Reliability in real-time: Why
strong-typed programming
languages matter

O
®
O
-
Q.
Q)
<

Contents

m: 00—First-hand experience & personal background

ml 01—X0/2, an RTOS based on the programming language Oberon
i 02—Deployment examples, applications in the embedded world
ml (03—Case-study: Robotics@Expo.02

m: 04 —Final remarks, wishes, hopes

m: OA—Appendix

00 First-hand

experience
& personal
background

eoueuedxﬂ

mE 1984 - 1990: The early years
ml Commodore 64, basic, “GOTO” to be considered harmful [Dijkstra]

mi Pascal, compiler, epiphany: Indentation = poetry

o
n
D
=.
D
-
O
(>

mi Wirth N., Jensen K., Pascal: User Manual and Report
mr 1990 - 1996: Dept. Informatik, ETH Zirich, Computer science

mr Oberon language used for teaching basic computer science courses, system
software, compiler construction, electronics (FPGA programming, LOLA),
semester- and diploma-thesis

mi Internship at Ubilab: C++, Java
mE 1996 - 2001: Institute of Robotics, ETH Zurich, Ph.D.

mi Assistantship, research

mi Robotics (mechatronics) = Computer science + Electronics + Mechanics

o
n
D
=.
D
-
O
(>

mi Robotics = Cool, cult-status among students (physics and maths, t00)

mr Result: Huge student audience, lousy programmers ;)

How can we harness student man-power without undermining research and
industry projects?

o
n
D
=.
D
-
O
(>

How can we let non-programmers quickly grasp the tools they need?
How can we let non-CS engineers focus on the problem to be solved?

How can | marry research topic with the assistantship duties?

"(" [FP5ection {":" FPSection}] ")" [":" Qualident].

[VAR] ident {"," ident} ":" Type.

"I" [WaR] ident ™" ident)",

Qualident

AREAY [ConstExpr{"," ConstExpr}] OF Type

RECORD ["("Qualident")"] FieldList {":" FieldList} EMD

POINTER TO Type

FECCEDURE [FormalFPars],

[IdentList ":" Twpel.

Statement {"i" Statement].

[Designator ":=" Expr

Designatar ["(" [ExperList] ")"]

IF Expr THEM StatementSeq {EL5IF Expr THEM StatementSeq} [ELSE Statement!
CASE Expr OF Case {"|" Case} [ELSE StatementSeq] END

WHILE Ewpr DO Statementieq END

FEFEAT “tatementieq UMTIL Expr

FOFR ident ":=" Expr T2 Expr [BY ConstExpr] DO StatementSeq EMD
LOOF Statementheq EMD

WITH Guard DO StatementSeq {"|" Guard DO StatementSeq) [ELSE Statement
ExIT

RETURM [Expr]

1.
= [Caselabels{"," CaseLabels} ":" StatementSeq].

K
n
D
=.
D
-
O
(>

Oberon-2 syntax (EBNF, Excerpt)

Appendix B: Syntax of Oberon

module
ImpaortList
Declzeq
ConstDecl
Typelec
VarDecl
ProcDecl
Foreeard Decl
FormalFars
FPSectian
Receiver

Twpe

FieldList
statementieq
statement

Case
CaseLabels
Guard
ConstExpr
Expr
SimpleExpr
Term
Factor

set
Element
Eelation
AddCp
A
Designator
ExprList
IdentList
Cualident
IdentDef

MZDULE ident *;" [Importlist] Decl5eq [BEECIM StatementSeq] EMD ident ".",
WPORT [ident ":="] ident {"," [ident ":="] ident} ";".

{ CONST {ConstDec! ";" } | TYPE {TwpeDecl ";"} | WAR {VarDecl ";"}} {ProcDecl ;" | ForwardDecl ";"}

IdentDref "=" ConstEx=pr.
IdentDef "=" Type.
IdentList ":" Type.

FROCEDURE [Receiver] IdentDef [FormalPars] ;" DeclSeq [BEGIM Statement5eq] EMD ident.

FROCEDURE "+" [Receiver] IdentDef [FormalFars].

" [FF=ection {";" FRsection] " [*:* Qualident].

[VAR] ident{"," ident} " Type,

" [waR] ident " ident "),

Qualident

ARRAY [ConstExpr " ConstExprl] OF Type

RECORD ["{"Qualident™"] FieldList {";" FieldList} EMD

FOINTER TO Type

FROCEDURE [FormalFPars].

[IdentList ":" Type].

statement {*;" statementh,
[Designatar ":=" Expr

Cesignator ["(" [ExprList] "3"]

IF Expr THEM StatementSeq {ELSIF Expr THEN StatementSeq} [ELSE Statementseq] EMD
CASE Expr OF Case {"|" Case} [ELSE Statementseq] EMD

WWHILE Expr DO Statementieq EMD

REFEAT Statementieq UNTIL Expr

FOR ident ":=" Expr TO Expr [BY ConstExpr] DO Statementieq EMD
LOOF tatementieq EMD

WATH Guard DO StatementSeq {"[" Guard OO StatementSeq) [ELSE StatementSeq] EMD
EXIT

FETURM [Expr]

[CaseLabels{"," Caselabels} ":" Statementeq].
ConstExpr [".." ConstE=pr].

Qualident ":" Qualident.

Expr.

SimpleExpr [Relation SimpleExpr],

["+" | "="] Term {Add Op Term},

Factor {AulCp Factor),

Designator ["(" [ExprList] *3"] | number | character | string | MIL | Set | (" Expr)" | " ~ " Factor.

"I [Element {"," Element] "}".

Expr [".." Expr].

L I L B B B B I T

"4 M-t | OR,

|| DI MDD | ME"

Cualident {"." ident | "[* ExprList"]" | "+ " | "{" Qualident ")"]}.
Expr{"," Exprl}.

IdentDef {"," |dentDef},

[ident "."] ident.

ident [* =" | "-"].

Oberon-2 syntax (EBNF, Full)

K
n
D
-
D
-
O
(>

0

1 X0O/2, an RTOS
pbased on the
programming
language
Oberon

0%

XO/2

HEAL-TIME oS

XO/2 real-time operating system

0%

Features

Written in the Oberon-2, type-safe, object-oriented programming language
Deadline-driven scheduler with admission testing

High frequency RT-scheduler (10 KHz) with 0.5% overhead on PowerPC 604@300MHz
Full MMU support with paging on light-weight threads

Real-time, incremental garbage collector with zero memory requirement during traversal
Safe dynamic linking-loading and unloading

WCET estimator, by means of PM data

Oberon language
mr The choice was not an afterthought, rather central to the safety concepts

mr Easy to learn (students) and to write a compiler for (system programmers)
mi Powerful enough for imperative, modular, object- or component-oriented programming
mr One of the few languages that mandates:

mr Typing information verified at compile- and run-time

mr Module’s interfaces, dynamically checked against at compile- and linking-time

mr Automatic memory reclamation (garbage collection)

Deadline-driven scheduler
mr No user-definable interrupts

mi Each real-time task is installed by duration, deadline, period
Wl Scheduler tests timing constraints at admission time

mr Scheduler monitors timing constraints at run-time

Real-time compatible dynamic memory
reclamation (garbage collection)

mr Heavily modified mark-and-sweep
mi Deterministic penalty on memory access (compiler emitted code)
mi Full heap-traversal without tasks-interruption

mr Full heap-traversal without memory-requirements

Worst-case execution time (WCET) approximation

mr High-performance processor architectures are non-deterministic (timing requirements)
mr Deep pipelines, super-scalarity, branch-prediction, deep caches, etc.
mr Object-oriented programming introduces late-binding
mI Pre-emption introduces non-foreseeable delays
mr XO/2 WCET estimate
mi Compiler annotations
mr Run with performance monitoring hardware (event counters)
mr Compile with RT-statistics yields estimate

ml Estimate: -5% < worst-case < +10%

End-user restrictions

No untyped memory accesses

No manual memory management
No software or hardware interrupts
Pedantic compiler

Bottom line: no cheating!

End-user benefits

These compile-time and run-time mechanisms, pervasive yet efficient, allow the system to
maintain a deus ex-machina knowledge about the running applications. The application

programmer, relieved from many computer-science issues, can better focus his attention to
the actual problem to be solved.

0

2 Deployment
examples,

applications In
the embedded
world

0%

ExmB_o_mm

LOTraffic

LOTraffic

traffic-observer Typ L
S-Nr. 0303004
230V 50Hz / 24vDC 160W / FA B8.3AT

ces ag

amsmnmlmba alastramis austfames

sc—ndwexﬂ

%
0
3
j=
®
7

—
~—

Al
T—

. " iy ‘}h 4 b
. o .
_a' \;‘,\
;" a 'c . b - -
4 T,
g ‘

In-vivo measurement of human tissues

Meyco RobodJet

The Robodet is an hydraulically actuated manipulator used in tunnelling construction work.
Its task consists of spraying liquid concrete on the walls of new tunnels using a jet as its
tool. The calculation of the redundant inverse kinematics and the closed-loop control of the

8 hydraulic actuators is performed by the control system in real-time.
(Photo courtesy Institute of Robotics, ETHZ & Meyco AG)

%<
0
3
j=
®
7

%
0
3
j=
®
7

Anzesthesia Control System

The Angesthesia Control System is a closed-loop automatic-control for hypnosis.
(Photo courtesy Automatic Control Laboratory, ETHZ)

%<
0
3
j=
®
7

MoPS: Mobile mail distribution system

The Mobile Mail Distribution System MoPS represented a milestone in the fields of
autonomous navigation and localisation. (Photo courtesy Institute of Robotics, ETHZ)

Further examples

SmartROB-Il: Mobile robotics development platform; Hexaglide: High-speed,
parallel milling machine; Inter/Milan: Low-cost, SCARA-type manipulator;
Pygmalion: Mobile robot for autonomous map-building.

%<
0
3
j=
®
7

Robotics@expo.02

03

Case-study:
Robotics@
expo.02

Apn}s-ose ﬂ

Apn)s-ase’e@’

Robotics@expo.02

Robotics@expo.02 was a very successful project presented at Expo.02—the
Swiss National Exhibition in Neuchatel. (Photo courtesy ASL, EPFL & BlueBotics AG)

Goals

Project had to convey the feeling of increasing closeness
between human and machine.

Visitors had to be able to interact with up to eleven
autonomous, freely navigating tour guide robots.

From design to deployment in 18 months.
Artistic experience coupled with 14 hours/day uptime.
(Most of the) project members had no strong CS-background.

Implemented, tested code base close to zero.

Apn)s-ase’e@’

Apn)s-ase’e@’

Two tasks, two groups /Navigation

mi Classical mobile robotics, real-time requirements
mr Mobile platform control (drivers, ...)
ml Localisation, navigation (math)
m: Obstacle avoidance (math)
mr Mission control (big FSM)
mi Deployed on an industrial, PowerPC-based platform

ml Software written in Oberon, on top of X0O/2

Apn)s-ase’e@’

Two tasks, two groups /Interaction
mI Robotics interaction

mr Peripheral control (drivers, ...)
mr Face recognition (math)
mi Voice output (libraries)
mI Interaction control (big FSM)
mi Deployed on an industrial, Intel-based platform

mi Software written in C/C++, on top of Microsoft Windows 2000

Variable Navigation Interaction
Team [persons] 4 6
Total work [man-years] 4 + 1 (re-use) 5
Micro-eng. [man-years] 1.5 3
Electronics-eng. [man-years] 1.5 + 0.5 (re-use) 1
CS-eng. [man-years] 1 + 0.5 (re-use) 1
Compile code [KB] 1376 1703

Robotics@expo.02: Groups breakdown

Apn}s-ase ﬂ

Run-time 13’313 h
Movement time 9’415 h
Travelled distance 3’316 km

Failures (total/critical/non-critical)

4’378 / 4’086 / 292

Critical SW failures (Interaction, Navigation)

3’216 / 694

Robotics@expo.02: Statistics

Apn}s-ose ﬂ

Interaction failures

Memory errors: Spurious pointer references; pointer arithmetic
overflows; arithmetic operations on non-initialised, null, or
invalid pointer; read/write operations through non-initialised or
null pointers; procedure calls through non-initialised, null or
invalid pointers; wrong type casting; array references out of
declared bounds and non-initialised array index. Furthermore,
memory leaks and dangling pointers have harmed the reliable
run-time of the application.

Others

Apn)s-ase’e@’

Apn)s-ase’e@’

Navigation failures

mr Lost situations: In some cases, the robots were unable to
determine their location and thus notified a lost situation.

mi Others: Deadline violations, out-of-memory conditions, etc.

Robotics@expo.02: Navigation Failures

Apn}s-ose ﬂ

Run-time 13’313 h
Movement time 9’415 h
Travelled distance 3’316 km

Failures (total/critical/non-critical)

4’378 / 4’086 / 292

Critical SW failures (Interaction, Navigation)

3’216/ 190

Robotics@expo.02: Statistics

Apn}s-ose ﬂ

Robotics@expo0.02: Interaction vs. Navigation failures

Apn}s-ose ﬂ

0

Final remarks,
wishes, hopes

P

Commenting the results

The expo.02 example is not definitive, non-scientific, informal.

That being said, all things being more or less equal, we have
16-times more failures in the interaction part.

Maybe it is the Intel x867 Or Windows? Or bad programmers
on one side only?

We argue the missing type-safety of C/C++ is the culprit.

suoisn

[]ouo @

May you have a strong(-typed) foundation

When facing a choice, choose strong-typing over loose-typing:
The time you spend in letting the compiler accept your code
will pay off at run-time!

When evaluating the penalties imposed by automatic memory

reclamation, think about debugging manual memory disposal:
No OOP without GC!

Guidelines are great (in theory) but are undermined by
schedules, laziness, the weakest-link in the programming
chain. It will not work!

Safety is not an afterthought!

Efficiency & semantics go hand-in-hand!

C
O
>
O

suoisn

Java is great!
mr Imitation is the sincerest form of flattery!
mI Some design decisions are weird:
mi Bytecode is bad: pCode, been there done that! (N. Wirth)

mr Assembly is not the best intermediate representation for
optimizing compilers (M. Franz)

mil OORP is not the silver bullet! (F.P. Brooks)
Wl Some design decisions are good:
mr Powerful, expressive interfaces

mi Exceptions

[]ouo @

suoisn

Dear Niklaus (Prof. Wirth)

m: For Oberon.next, | would like:
mr Programming by contract (Eiffel)
mi TRY-CATCH clauses (Java)
mi More expressive interfaces: ABSTRACT, FINAL, etc.

mi QObject finalization (orthogonal, unlike constructors)

[]ouo @

suoisn

I r
OA Appendix: %

Movies,
photos &
references

Deadline-driven scheduler
mi For synchronous periodic tasks

Analyse (T):

O
L®,
®
-
Q.

IF U>1 THEN RETURN “Not Admitted” END;
n

: | X
Y (1-D/T))C,

— i=1 .
ty, = maxiJD, ., O L

Deadline-driven scheduler
mi For hybrid (aperiodic, asynchronous) tasks

L = Synchronous busy period length ;
twae = min{t,, L};

max

S = LnJ {mT,+D,:m=0,1,...} ={e, ey, ..};
i=1
k=1;
WHILE ¢, <7, DO
IF h(ek) <e;, THEN RETURN “Not Admitted” END;
k=k+1
END;

RETURN “Admitted”

References

F.P. Brooks, "No Silver Bullet: Essence and Accidents of Software Engineering”,
Computer, Vol. 20, No. 4 (April 1987).

N. Wirth, “The Programming Language Oberon” (Revised Edition 1.10.90), Report
143, Nov. 1990.

C. Szyperski, “Insight Ethos: On Object Orientation in Operating Systems”, (PhD
thesis; Swiss Federal Institute of Technology (ETH Zurich), Diss. No. 9884). vdf
Hochschulverlag AG an der ETH Zlrich, Zurich, Switzerland, 1992.

J. v. Ronne, A. Hartmann, W. Amme, and M. Franz; “Efficient Online Optimization
by Utilizing Offline Analysis and the SafeTSA Representation”; in J. Powers and J.
T. Waldron (Eds.), Recent Advances in Java Technology: Theory, Application,
Implementation; Computer Science Press, Trinity College Dublin, Dublin, Ireland,
ISBN 0-9544145-0-0, pp. 233-241; November 2002.

R. Brega, “A Combination of System Software Techniques Aimed at Raising the
Run-Time Safety of Complex Mechatronic Applications”, Dissertation ETH Nr.
14513, Zlrich, 2002.

suoisn

[]ouo @

