
Reliability in real-time: Why
strong-typed programming
languages matter
Roberto Brega, LogObject AG
Oberon day @ CERN, March 10th 2004

Oberon day

Contents
00—First-hand experience & personal background

01—XO/2, an RTOS based on the programming language Oberon

02—Deployment examples, applications in the embedded world

03—Case-study: Robotics@Expo.02

04—Final remarks, wishes, hopes

0A—Appendix

Oberon day

First-hand
experience
& personal
background

00
Experience

1984 – 1990: The early years

Commodore 64, basic, “GOTO” to be considered harmful [Dijkstra]

Pascal, compiler, epiphany: Indentation = poetry

Wirth N., Jensen K., Pascal: User Manual and Report

1990 – 1996: Dept. Informatik, ETH Zürich, Computer science

Oberon language used for teaching basic computer science courses, system
software, compiler construction, electronics (FPGA programming, LOLA),
semester- and diploma-thesis

Internship at Ubilab: C++, Java

1996 – 2001: Institute of Robotics, ETH Zürich, Ph.D.

Assistantship, research

Experience

Robotics (mechatronics) = Computer science + Electronics + Mechanics

Robotics = Cool, cult-status among students (physics and maths, too)

Result: Huge student audience, lousy programmers ;)

Experience

How can we harness student man-power without undermining research and
industry projects?

How can we let non-programmers quickly grasp the tools they need?

How can we let non-CS engineers focus on the problem to be solved?

How can I marry research topic with the assistantship duties?

Experience

Oberon-2 syntax (EBNF, Excerpt)

Experience

Oberon-2 syntax (EBNF, Full)

Experience

XO/2, an RTOS
based on the
programming
l a n g u a g e
Oberon

01
XO

/2

XO
/2

XO/2 real-time operating system
XO/2 is an object-oriented, hard-real time system software and framework,
designed for safety, extensibility and abstraction. It takes care of many common
issues faced by programmers of mechatronic products.

Features
Written in the Oberon-2, type-safe, object-oriented programming language

Deadline-driven scheduler with admission testing

High frequency RT-scheduler (10 KHz) with 0.5% overhead on PowerPC 604@300MHz

Full MMU support with paging on light-weight threads

Real-time, incremental garbage collector with zero memory requirement during traversal

Safe dynamic linking-loading and unloading

WCET estimator, by means of PM data

XO
/2

Oberon language
The choice was not an afterthought, rather central to the safety concepts

Easy to learn (students) and to write a compiler for (system programmers)

Powerful enough for imperative, modular, object- or component-oriented programming

One of the few languages that mandates:

Typing information verified at compile- and run-time

Module’s interfaces, dynamically checked against at compile- and linking-time

Automatic memory reclamation (garbage collection)

XO
/2

No user-definable interrupts

Each real-time task is installed by duration, deadline, period

Scheduler tests timing constraints at admission time

Scheduler monitors timing constraints at run-time

Deadline-driven scheduler

XO
/2

Heavily modified mark-and-sweep

Deterministic penalty on memory access (compiler emitted code)

Full heap-traversal without tasks-interruption

Full heap-traversal without memory-requirements

Real-time compatible dynamic memory
reclamation (garbage collection)

XO
/2

High-performance processor architectures are non-deterministic (timing requirements)

Deep pipelines, super-scalarity, branch-prediction, deep caches, etc.

Object-oriented programming introduces late-binding

Pre-emption introduces non-foreseeable delays

XO/2 WCET estimate

Compiler annotations

Run with performance monitoring hardware (event counters)

Compile with RT-statistics yields estimate

Estimate: -5% < worst-case < +10%

Worst-case execution time (WCET) approximation

XO
/2

No untyped memory accesses

No manual memory management

No software or hardware interrupts

Pedantic compiler

Bottom line: no cheating!

End-user restrictions

XO
/2

These compile-time and run-time mechanisms, pervasive yet efficient, allow the system to
maintain a deus ex-machina knowledge about the running applications. The application
programmer, relieved from many computer-science issues, can better focus his attention to
the actual problem to be solved.

End-user benefits

XO
/2

Deployment
e x a m p l e s ,
applications in
the embedded
world

02
XO

/2

LOTraffic
LOTraffic is a sensor system aimed at pervasive traffic monitoring, control and
enforcement. It has been recently received government approval (METAS) for
speed ticketing. (Photo courtesy CES AG, Dübendorf)

Exam
ples

LOTraffic
LOTraffic is a sensor system aimed at pervasive traffic monitoring, control and
enforcement. It has been recently received government approval (METAS) for
speed ticketing. (Photo courtesy CES AG, Dübendorf)

Exam
ples

In-vivo measurement of human tissues
Laparoscopic instrument for the sampling elasto-mechanical properties of live
organs. In-vivo measurements on the human uterus have been performed during
regular hysterectomy interventions. (Photo courtesy Institute of Robotics, ETHZ)

Exam
ples

Meyco RoboJet
The RoboJet is an hydraulically actuated manipulator used in tunnelling construction work.
Its task consists of spraying liquid concrete on the walls of new tunnels using a jet as its
tool. The calculation of the redundant inverse kinematics and the closed-loop control of the
8 hydraulic actuators is performed by the control system in real-time.
(Photo courtesy Institute of Robotics, ETHZ & Meyco AG)

Exam
ples

Anæsthesia Control System
The Anæsthesia Control System is a closed-loop automatic-control for hypnosis.
(Photo courtesy Automatic Control Laboratory, ETHZ)

Exam
ples

MoPS: Mobile mail distribution system
The Mobile Mail Distribution System MoPS represented a milestone in the fields of
autonomous navigation and localisation. (Photo courtesy Institute of Robotics, ETHZ)

Exam
ples

Further examples
SmartROB-II: Mobile robotics development platform; Hexaglide: High-speed,
parallel milling machine; Inter/Milan: Low-cost, SCARA-type manipulator;
Pygmalion: Mobile robot for autonomous map-building.

Exam
ples

Robotics@expo.02
Photo courtesy ASL, EPFL & BlueBotics AG

Exam
ples

Case-study:
Robotics@
expo.02

03
Case-study

Robotics@expo.02
Robotics@expo.02 was a very successful project presented at Expo.02—the
Swiss National Exhibition in Neuchâtel. (Photo courtesy ASL, EPFL & BlueBotics AG)

Case-study

Goals
Project had to convey the feeling of increasing closeness
between human and machine.

Visitors had to be able to interact with up to eleven
autonomous, freely navigating tour guide robots.

From design to deployment in 18 months.

Artistic experience coupled with 14 hours/day uptime.

(Most of the) project members had no strong CS-background.

Implemented, tested code base close to zero.

Case-study

Two tasks, two groups /Navigation
Classical mobile robotics, real-time requirements

Mobile platform control (drivers, ...)

Localisation, navigation (math)

Obstacle avoidance (math)

Mission control (big FSM)

Deployed on an industrial, PowerPC-based platform

Software written in Oberon, on top of XO/2

Case-study

Two tasks, two groups /Interaction
Robotics interaction

Peripheral control (drivers, ...)

Face recognition (math)

Voice output (libraries)

Interaction control (big FSM)

Deployed on an industrial, Intel-based platform

Software written in C/C++, on top of Microsoft Windows 2000

Case-study

Variable Navigation Interaction

Team [persons] 4 6

Total work [man-years] 4 + 1 (re-use) 5

Micro-eng. [man-years] 1.5 3

Electronics-eng. [man-years] 1.5 + 0.5 (re-use) 1

CS-eng. [man-years] 1 + 0.5 (re-use) 1

Compile code [KB] 1376 1703

Robotics@expo.02: Groups breakdown

Case-study

Run-time 13’313 h

Movement time 9’415 h

Travelled distance 3’316 km

Failures (total/critical/non-critical) 4’378 / 4’086 / 292

Critical SW failures (Interaction, Navigation) 3’216 / 694

Robotics@expo.02: Statistics

Case-study

Interaction failures
Memory errors: Spurious pointer references; pointer arithmetic
overflows; arithmetic operations on non-initialised, null, or
invalid pointer; read/write operations through non-initialised or
null pointers; procedure calls through non-initialised, null or
invalid pointers; wrong type casting; array references out of
declared bounds and non-initialised array index. Furthermore,
memory leaks and dangling pointers have harmed the reliable
run-time of the application.

Others

Case-study

Navigation failures
Lost situations: In some cases, the robots were unable to
determine their location and thus notified a lost situation.

Others: Deadline violations, out-of-memory conditions, etc.

Case-study

Robotics@expo.02: Navigation Failures

Case-study

27%

73%

Lost situations Other software errors

Run-time 13’313 h

Movement time 9’415 h

Travelled distance 3’316 km

Failures (total/critical/non-critical) 4’378 / 4’086 / 292

Critical SW failures (Interaction, Navigation) 3’216 / 190

Robotics@expo.02: Statistics

Case-study

Robotics@expo.02: Interaction vs. Navigation failures

Case-study

6%

94%

Interaction Navigation

16x

Conclusions

Final remarks,
wishes, hopes04

Commenting the results
The expo.02 example is not definitive, non-scientific, informal.

That being said, all things being more or less equal, we have
16-times more failures in the interaction part.

Maybe it is the Intel x86? Or Windows? Or bad programmers
on one side only?

We argue the missing type-safety of C/C++ is the culprit.

Conclusions

May you have a strong(-typed) foundation

When facing a choice, choose strong-typing over loose-typing:
The time you spend in letting the compiler accept your code
will pay off at run-time!

When evaluating the penalties imposed by automatic memory
reclamation, think about debugging manual memory disposal:
No OOP without GC!

Guidelines are great (in theory) but are undermined by
schedules, laziness, the weakest-link in the programming
chain. It will not work!

Safety is not an afterthought!

Efficiency & semantics go hand-in-hand!

Conclusions

Java is great!

Imitation is the sincerest form of flattery!

Some design decisions are weird:

Bytecode is bad: pCode, been there done that! (N. Wirth)

Assembly is not the best intermediate representation for
optimizing compilers (M. Franz)

OOP is not the silver bullet! (F.P. Brooks)

Some design decisions are good:

Powerful, expressive interfaces

Exceptions

Conclusions

Dear Niklaus (Prof. Wirth)
For Oberon.next, I would like:

Programming by contract (Eiffel)

TRY-CATCH clauses (Java)

More expressive interfaces: ABSTRACT, FINAL, etc.

Object finalization (orthogonal, unlike constructors)

Conclusions

Appendix:
M o v i e s ,
photos &
references

0A
Appendix

For synchronous periodic tasks (Lyu, Lailand)

Deadline-driven scheduler

28 Chapter 3

3.5.2 Optimality on uni-processor systems
The optimality of the EDF pre-emptive scheduling algorithm was first
described for a set of synchronous periodic tasks by Liu and Layland [5],
whose paper is considered a milestone in the field of real-time scheduling:
Any synchronous periodic task set, with deadlines equal to their periods, is
feasibly scheduled by EDF if and only if the processor utilization is not
larger than 1, as described by the formula below:

(3–5)

Optimality is given by the fact that the condition is necessary for any algo-
rithm. The condition is also sufficient for feasibility under EDF scheduling.

The optimality (not the feasibility) result was later extended to asynchro-
nous periodic task sets, which for any i, by Labetoulle [20], where
is a relative deadline. Another important milestone is the proof of Dertouzos,
in which the optimality of the EDF policy is shown for tasks that have arbi-
trary release times, deadlines and execution times.

Theorem 3–1 The EDF algorithm is optimal in that if there exists any algo-
rithm that can build a valid (feasible) schedule on a single processor, then the
EDF algorithm also builds a valid (feasible) schedule.

Proof. By using a “time-slice swapping” technique it can be shown that any
valid schedule for the task set can be transformed into a valid EDF schedule.
In particular, by induction on , the transformation is shown for any interval

. The theorem is trivially true for . Assume now that it is true for
the interval , that a task’s instance with absolute deadline is executed
in the interval , and that the earliest deadline among all instances
pending at time t is . Let be the first time at which the instance with
deadline is executed after . By definition . Furthermore, since this is
a valid schedule, . It follows that by swapping the executions in the
intervals and a valid EDF schedule is obtained in the
interval .

What Theorem 3–1 shows is that the EDF policy theoretically dominates any
other in the field of real-time uni-processor scheduling. Its optimality makes it
the first choice for the design of a real-time scheduler.

U

U
Ci
T i
----- 1≤

i 1=

n

∑=

Di T i≤ Di

t
0 t,[) t 0=

0 t,[) d j
t t 1+,[)

di d j< t′
di t t t′<

t′ di d j< <
t t 1+,[) t′ t′ 1+,[)

0 t 1+,[)

Appendix

For hybrid (aperiodic, asynchronous) tasks

Deadline-driven scheduler

Fundamentals of EDF Scheduling 39

3.5.8 Feasibility analysis algorithm
A practical algorithm for assessing the feasibility of a hybrid task set can be
implemented by collecting the results described in the previous sections. The
algorithm, whose pseudo-code formulation is depicted in Figure 3–6, first
checks whether the processor utilization of the given task set is greater than .
If this is the case, according to Theorem 3–5, the task set is not feasibly sched-
ulable. Otherwise, the analysis continues by checking the condition of
Theorem 3–9, , on any interval , with limited by the minimum
among the three upper bounds previously defined. Only the values corre-
sponding to actual deadlines of the synchronous periodic arrival pattern are
taken into consideration.

Figure 3–6: Algorithm for the feasibility analysis of hybrid task sets

1

h t() t≤ 0 t,[) t

Analyse ():

IF THEN RETURN “Not Admitted” END;

;

;
;

;

;
WHILE DO

IF THEN RETURN “Not Admitted” END;

END;

RETURN “Admitted”

τ

U 1>

tA max Dmax

1 Di T i⁄–()Ci
i 1=

n

∑
1 U–---,

 
 
 
 
 
 
 

=

L Synchronous busy period length=
tmax min tA L,{ }=

S mTi Di : m 0 1 …, ,=+{ } e1 e2 ..., ,{ }=
i 1=

n
∪=

k 1=
ek tmax<

h ek() ek<

k k 1+=

Appendix

References

F.P. Brooks, "No Silver Bullet: Essence and Accidents of Software Engineering",
Computer, Vol. 20, No. 4 (April 1987).

N. Wirth, “The Programming Language Oberon” (Revised Edition 1.10.90), Report
143, Nov. 1990.

C. Szyperski, “Insight Ethos: On Object Orientation in Operating Systems”, (PhD
thesis; Swiss Federal Institute of Technology (ETH Zurich), Diss. No. 9884). vdf
Hochschulverlag AG an der ETH Zürich, Zurich, Switzerland, 1992.

J. v. Ronne, A. Hartmann, W. Amme, and M. Franz; “Efficient Online Optimization
by Utilizing Offline Analysis and the SafeTSA Representation”; in J. Powers and J.
T. Waldron (Eds.), Recent Advances in Java Technology: Theory, Application,
Implementation; Computer Science Press, Trinity College Dublin, Dublin, Ireland,
ISBN 0-9544145-0-0, pp. 233-241; November 2002.

R. Brega, “A Combination of System Software Techniques Aimed at Raising the
Run-Time Safety of Complex Mechatronic Applications”, Dissertation ETH Nr.
14513, Zürich, 2002.

Conclusions

