaration part)
{procedure and function declaration part) (statement part}.

145

146

Niklaus Wirth

13, Pascal 6000

The version of the language Pascal which is processed by its implementation
on the CDC 6000 series of computers is described by a number of amendments
to the preceding Pascal language definition. The amendments specify extensions
and restrictions and give precise definitions of certain standard data types. The
section numbers used hereafter refer to the corresponding sections of the language
definition.

3. Vocabulary

Only capital letters are available in the basic vocabulary of symbols. The
symbol eol is added to the vocabulary. Symbols which consist of a sequence
of underlined letters are called word-delimiters. They are written in Pascal 6000
without underlining and without any surrounding escape characters. Blanks or
end-of-lines may be inserted anywhere except within :=, word-delimiters, iden-
tifiers, and numbers. The symbol ,, is written as ’.

4. Identifiers

Only the 10 first symbols of an identifier are significant. Identifiers not
differing in the 10 first symbols are considered as equal. Word-delimiters must
not be used as identifiers. At least one blank space must be inserted between
any two word-delimiters or between a word-delimiter and an adjacent identifier.

6. Data Types
6.1.1. Standard Scalar Types
integer is defined as
type infeger = —2% +-1..2% —1
real is defined according to the CDC 6000 floating point format specifications.
Arithmetic operations on real type values imply rounding.
char is defined by the CDC 6000 display code character set. This set is in-
cremented by the character denoted by eol, signifying end-of-line.

The ordered set is:

eol A B C D E F G H I
J K L M N O P @ R S
T U Vw X Y Z o0 1 2
3 4 5 6 7 8 9 + — =
[)y 8 = uv , . "]
] = { v A ¢t } < >
= S

= ’

(Note that the characters * { } are special features on the printers of the
ETH installation, and correspond to the characters = " { at standard
CDC systems.)

alfa the number # of characters packed into an alfa value is 10 (cf. 6.1.1.).

Original Historic Documents

6.2.3. Powerset Types
The base type of a powerset type must be either

1. a scalar type with less than 60 values, or

2. a subrange of the type infeger, with a minimum element min(7T) =0 and
a maximum element max(T) <59, or

3. a subrange of the type char with the maximum element max(T) <‘>’.

6.2.4. and 6.2.5. File and Class Types
No component of any structured type can be of a file type or of a class type.

7. Vanable Declarations

File variables declared in the main program may be restricted to either input
or output mode by appending the specifiers

[tn] or [owt]

to the file identifier in its declaration. Files restricted to input mode (input files)
are expected to be Permanent Files attached to the job by the SCOPE Attach
command, and files restricted to output mode may be catalogued as Permanent
Files by the SCOPE Catalog command. In both commands, the file identifier is
to be used as the Logical File Name [5].

10. and 11. Procedure and Function Declarations

A procedure or a function which contains local file declarations must not be
activated recursively.

14. Glossary
actual parameter 9.1.2. field identifier 7.2.2.
adding operator 8.1.3. field list 6.2.2.
array type 6.2.1. file type 6.2.4.
array variable 7.2.1. file variable 7.2.3.
assignment statement 9.1.1. final value 9.2.3.3.
case label 6.2.2. fixed part 6.2.2.
case list element 9.2.2.2. for list 9.2.3.3.
case statement 9.2.2.2. for statement 9.2.3.3.
class type 6.2.5. formal parameter
class variable 6.2.6. section 10.
component statement 9.2.1. function declaration 11.
component type 6.2.1. function designator 8.2
component variable 7.2 function heading 11.
compound statement 9.2.1. function identifier 8.2.
conditional statement 9.2.2. goto statement 9.1.3.
constant 5. identifier 4.
constant definition 5. if statement 0.2.2.1.
constant definition part 10. index type 6.2.1.
control variable 9.2.3.3. indexed variable 7.2.1.
current file component 7.2.3. initial value 9.2.3.3.
digit 3. integer 4.
entire variable 7.4. label 9.1.3.
expression 8. label definition 9.2.1.
factor 8 letter 3.

field designator 7.2.2. letter or digit 4,

147

Niklaus Wirth

maxnum

multiplying operator

number

parameter group

pointer type

pointer variable

powerset type

procedure and function
declaration part

procedure declaration

procedure heading

procedure identifier

procedure or function
declaration

procedure statement

program

real number

record section

record type

record variable

referenced component

relational operator

repeat statement

repetitive statement

result type

6.2.5.
8.1.2.
4.

10.
6.2.6.
7.2.4.
6.2.3.

10.
10.
10.
9.1.2.

10.
9.1.2.
12,

4.
6.2.2.
6.2.2.
7.2.2.
7.2.4.
8.1.4.
9.2.3.2.
9.2.3.
11.

scalar type

scale factor

set

sign

simple expression
simple statement
special symbol
statement
statement part
structured statement
tag field

term

type

type definition
type definition part
type identifier
unsigned constant
variable

variable declaration

variable declaration part

variable identifier
variant

variant part

with statement
while statement

-

W (GO R) 3 o @9 o o)
o

oo =
L e
1)

NSt N OV O OO
Bt B) B SN 6

10.

7.1.
6.2.2.
6.2.2.
9.2.4.
9.2.3.1.

The author gratefully acknowledges his indeptedness to C. A. R. Hoare for his many
valuable suggestions concerning overall design strategy as well as details, and for his
critical scrutiny of this paper.

References

1. Naur, P.: Report on the algorithmic language Aicor 60. Comm ACM 3, 299-314

(1960).

w N

(Y0 8

60189400.

. Report on Subset ArcoL 60 (IFIP): Comm. ACM 7, 626—628 (1964).

. Wirth, N., Hoare, C. A. R.: A contribution to the development of Argor. Comm.
ACM 9, 413432 (1966).

. Knuth, D. E.: The art of computer programming, Vol. 1. Addison-Wesley 1968.

. Control Data 6000 Computer Systems, SCOPE Reference Manual, Pub. No.

Prof. Dr. N. Wirth

Eidgendssische Technische Hochschule
Fachgruppe Computer-Wissenschaften

ClausiusstraBe §5
CH-8006 Ziirich
Schweiz

