Developing Programs with
Blackbox Oberon

by

Brett S Hallett
(©2002

February 10, 2003

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

Contents

Preamble

1.1 Aquiring Blackbox Oberon
1.2 Other references
1.3 Blackbox Oberon Overview

Blackbox Oberon Standard Modules

2.1 Modules?
2.2 Standard Modules
2.2.1 Finding information about a MODULE

Extra Data Types Explained

3.1 Special Characters
3.2 Extra Data Types
3.21 Dateand Time
3.2.2 Currency variables o
3.3 Declaring Arrays
3.3.1 Example Arrays
3.3.2 Declaring an array of basic data type
3.3.3 Declaring an array of RECORD
3.3.4 Using a Multi-Dimensioned Array

Blackbox Oberon Text handling

4.3 The incompatable Text assignment error
4.3.1 Overcoming the incompatable Text assignment error
4.3.2 Declare your own Text data type
4.3.3 Use MODULE String procedures

4.4 Blackbox Oberon View Texts
4.4.1 Processing Blackbox Oberon View data
4.4.2 Processing Text data using TextMappers.Scanner

Standard Controls

5.1 Radio Buttons.
5.1.1 Example Output
5.1.2 Setting up a Radio Button

5.2 Check Box

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

11
11
12

13
13
14
14

17
17
20
20
22
24
24
25
26
27

29
29
29
31
31
31
32
35
35
38

http://www.fineprint.com

6 ComboBoxes 49

6.1
6.2
6.3
6.4

6.5
6.6
6.7

6.8
6.9
6.10

7 The
7.1
7.2

7.3
7.4
7.5

7.6

Comboboxs Example o 49
Settingupalist 50
Using Embedded Code to load List Controls 51
The Resources File 56
6.4.1 Resource Key e 26
Using SetResource to load List Controls 57
An example resources file Lo 61
Using a List, Selection or Combo Box to retrieve information 62
6.7.1 List Boxes 63
6.7.2 Selection Boxes 64
6.7.3 Combo Boxes 65
Dynamically loading a List, Selection or ComboBox 66
Example dropdown list form oL 67
Re-building a Dynamic list o o 68
MySQL Database 79
Introduction 79
Blackbox Oberon MySQL general features 80
7.2.1 Full access to SQL 80
7.2.2 Integration of MySQL with Blackbox Oberon 81
7.2.3 Extensibility 81
7.2.4 Separation of program logic and user interface 81
Aquiring MySQL 81
The MySQL Book 82
Installing and running MySQL oo 82
7.5.1 ODBC & MySQL 82
7.5.2 Create an MySQL database 85
7.5.3 Creating MySQL Tables 85
7.5.4 MySQL Script file to create the tables. 86
Databases, tables, and interactors L. 88
7.6.1 Databases verses Tables verses Fields. 89
7.6.2 Database 90
7.6.3 Database Status Response 91
7.6.4 Table Object 91
7.6.5 Readatablerow 92
7.6.6 Checking if a SQL statement executed successfully 93
7.6.7 Data Types Supported 94
7.6.8 BlackBox interface to SQL Code oL 95
7.6.9 Type Row 96
7.6.10 Blobs. 96
7.6.11 Asynchronous operation 97
7.6.12 ODBC driver (Windows only) 97
7.6.13 Displaying MySQL tables 97
7.6.14 Table control in its own Window 98
7.6.15 Table control ina form 98
7.6.16 The Table Notifier 99

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

7.6.17 Linked SQL Controls
7.7 Editing MySQL Table Entries
7.8 Designrules

8 The Report Generator : BxRepGen

9 ‘Karin’ a small Blackbox Oberon & MySQL system
9.1 The data collecting program
9.2 The report output
9.2.1 The report program code
9.2.2 The generated report program explained

10 Modal Form Execution
10.1 Snapshots of MODAL operation,
10.2 How was it done?
10.2.1 QuickQuote : Template Procedures

11 Programming with Recursion
11.1 Printing Cheque Value as Words,

12 Debugging Oberon Code
12.1 Trace Code e
12.2 ASSERT e

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

107

133
134
137
137
138

145
146
148
149

http://www.fineprint.com

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.2
8.3
8.4

Some useful Standard Oberon Modules 14
Display System Date & Time values, 20
Defining and accessing Currency Variables 23
Array A of CHAR Array Zof REAL, 24
Multi indexed array of INTEGER 25
Multi indexed array Of RECORD 26
Using a multi dimensioned array 27
Incompatible text assignmento 31
Overcoming incompatible text assignment 32
Using Module String to overcome assignment error 33
Copy a Oberon Document to ASCII TEXT File 38
Calculate Pulleys Program 41
CalcPulley Program 45
Example Calculate Pulleys Output 46
Demo Comboboxes 49
Declaring List Access 50
Load Lists from Imbedded Code 55
Load Lists using SetResources 60
Example List Box Usage 63
Example Selection Box Usage 64
Example Combobox Usage 65
Dynamic Reload of Dropdown List, 67
Dynamic Loading and Using ListBox 7
Oberon to Mysql database via ODBC, 80
Example Mysql ODBC alias setup 84
Summary of MySQL Statements (commands) 89
MySQL to Blackbox Oberon Data Type Conversion 94
Gui Form displaying MySQL 1 — > Many record relationship 102
Edit MySQL Table using ’side bar fields” 103
Code to Update / Delete selected MySQl Table Entry 104
BxRepGen - Show available Databases 107
BxRepGen - Show Tables in selected Database 108
BxRepGen - Describe Selected Table 109
BxRepGen - Display Selected Fields in Selected Table 110

PDF created with FinePrint pdfFactory Pro trial verdion http://www.fineprint.com

http://www.fineprint.com

8.5
8.6

9.1
9.2
9.3
9.4

10.1
10.2
10.3
10.4
10.5

11.1
11.2
11.3
114

12.1
12.2
12.3
12.4

BxRepGen - The Generated Report 111

The BxRepGen program 131
Karin : collecting the receipt data form 133
Karin : data collection program dissected 136
Karin : reporting the collected receipt data 137
Karin : report program dissected L 143
Showing two separate program executing (non-modal) 145
Before pressing | Create Template| Button L. 146
First form waits for user to fill in second form 147
Upon return from second form, after pressing button 147
Definition of Button 148
Calling Cheque Conversion Library, 153
Convert § value to text Words 153
The Cheque Conversion Module 158
Example recursion processing Lo 159
Debugging using Trace Code 162
Poor Trace Log of Date Conversion 163
Better Trace Log of Date Conversion 163
A better method of system date conversion 164

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

Chapter 1

Preamble

The Blackbox Oberon program is one of the modern programming systems that were developed
to encompass the programmer/developer needs in a using GUI interfaces, Reporting facilities,
Database access and reliable programming language in one development environment. Others
in this class include, Paradox, Delphi, Clarion, etc. Note however these products are not of the
"4GL’ class and, in general, they do not rely on pre-written solutions to achieve the desired end
user result, therefore you will be expected to write code!

Although Blackbox Oberon is a complete development environment , in the authors opinion
there is a lack of programmer level information about how to get involved with Blackbox Oberon
and how to go about using Blackbox Oberon in real development situations.

Indeed , why use Blackbox Oberon at all 7

This book is written from the perspective of a practicing programmer who while trying to
develop programs in Blackbox Oberon , found a lack of useful developer information in the
supplied documentation or the few other sources available. Mostly it is a discussion of what I've
tried. This book is more programmers notes than a reference manual. This is not to say that
the other information is not of a good quality, just delivered from a different perspective.t

The examples used are either full programs (modules) or extractions of code from actual
programs developed by the author using Blackbox Oberon . They may not be pretty but they
are real programs. With few exceptions all code shown and discussed have been compiled and
executed under Blackbox Oberon .2

'However I will say that the suppplied help facility is not very programmer friendly, it simply returns a index
to every reference to words entered, while powerful in its own right, is not very useful when trying to find out
how to call another GUI form, for example.

2Blackbox Oberon version 1.4 at the time of writing this book

PDF created with FinePrint pdfFactory Pro trial verdion http://www.fineprint.com

http://www.fineprint.com

10 CHAPTER 1. PREAMBLE

It should be pointed out that the author has no special knowledge of the internal workings of
Blackbox Oberon nor access to details other than that available in the normal released version or
information avaliable from the internet. Therefore, comments, observations and footnotes about
Blackbox Oberon , may be quite incorrect in the technical sense, but I can only write about what
I see and believe to be happening and what I would expect you to observe also if you attempt
the same task.?

Also I have not covered the complete Blackbox Oberon development product as I know there
are features that I have not used and probably will never use, indeed there are many features
(options) in the standard development menu(s) that I dont have a clue about what they are for!*

However, I think that this book will be very useful to ones enjoyment of using the Blackbox
Oberon System. I have programmed in too many languages (some 50+) over too many years
(since 1964) and have found that Blackbox Oberon is a pleasant environment to program in,
not perfect, but still a pleasure — good luck.’

Brett S Hallett
Golden Square
February 10, 2003

3in fact many of my observations maybe based on bulldust!

4this book will be updated as usege of such features emerge

Smy prefered GUI development language was Paradoz for Windows, but its development has ’gone off the
rails” since Borland dropped it in favour of Delphi, I still used it from time to time

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

1.1. AQUIRING BLACKBOX OBERON 11
1.1 Aquiring Blackbox Oberon

Blackbox Oberon is available by writing to :

Oberon Microsystems. Inc,
Technoparkstrasse 1
CH-8006 Zurich
Switzerland

or direct from their web site : www.oberon.ch

There are other versions of Oberon available®, the author has had no experence with those
and this book only refers to Blackbox Oberon . You will find them via a internet search.

1.2 Other references

The best available introduction to Blackbox Oberon and the Component Pascal Language is
the book ”Programming with Blackbox” by J. Stanley Warford available via the internet via
ftp:/ /ftp.pepperdine.edu/pub/compsci/prog-bbor/ . This covers much of Blackbox Oberon in
detail but does not cover many of the little bits of information that a programmer needs to
complete his/her task. His book is some 600 pages long in .pdf format for viewing/printing with
Acrobat Reader. (available free off the internet).

The book was created for the teaching of Blackbox Oberon and therefore digresses into some
programming theory,which I'm not concerned about here, however its interesting reading.

Also that book does not cover developing multi GUI Form systems or SQL databases at all.”

Swhich is a major problem in selecting a particular implimentation, I chose Blackbox Oberon as its well suited
to Windows development
"I'm particularly interested in using MySQL with Blackbox Oberon , hence this book

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

12 CHAPTER 1. PREAMBLE
1.3 Blackbox Oberon Overview

Blackbox Oberon offers the programmer/developer a development environment from which to
completely develop his/her program. The use of other external tools are generally not required
to achive the desired results, eg: a external GUI library is not required. Blackbox Oberon has
a fully integrated GUI tool kit from which one chooses components, or controls 8 to complete
the end-user forms with which they interact, an integrated text editor to write the Component
Pascal code, and various compile & execute options , all accessed from the Blackbox Oberon
gui. Unlike many such systems there is no difference from the end user GUI and the developer
GUI, they are one and the same. Indeed the final delivered end-user system is simply a standard
Blackbox Oberon with the developer components stripped out.

The Blackbox Oberon language (Component Pascal) is a development of Oberon-2, created
by Niklaus Wirth, and is similar to traditional Pascal in structure, although with significant
differences. Blackbox Oberon is a simpler, more refined language than Pascal in many ways,
but by no means less powerful?. The Oberon language is an attempt by N.Wirth to reduce
language complexity. '°

Blackbox Oberon is a general-purpose language implimenting programming features like,
block structure, modules, static typing (with strong type checking across modules), automatic
garbage collection, etc. Being general-purpose allows its usage across a wide variety of pro-
gramming tasks, unlike more specialised languages which eventually restrict their developement
usage. Too often the programmer has to call procedures written in another language, usually C
or Assembler,!! to complete the development.

8the word control is given to the gui fields placed by the programmer on a form, these fields have programmable
actions which control the manner in which the user interacts with that field

9however you may discover that many of your favourite features maybe missing, study the Blackbox Oberon
Langauge Report carefully for details

10Most languages tend to grow in complexity with every release, Delphi, Visual BASIC & Java being prime
examples.

this is not a comment on C or Assembler, just a comment on the chosen development environment

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

Chapter 2
Blackbox Oberon Standard Modules

2.1 Modules?

A major feature of the Oberon Language design (and therefore Blackbox Oberon) is the MOD-
ULE. Modules allow you to program small self contained collections of PROCEDURES, Con-
stants, Type declarations, and Variables and any Component Pascal Code necessary to initialize
those variables. Such a MODULE can be separately compiled and called when ever required by
the larger task.

At first glance MODULES are similar to SUBROUTINE LIBRARIES,! however MODULES
are a more secure technique of collection like PROCEDURES into functional groups, eg MOD-
ULE StdLog only has PROCEDURES relating to outputing on the Standard Log View of Black-
box Oberon , it does nothing else but those functions.

As you would expect Blackbox Oberon is supplied with a number of useful modules to ease
the programming task.

You only need to IMPORT the particular MODULE your current MODULE requires.

eg:

MODULE My Test;
(* MyTest.Message *)
IMPORT StdLog:

PROCEDURE Message*;
BEGIN
StdLog.String(” A text message appearing on Oberons LOG”);
END Message;
END MyTest.

The above module IMPORTS the StdLog module to access and use the preprogrammed PROCE-
DURES defined there.?

La commonly used method of collecting PROCEDURES in C/C++, FORTRAN, Pascal, etc
2in fact StdLog could be the only MODULE you require to product small programs - limited but still useful

)

PDF created with FinePrint pdfFactory Pro trial verston http://www.fineprint.com

http://www.fineprint.com

14 CHAPTER 2. BLACKBOX OBERON STANDARD MODULES
2.2 Standard Modules

The table below give the names of the MODULES one needs for usual programming tasks. There are
many more which a search on the available documentation will show.?

MODULE NAME | Modules General Function

StdLog Simple Output Procedures for writing to LOG view
Dialog Interface Procedures for GUI interaction,
update GUI form, simple messages, emit Beep sound,etc
Strings Procedures to manipulate strings (ARRAY OF CHAR),
fairly limited set of string functions exist here
SqlDB The API (application programming interface) for Blackbox Oberon
to access SQL databases
SqlControls The actual PROCEDURES used to access SQL. DATABASE TABLES,
also need to IMPORT SqlDB as well
Dates Access System Date & Time information
Math A collection of useful mathmatical functions
Views A view is a rectangular display object which provides visual presentation of

data. A major part of the MVC (Model, View, Controller) concepts underly-
ing Blackbox Oberon . Needed if your program is creating reports, displayed
output, etc in a format other than a GUI Form

StdTabViews For creation & management of Tab (notebook style) views can be programmed
but usually developed interactively via dropping a Tab Control onto a GUI
Form

StdCmds Usually used in Menus , but also used to call other GUI Forms as well

TextViews TextViews are the standard views for text models

TextModels TextModels are container models which contain sequences of attributed char-
acters and embedded views.

TextControllers TextControllers are the standard controllers for textviews as defined in
TextViews.

TextMappers TextMappers are mappers that use text riders to scan and format structured
text.

TextRulers TextRulers are text aware views that, if embedded in a text, affect the text

setting, especially useful for setting Tabs in report layouts

Figure 2.1: Some useful Standard Oberon Modules

The most complex set of MODULES in the group prefixed Text which are used to Read &
Write formatted text into Blackbox Oberon Views. They are explained in chapter 4

2.2.1 Finding information about a MODULE

To discover what PROCEDURES exist in a particular MODULE, start Blackbox and left mouse
click on File then New, or Info then Open Log this will create/open a new Blackbox Oberon

3This is one area that the available information is particularly unhelpful, to my knowledge, no complete
summary of MODULES and their usage/relevance exists

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

2.2. STANDARD MODULES 15

view, type the name of the MODULE you wish more information about (eg: StdLog) anywhere
in this view , select that text, ie, hold down the left mouse click and move mouse across the word
(eg: StdLog) and right mouse click , from pop-up menu left mouse click on " Documentation”
to get a full description of the MODULE or left mouse click on ”Interface” to get a summary of
the available PROCEDURES.

You may also select the MODULE name from a existing line of code on display and display
the above information at any time, eg: select StdLog when displaying the MyTest MODULE
example above.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

16 CHAPTER 2. BLACKBOX OBERON STANDARD MODULES

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

Chapter 3

Extra Data Types Explained

When starting to work with Blackbox Oberon I found many simple, but necessary, features were
not explained very well or not at all, too often there would be a fleeting mention of a feature in
the reference material supplied with Blackbox Oberon , but no actual examples.

3.1 Special Characters

I assume that the reader is familiar with variables, data types, record structures, and the usual

fundamentals of programming Pascal style languages, here I include some interesting , sometimes

subtle, usage of special characters in Blackbox Oberon . The following characters have their

normal meaning when used in their usual context, however, they are also used in special ways.
Namely:

. (decimal point) is normally used in declaring REAL numbers, eg: 32.45, however the decimal
point is also used as a connector, called dot notation’, between variable names to qualify
exactly the variable being used.

eg:
Person : RECORD
IdNo : INTEGER;
Name : ARRAY 30 OF CHAR;
END;

To access the Name variable you program :
Person.Name := "Henry Smith’;

This dot notation ensures that your program is accessing Name in the Person RECORD
above and not the variable Name in another definition. Blackbox Oberon uses this dot
notation in linking variables to fields in Forms.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

18 CHAPTER 3. EXTRA DATA TYPES EXPLAINED

* (asterisk) when placed immediately after a variable declaration, that variable becomes ac-
cessible globally and may be referenced and updated by a referring MODULE or VDU

FORM.
eg:
Parts* : RECORD
PartNo : INTEGER;
PartsPricex : Dialog.Currency;
Description- : ARRAY 40 OF CHAR;
END;

In the above example Parts.PartsPrice is accessible, while Parts.PartNo is not.

- (minus) when placed immediately after a variable declaration, that variable becomes acces-
sible globally and may be referenced but not updated by a referring MODULE or VDU
FORM

eg: Parts.Description (above)

$ (dollar sign) when placed immediately after an ARRAY OF CHAR variable (not the
definition), then only the number of characters up to the 0X char (end of text marker) is
copied, printed, etc and not the complete defined field length.

eg: Surname : ARRAY 50 OF CHAR;

Surname := ’Hallett’;
StdLog.String(Surname$) ;

This will only print the 7 characters 'Hallett’ and not the 50 characters actually defined to
hold the Surname field.

Misuse, or most often no use, of these characters will result in some confusion by the pro-
grammer, especialy when trying to display a variables content on GUI Forms. As only (* & -
) prefixed variables are accessable to a GUI Form for display, attempting to Link non postfixed
variables in the controls inspector will simply leave the displayed control uncomitted, ie: its
colour will not be white on the GUI Form. By default GUI form fields are displayed grey before
linkage is made.

Also, note that if a variable is in a RECORD structure, then both the RECORD variable and
the actual variable must be declared with a * if the actual variable is to be visible (accessable).

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

3.1. SPECIAL CHARACTERS

& (Karin)Karin

Lua;d Kaérins heceipts

:|1 zmzrznﬁz

:Rec. Numt:Jer I

?Supplier I

Dezctiption I

19

%= Inspector

Cortrol |Te>¢ Field

Link: HarinReceipts receipts total

Label. |

Guard; |

Motifier: |

[Left [Password B

[v Right [T Optiar 4
Lewvel |-2

[huti Line
0K Apply | Mest |

The above (possibly unreadable!) snapshot shows the Form field ”value” being linked to
MODULE Karin,s RECORD field " Total”. Refer to 9.1 and observe the receipts :RECORD field

declarations.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

20 CHAPTER 3. EXTRA DATA TYPES EXPLAINED
3.2 Extra Data Types

I am often amazed at the lack of real world datatypes and appropriate language functions to
process them in so called modern languages. Typically Date &Time, Currency' are most often
ignored, String handling functions are another to miss out also. Blackbox Oberon supplies some
data types in addition to the standard ones defined in the Oberon language.

3.2.1 Date and Time

Like many programming languages, the base Oberon Language ignores many useful data types
used in normal data processing, eg Date, Time, and Currency types. Blackbox Oberon overcomes
this lack to some extent by defining some extra types, not as base types but as extensions to
supplied modules, eg: Date and Time in MODULE Dates.

Many programs will need to access the current Date and Time values, for report headings,
database logging, etc.

MODULE ReportDateTime;

(* ReportDateTime.PrintDateTime *)
IMPORT Dialog, Dates, Strings, StdLog;
PROCEDURE PrintDateTime*;

VAR
today : Dates.Date;
now : Dates.Time;
sdate : ARRAY 50 OF CHAR;
stime : ARRAY 12 OF CHAR;
BEGIN

Dates.GetDate(today);
(* get the systems date into variable today *)

Dates.DateToString(today, Dates.long, sdate); (* convert to string *)
StdLog.String(sdate$ + 7 7); (* print the date string *)
Dates.GetTime(now); (* get the systems time into variable now *)
Dates.TimeToString(now, stime); (* convert to string *)
StdLog.String(stime$); (* print the time string *)

END PrintDateTime;
END ReportDateTime.

Figure 3.1: Display System Date & Time values

LCOBOL (circa 1960) is the real master at processing currency, its designers realised the importance of MONEY
I

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

3.2. EXTRA DATA TYPES 21
Notes:

1. The Dates.GetDate and Dates.GetTime system routines return the Operating Systems date
and time values into a fields defined in MODULE Dates as :

TYPE
Date = RECORD

year, month, day: INTEGER
END;
Time = RECORD

hour, minute, second: INTEGER
END;

Clearly, such a structure for normal programming purposes is quite difficult to handle,
fortunately Blackbox Oberon supplies the necessary conversion tools to operate on these
data types in MODULE Dates.

2. The Dates.DateToString(today, Dates.long, sdate); code converts these integer values in
‘today’ into CHAR variable ’sdate’ giving a displayable CHAR form, the actual format
is controlled by the second parameter (Dates.long here). See MODULE Dates CONST
declarations for other legal values. It is the programmers responsability to ensure that the
recieving variable in defined large enough to accept this conversion.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

22 CHAPTER 3. EXTRA DATA TYPES EXPLAINED

3.2.2 Currency variables

The base Oberon language ignores many useful data types used in normal data processing, eg
Date, Time, and Currency types. Blackbox Oberon overcomes this lack to some extent by
defining some extra types, not as base types but as extensions to supplied modules, eg: Currency
in MODULE Dialog.

Notes:

1. the data type Currency is defined in MODULE Dialog, thus :

Currency = RECORD
val : LONGINT;
scale: INTEGER

END;

Clearly, such a structure for normal programming purposes is quite difficult to handle,
fortunately once the scale is set you dont need to interact with that variable again and
only use the .val variable when programming. Currency data is held as a LONGINT data
type and therefore processed as FIXED POINT INTEGER values with the decimal place
indicated by the scale value.

The advantage of using LONGINT to hold currency values is that there is no loss of accuracy
in computations , and unlike REAL , no rounding errors.

LONGINT can hold, -9223372036854775808 .. 9223372036854775807,
a huge range of data values with great accuracy.

If a variable is declared as Dialog.Currency then the programmer must access its contents
via the val & scale variables.

In the example below the value of receipts.total is 0 with 2 decimal places of accuracy ie:
0.00. It should also be noted that variable name receipts.total should be refered to in access
from a GUI Form, it is not necessary to use the full variable name : receipts.total.val.

2. it is the .scale value that controls the number of decimal places considered

3. When interfacing Dialog.Currency with the GUI Form and SQL Databases you must con-
sider the prefered SQL structure for holding Currency data 2 as there are various ways to
define currency fields in database tables.

In MySQL, I use DECIMAL(9,2) as a typical currency field in the MYSQL table definition.
Other SQL databases may require another definition of currency fields.

2MySql is the authors prefered database for use with Blackbox Oberon , although Oberon microsystems
recommend Dtf

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

3.2. EXTRA DATA TYPES

23

MODULE KarinReceipts;

IMPORT Dialog, Dates;

VAR
receipts* : RECORD
recdate® : Dates.Date;
supplier* : ARRAY 40 OF CHAR;
goods* : ARRAY 30 OF CHAR;
total* : Dialog.Currency;
seq- : INTEGER;
recnumber® : ARRAY 20 OF CHAR;
END:;

PROCEDURE ClearRec;
BEGIN

9 M.,
I

receipts.supplier :=

receipts.goods (=" 7

receipts.total.val := 0; (* clear currency value *)

receipts.total.scale := 2; (* set decimal place *)
(* for currency accuracy *)

receipts.recnumber := " 7;

Dialog.Update(receipts);

END ClearRec;
END KarinReceipts.

Figure 3.2: Defining and accessing Currency Variables

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

24 CHAPTER 3. EXTRA DATA TYPES EXPLAINED
3.3 Declaring Arrays

Arrays are a fundemental data structure of much computer processing, Blackbox Oberon offers
a very powerful ARRAY type which allows the programmer to define very complex data arrays.
In particular Blackbox Oberon allows for the creation of multi-dimensional ARRAY structures
which are of great use to mathmetical data processing and many mathnatical processes require
array processing.

With definition of an appropriate RECORD data type very complex data structures maybe
programmed against with clarity in Blackbox Oberon . If your data structure requires large
amounts of data, that might exceed you computers physical memory, then you might consider
using a SQL database to hold the data external to your program and reload/save as necessary
when processing.

3.3.1 Example Arrays

Index | Content Index / A B C
0 Fred 0 45.5 | 12.3 | 23.44 | 231.0
1 John 1 56.8 | 12.3 | 23.44 | 231.0
2 Tom 2 47.3 | 12.3 | 23.44 | 231.0
3 Jill 3 87.7 | 12.3 | 23.44 | 231.0
4 Joan 4 23.2 | 12.3 | 23.44 | 231.0
5! Smithy 5) 67.0 | 12.3 | 23.44 | 231.0
Figure 3.3: Array A of CHAR Array 7Z of REAL

The ARRAY A would be declared : ARRAY 6 , 10 OF CHAR;

Which gives us indexes from 0 to 5 (6 entries !!) containing a CHAR data type of 10
CHARACTERS each.

The ARRAY X would be declared : ARRAY 6, 4 OF REAL;

This ARRAY a multi dimensional ARRAY OF REAL numbers (24 entries). and gives us 4
COLUMNS of 6 REAL NUMBERS in each column.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

3.3. DECLARING ARRAYS 25

3.3.2 Declaring an array of basic data type

A basic data type is be considered to be INTEGER, REAL, CHAR , BYTE, etc as defined in
Component Pascal Language Report that accompanies your Blackbox Oberon system.

MODULE MultilndexedArrays;
(* ®Multilndexed Arrays.Do*)
IMPORT StdLog;
VAR
Al : ARRAY 10 OF ARRAY 10 OF ARRAY 10 OF ARRAY 10 OF INTEGER;
(* defines a 4 dimensioned array of Integers *)
(* A1 : ARRAY 10, 10, 10, 10 OF INTEGER; is also a legal definition *)
PROCEDURE Do*;
BEGIN

Al1[2,2,2,2] := 2% 2% 2% 2,
StdLog.Int(Al[2, 2, 2, 2]); StdLog.Ln;

END Do;

END MultilndexedArrays.

Figure 3.4: Multi indexed array of INTEGER

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

26 CHAPTER 3. EXTRA DATA TYPES EXPLAINED

3.3.3 Declaring an array of RECORD

By using a user defined RECORD data type, very complex structures may be processed by
Blackbox Oberon programs. Once defined, the user data type is used exactly as a basic type but
with the addition of the RECORD variables name(s) appended to the ARRAY subscripting.

MODULE Multilndexed ArrayOfRecords;
(* ®Multilndexed ArrayOfRecords.Do*)
IMPORT StdLog;

TYPE
Struc = RECORD
int1 : INTEGER;
int2 : INTEGER;
END:

VAR
Al : ARRAY 10 OF ARRAY 10 OF ARRAY 10 OF ARRAY 10 OF Struc;
(* defines a 4 dimensioned array of RECORD Struc *)

PROCEDURE Do*;
BEGIN

A1[2,2,2,2].int] := 2 % 2 % 2 * 2,
A1[2,2,2,2]int2 ;= 4 * 4 * 4 * 4
(* note how the RECORD fields are accessed via ’dot’ notation after subscripts *)

StdLog.Int(A1[2,2,2,2].int1); StdLog.Ln;
StdLog.Int(A1[2,2,2,2].int2); StdLog.Ln;

END Do;

END MultilndexedArrayOfRecords.

Figure 3.5: Multi indexed array Of RECORD

The above program defines a 4 dimension ARRAY A of a user defined RECORD Struc which
contains 2 variables int! & int2. The user defined data type can be very complex.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

3.3. DECLARING ARRAYS 27

3.3.4 Using a Multi-Dimensioned Array

The example below declares a 2 dimensional ARRAY of INTEGERS with 4 elements, counted from 0
to N-1.3

Notice the use of a CONST to define the ARRAY size, and of LEN to check the array elements
limits. Using LEN is the safest way to ensure your code does not fail if you modify the size of your
array.

MODULE MultilndexedArrays2;
(* ®Multilndexed Arrays2.Do*)
IMPORT StdLog;
CONST
asize = 4;
VAR
Al : ARRAY asize, asize OF INTEGER;
(* defines a 2 dimensioned array of Integers *)
cnt : INTEGER;

PROCEDURE Do*;
VAR
x1, x2, x3, x4 : INTEGER; (* indexes for accessing array elements *)

BEGIN
cnt = 0;

StdLog.Ln; StdLog.String(” ######+#”); StdLog.Ln;

FOR x1 := 0 TO LEN(Al)-1 DO

FOR x2 := 0 TO LEN(Al1)-1 DO

INC(cnt);

Al1[x1, x2] := cnt; (* fill array with a computed value *)
END;
END:;

FOR x1 := 0 TO LEN(Al)-1 DO
FOR x2 := 0 TO LEN(A1)-1 DO
StdLog.IntForm(A1[x1, x2], StdLog.decimal, 6,” ", FALSE); (* print the computed value(s) *)
END;
StdLog.Ln;
END;

StdLog.String(”======="); StdLog.Ln;
END Do

END MultilndexedArrays2.

Figure 3.6: Using a multi dimensioned array

31 really dislike 0 (zero) based arrays with n-1 limits, it causes unnessary programming errors if the -1 is
forgotten. Counting from 1 to n avoids those problems — its a continuing argument with language developers

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

28 CHAPTER 3. EXTRA DATA TYPES EXPLAINED

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

Chapter 4

Blackbox Oberon Text handling

4.1 Why more than one type of Text?

Under Blackbox Oberon you are faced with two types of text.
1. text, declared in your code & defined as CHAR or ARRAY OF CHAR.

2. Text, as held in Blackbox Oberon views and are processed via special by Readers &
Writers. They only process Blackbox Oberon view held data, not CHAR and ARRAY OF
CHAR. These are the PROCEDURES defined in the MODULES pefixed by Text listed in
the Table of Standard Modules (see 2.2)

The Warford book has a very good explaination of the MVC (Models, View & Controller)!
Design Pattern. The MVC enables the creation of very complex documents containing
images, variable text formats, fonts, styles, imbedded views, etc.

For example, when you load a Blackbox Oberon MODULE for editing you normally
observe plain text, like a traditional text editor, however every character displayed may
have attributes attached to it to describe the way in which that character will be presented
to you or to any program processing that text.

Not at all like standard ASCII text files !

4.2 CHAR & ARRAY OF CHAR

These are simple texts? held as separate CHAR or ARRAY OF CHAR variables, defined in your
Component Oberon code.

eg:
VAR
description : ARRAY 50 OF CHAR;
prices : ARRAY 10 OF ARRAY 40 OF CHAR;
(* 10 elements of 40 char *)
yes : CHAR;

'Models, View & Controller concept as developed by Zerox Corp and which became a fundimental feature of
the APPLE MAC Computer Systems and also part of Blackbox Oberon
2Qnly the first 256 characters of the ASCII standard character set

PDF created with FinePrint pdfFactory Pro trial verSlon http://www.fineprint.com

http://www.fineprint.com

30 CHAPTER 4. BLACKBOX OBERON TEXT HANDLING

no : CHAR;
. etc ..

Values are assigned thus :

description := ’A pentium 4 computer’;
yes s= nyn.
no = N’

. etc ..

Notice that you may use either double or single quote marks to declare a CHAR value which
is very useful because you may use the 'other’ quote mark in any text value. You must use the
same quote mark to start & end the assignment.

description := "C++ executes on many computer’s";
. etc ..

ie: you cannot enter :

description := ’A pentium 4 computer";
yes =Y,
no = "N’;

. etc ..

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

4.3. THE INCOMPATABLE TEXT ASSIGNMENT ERROR 31
4.3 The incompatable Text assignment error

The following small programs show various problems with working with CHAR and ARRAY OF
CHAR.

4.3.1 Overcoming the incompatable Text assignment error

MODULE BookTestCharl;
(* BookTestCharl.Test *)
IMPORT StdLog, Dialog, Strings;

VAR
s1, s2: ARRAY 40 OF CHAR;
s3 : ARRAY 40 OF CHAR,;

PROCEDURE Test*;
BEGIN
s2 := "TestCharl”;
sl := s2;

StdLog.String(s1 + 7 * 7 + 82);

StdLog.String("@” + s3 + 7@Q”);

s3 := s2; (* incompatible assignment error here *)
END Test;

END BookTestCharl.

Figure 4.1: Incompatible text assignment

You might be surprised at recieving an ’incompatible assignment error’ when compiling this
program. The assigment statement

S3 = 82;

seems innocent enough, however under the type rules of Blackbox Oberon ? the variables s3
is NOT type compatible with any other CHAR variable in the program, even tho variables sl &
s2 are also defined as ARRAY 40 OF CHAR, they are different ARRAY 40 OF CHAR to s3,
whereas, S1 & s2 are the same ARRAY 40 OF CHAR because they are defined together with

the same type declaration.*

4.3.2 Declare your own Text data type

By declaring our own data type , called String and using that instead of separate ARRAY 40
OF CHAR declarations, the program is now using compatable ARRAY 40 OF CHAR variable
definitions.

3and most of N.Wirths languages

4Technically this is correct as ARRAY OF CHAR are referenced by pointers, therfore s1 & s2 refer to the same
declaration, however, relaxing the type rules for ARRAY OF CHAR would appear to be a simple and effective
change to coding Blackbox Oberon programs, this was done in Borlands Turbo Pascal which greatly enhanced
its usage

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

32 CHAPTER 4. BLACKBOX OBERON TEXT HANDLING

MODULE BookTestChar3;
(* BookTestChar3.Test
Result on Log View :
999
999 * 999@999@
)
IMPORT StdLog, Dialog, Strings;
TYPE

String = ARRAY 40 OF CHAR;
VAR

sl, s2: String;

s3 : ARRAY 10 OF String;

x : INTEGER;

res : INTEGER;
PROCEDURE Test*;

BEGIN
s2 :="7999”; (* note numeric 999 value in CHAR (string) form *)
sl := s28%;
(* use Strings Module Procedures to process string variables*)
Strings.StringTolnt (s2,x, res); (* convert string to Integer *)
Strings.Int ToString (x, s3[5]); (* convert back to string *)

s3[2] := ’third row of ARRAY’;
StdLog.Int(x); StdLog.Ln;
StdLog.String(s1 + 7 * 7 + 52);
StdLog.String(”@” 4 s3[5] + 7@”);
s3[8] := s2;

END Test;

END BookTestChar3.

Figure 4.2: Overcoming incompatible text assignment

There is a data type
String = ARRAY 256 OF CHAR; (* Dialog.String *)

defined in Dialog Module which could be used in the same way , with the advantage of
being large enough for most applications needs and as most user written modules will use Dialog
anyway its readily available to use.’

4.3.3 Use MODULE String procedures

You can overcome many of the above problems by using the procedures defined in Strings Module,
esp the Extract and Replace procedures. These procedures will operate on any defined ARRAY
nn OF CHAR variables, and can also be used to Copy between variables of different declaration
and lengths.

5dont confuse ARRAY OF CHAR and ARRAY nn OF CHAR, in most parameter passing in PROCEDURES,
see MODULE Dialog PROCEDURES for example, ARRAY OF CHAR is used as a general type for passing
CHAR parameters of various lengths, ARRAY nn OF CHAR is a quite specific declaration of a fixed length

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

4.3. THE INCOMPATABLE TEXT ASSIGNMENT ERROR

MODULE BookTestChar4;

(* BookTestChar4.Test

Outputs:

Extract: @A text string * A text string@A text string@
Replace: @A text string * A text string@A text string@

)
IMPORT StdLog, Dialog, Strings;
VAR sl, s2: ARRAY 25 OF CHAR;

s3 : ARRAY 10, 40 OF CHAR;

PROCEDURE Test*;

BEGIN
s2 := " A text string”;
sl := s2;

s3[4] := ’data for testing the array’;
s3[6] := s3[4];

(* copy incompatable text variables *)
Strings.Extract(s2,0,999,s3[4]);

StdLog.String(” Extract: @"4 sl + 7 * 7 4+ 52);
StdLog.String("@Q” + s3[4] + 7@"); StdLog.Ln;

Strings.Replace(s3[4],0,999,s2);

StdLog.String(”Replace: @” +s1 4+ 7 *7 4 82);

StdLog.String(”@Q” + s3[4] + 7@"); StdLog.Ln;
END Test;

END BookTestChar4.

Figure 4.3: Using Module String to overcome assignment error

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

34 CHAPTER 4. BLACKBOX OBERON TEXT HANDLING

There are subtle differences between Strings.Extract & Strings.Replace,
ie:

Extract (s: ARRAY OF CHAR; pos, len: INTEGER; OUT res: ARRAY OF CHAR)

Extracts characters from pos, len (MIN(pos+len, Len(s))) characters in s and returns it
in res. The result is truncated if res is not large enough. The same actual parameter may
be passed for s and res.

Extract is the safer technique to use as a Copy operation, bacause res is given a new value
after the extract.

Replace (VAR s: ARRAY OF CHAR; pos, len: INTEGER; IN rep: ARRAY OF CHAR)

Replaces the characters from pos , len (MIN(pos+len, Len(s))) characters in s with the
string in rep. The characters after the replaced range are moved if necessary. The result is
truncated if s is not large enough.

Note:
If len = 0 then all of rep is inserted in s at position pos.
If LEN(rep$) = 0 then the characters [pos, MIN(pos—+len, LEN(s$))) are deleted from s.

Replace is not as safe as a Copy operation as Extract, because any characters inside s lying
outside the range pos,len are moved across as well as the desired character range.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

44. BLACKBOX OBERON VIEW TEXTS 35
4.4 Blackbox Oberon View Texts

When you write MODULES they are stored as Blackbox Oberon Views, in a folder, called Mod
(for MODULE), and although you create the code by using a wordprocessor interface, the text
is of a more complex data type than that described on page 29.

It should be understood that Blackbox Oberon text’s are not ASCII texts as used in most
programming languuages, they are a more complex & powerful version of texts, and also more
difficult to understand, programming wise. ¢

A benefit of this complex text data type is that you may write your code in any font, size,
color, vertical offsets, etc that suits you, and mix those attributes at will for highlighting code
features, ie: all your comments in blue, SQL statements in BOLD. Particularly useful when
developing code, you can select a special colour for any new code you are working on.

PROCEDURE invDelete*; (* delete current inventory record *)

BEGIN

inv.base.Exec("DELETE FROM inventory WHERE CATEGORY =

:Quikquote.Inventory. CATEGORY AND STK_CODE =

:Quickquote.Inventory.STK_CODE”);
inv.base.Commit();

inv.Exec(”SELECT * FROM inventory ORDER BY CATEGORY, STK_CODE");
Dialog.Update(inv);

END invDelete;

If you attempted to compile a syntactally correct program formatted as above with a tradi-
tional programming language, eg Pascal, you would be presented with many diagnostics! Why?,
well traditionally, programming languages can only process ASCII in its most limited form, and
the inclusion of special control characters to make the displayed text bold would not be ‘under-
stood’ by the compiler.”

4.4.1 Processing Blackbox Oberon View data

In writing this book I needed to be able to transfer example Blackbox Oberon programs from
a Blackbox Oberon Module into a standard ASCII text file to be further processed by the TEX
typesetting system®.

Even with all the information available in the supplied documentation, and the free (incom-
plete) ASCII ’conversion’ example Module and Warfords PdoxMappers Module, it was proving
difficult to produce a clean ASCII file copy of a given Blackbox Oberon Module, after much
mucking about however a working program was indeed created. All the example programs dis-
played their output in a display view and did not output the results onto a stand alone file.
All the example program code displayed in this book has been processed via this program :

SIndeed, standard ASCII text files are hardly used in Blackbox Oberon , a bit of a problem when interfacing
to other data sources.

Tactually Blackbox Oberon view texts hold their formatting attributes imbedded in the same file as the view
text, so I doubt most programs will be able to process the Blackbox Oberon text. I've tried cutting and pasting
from Blackbox Oberon texts to other editors, etc and always have found data errors

8Still the best typesetting system available (very biased opinion)

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

36 CHAPTER 4. BLACKBOX OBERON TEXT HANDLING

CopyToTeX.?. The only difference to CopyToTeX is the removal of specialised TEX command
generation, the structure and logic is identical.

MODULE CopyToAscii;
(*

Converts a Standard Oberon .odc program module to a ASCII Text File

input file : a Oberon MODULE of type .odc
output file : a ASCII version of type .txt

The output file is a std ASCII file

Brett S Hallett (c) Jan 2002
)

(* ®CopyToAscii.Do *)

IMPORT StdLog, Converters, Files, TextModels, TextMappers, TextViews, Views,
Dates, BookUtils;
(* *)
CONST
linesperpage = 32;
PROCEDURE Do*;

VAR
utmd, inmd: TextModels.Model; (* utmd = output, inmd = input model *)
vw: TextViews.View;
utfm : TextMappers.Formatter; (* define output formatter *)
insc : TextModels.Reader; (* define input scanner *)

loc: Files.Locator; name: Files.Name; conv: Converters.Converter;

(* parameters for attaching to file(s) *)
v: Views.View;
res: INTEGER; (* status response variable *)

linecnt : INTEGER;

BEGIN

linecnt := 0;

Declare the user variables to access the various Text Reders, Formatters & Views required to
both read from a Blackbox Oberon document and write the ASCII file out.

(* — attach to input files — *)
v := Views.Old(Views.ask, loc, name, conv); (* ask user for input file / document - the view *)

The single line above it perhaps the most obscure in the program!, it causes the operating sys-
tem to display the standard file select dialog, you make the appropriate file selection to continue.
Normally choose a Blackbox Oberon MODULE .odc file.

9Unfortunately, processing that CopyToTeX thru itself proved difficult so I decided to show you similar but
simpler example program for creating ASCII files from Blackbox Oberon Modules

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

4.4. BLACKBOX OBERON VIEW TEXTS 37

inmd := v(TextViews.View).ThisModel(); (* attach input model to file - the model *)
insc := inmd.NewReader(NIL); (* connect a reader to file view - the reader *)

The above code is equivalent to a File OPEN command in other languages and makes the internal
connection between the Blackbox Oberon Text Input Procedures and the physical file selected
previously.

(* — create a output view —*)
utmd := TextModels.dir.New(); (* create NEW empty output model - the model *)
utfm.ConnectTo(utmd); (* connect to the output model - the formatter *)
t——

The above code is equivalent to a File OPEN command in other languages and makse the internal
connection between the Blackbox Oberon Text Output Procedures and its internal View, note
that the physical file has not been selected yet.

insc.Read; (* read first char from input document *)
WHILE ~insc.eot DO

IF insc.char < 100X THEN (* only process ASCII chars *)

IF insc.char = 0DX THEN (* EOL read 7 *)
INC(linecnt);

utfm. WriteLn; (* outputs a Cr/LF on Windows *)

(* its not OK just to copy the EOL char ! *)
ELSIF insc.char = 09X THEN (* TAB read ? *)
utfm. WriteString(” 7);
ELSIF insc.char < 20X THEN (* ignore all other control chars *) ELSE
(* add other selection ELSIF code here *)

utfm.WriteChar(insc.char); (*copy char to output view *)
END:
END:;
insc.Read; (* read next char from input document *)

END; (* while *)

(* output data via the formatter to the model *)

The above code is a simple read characters loop until eot (end of text) is reached and rejecting
any characters above the standard ASCII character, processing some of them or simply copying
them to the output view.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

38 CHAPTER 4. BLACKBOX OBERON TEXT HANDLING

vw := TextViews.dir.New(utmd); (* attach to model with the written data - the view *)
Views.Register(vw,Views.ask, loc, name, conv, res);
(* ask the user where to save the document *)

END Do

END CopyToAscii.

Figure 4.4: Copy a Oberon Document to ASCII TEXT File

The final two lines make the attachement of the output model to the view for saving by the
Views.Register line, this is equivalent to a File CLOSE in other languages. The Views.Register
will display the standard operating systems file save dialog where you can enter a new filename
and you must select a file type of TXT to finish the conversion process.

This program is reading and writing CHARACTERS and therefore must check every character
read, and it must be remembered that it simply 'throws away’ any characters not in the standard
ASCII caracter set range.!® This is not the usual way most programmers like to process their
data but like to process text files as lines of text, not a file of characters.

4.4.2 Processing Text data using TextMappers.Scanner

Blackbox Oberon does not offer a lines of text input/output procedures, but does offer a Text.Scanner
facility which allows you to process the input text as symbols instead of single characters.
That is as :

char, string, int, real, bool, set, view, tab, line, para, eot, invalid

symbols and automatically skipping white space (blanks, carriage returns) until a complete
symbol is input, or eot reached. By skipping the carriage returns any concept of lines of text is
automatically lost to the processing of the data.

This is a free format style of processing data, it has some advantages, but many dissadvantages

1. not easy to process data arranged as lines of column data, as the end of line (carriage
return) is thrown away.

2. if there are a varying number of fields per line then its very easy to lose track of field
processing. ie: which field are we processing ?

3. Creating data in freeformat style by user data entry is always prone to data entry errors.
Using a Vdu Form for data entry can ensure correct sequence however.

Oprimitive but effective!

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

4.4. BLACKBOX OBERON VIEW TEXTS 39

There is a good example of using this technique in ObxCountl, supplied in the Blackbox
Oberon examples set and also read the section after ”Listing 5-25. Code pattern for TextMod-
els.Reader” in the TEXT section of the Blackbox Oberon Help System for a good explaination.!!.
But be aware that ObxCount1 is designed to read from a selected Blackbox Oberon View , not
a operating system file. You have to Open a Blackbox Oberon file in a view, select it (the view)
and the execute ObxCountl and see the results in the Log View.

However, be aware that Scan does not readily process Text files created by other non Blackbox
Oberon programs, but is very good for processing Blackbox Oberon document files.

T would have liked to publish the ObxCount1 example here but Oberon MicroSystems are very reluctant to
give permission for anybody to republish their texts. In fact this book is a direct result of their refusal to allow
me to modify their SQL help file into a MySQL Help version

12T attempted to use Scan, because I did not know any better at the time, on a output ASCII file created
by INTERBASE SQL for importing into a MySQL database and ended up writing the converstion program in
Paradox, this was before figuring out the CopyToAscii program described in 4.4.1

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

40 CHAPTER 4. BLACKBOX OBERON TEXT HANDLING

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

Chapter 5

Standard Controls

To facilitate the development of GUI (Graphic User Interfaces) Blackbox Oberon offers many
standard controls which are simply predefined graphic 'pictures’ that you can attach your own
code, make links to vaiables defined in your modules, etc.

There are many standard controls available, not all are explained here!

5.1 Radio Buttons

#=2 Calc Pulley Speed M= E3
Compute Belt length and Drive Speed of Two Pulleys

Small Dia Large Dia
| = | 79.00
Distance Apart (mm) Drive Speed
| B0.0 | 30
Ho. OF Cales Select Drive Wheel
" Large
| 10
= Small

Calculate | Cancel |

Figure 5.1: Calculate Pulleys Program

Radio Buttons are a very useful control used where you wish the user to make a selection of
one, and one only, of the options offered to the user. In the above example the user is allowed
to choose either ’Large’ or ’Small’. It is not possible to choose both! or more than one option
if other buttons were available. Radio Buttons are usually grouped together, and there may be
more than one group on a form.

They are usually used where a fixed, small number of options are displayed all at once to the
user, unlike comboboxes which can display many choices in a drop down list.

The program shown here is a very simple program to compute pulley sizes, belt lengths and
final RPM speed of the driven pulley. See section 5.1.1 for example output.

PDF created with FinePrint pdfFactory Pro trial verSion http://www.fineprint.com

http://www.fineprint.com

42 CHAPTER 5. STANDARD CONTROLS

The use can select which pulley (the Large or Small one) that will be considered the driving

pulley for the calulations, by clicking on one of the radio buttons, when the | Calculate | is pressed
the program computes and prints results. The report headings are adjusted depending upon the

chosen Radio Button.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

5.1. RADIO BUTTONS 43

MODULE CalcPulley2;

(* ®”StdCmds.OpenAuxDialog(’Calc/Rsrc/CalcPulleys2’,’Calc Pulley Speed’)” *)
(* computes the length of 'O’ Ring and speed of final drive of two pulleys *)

IMPORT StdLog, Math, Dialog, Views, Ports,
TextModels, TextControllers, TextMappers, TextRulers, TextViews;

CONST large = 0 ; small = 1; (* for drive wheel radio buttons *)
VAR

dlg* : RECORD

smalldia* : REAL;

largedia™* : REAL;

distanceapart* : REAL;

drivespeedrpm* : INTEGER;

noofcalcs™ : INTEGER;

drivewheel* : INTEGER; (* for drive wheel radio buttons *)
END:;

PROCEDURE SetUpTabs(r :TextRulers.Ruler; f: TextMappers.Formatter);
VAR

x : INTEGER;
BEGIN

FOR x := 1 TO 300 BY 20 DO
TextRulers.AddTab(r, x * Ports.mm);
END:;
(* set up TABS for report *)
TextRulers.SetRight(r, (x + 10) * Ports.mm);

f. WriteView(r); (* write the ruler tabs *)

END SetUpTabs;

Continues +—

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

44 CHAPTER 5. STANDARD CONTROLS

PROCEDURE Do*;

VAR
t : TextModels.Model; f : TextMappers.Formatter; v : TextViews.View;
r : TextRulers.Ruler;
tmpdia : REAL;
BEGIN
t := TextModels.dir.New();
f.ConnectTo(t);
r := TextRulers.dir.New(NIL);
SetUpTabs(r,f);
f.WriteTab;

CASE dlg.drivewheel OF
large : f.WriteString(” Large ”); f.WriteTab;
f. WriteString(” Small ”); f. WriteTab;

| small : f. WriteString(”Small ”); f.WriteTab;
f.WriteString(” Large ”); f.WriteTab;

END; (* print pulley sizes headings *)

f. WriteString(” Dist. ”); f.WriteTab;

f.WriteString(”Belt ”); f.WriteTab;

f. WriteString(” Motor ”); f.WriteTab;

f.WriteString(”Final ”); f. WriteTab;

f. WriteString(” Drive”);

f.WriteLn; f.WriteTab;

f. WriteString(”Pulley ”); f. WriteTab;

f.WriteString(”Pulley ”); f.WriteTab;

f. WriteString(” Apart ”); f.WriteTab;

f.WriteString(” Length ”); f.WriteTab;

f. WriteString(”Rpm ”); f.WriteTab;

f. WriteString(”Rpm”); f.WriteTab;

f.WriteString(”Ratio”); f.WriteLn;

tmpdia := dlg.smalldia ;

WHILE (dlg.smalldia < (tmpdia + dlg.noofcalcs)) DO

NN N N S

f.WriteTab;
CASE dlg.drivewheel OF
large : f.WriteRealForm(dlg.largedia, 7, 2, -1,” ’);
f.WriteTab;
f. WriteRealForm(dlg.smalldia, 7, 2, -1,” 7);
f.WriteTab;
| small :
f.WriteRealForm(dlg.smalldia, 7, 2, -1,” 7);
f.WriteTab;
f.WriteRealForm(dlg.largedia, 7, 2, -1," ’);
f.WriteTab;
END; (* print pulley sizes *)

Continues —

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

5.1. RADIO BUTTONS 45

f.WriteRealForm(dlg.distanceapart, 7, 2, -1,” ’);
f.WriteTab;
f.WriteRealForm((dlg.distanceapart * 2) +
((dlg.smalldia * Math.Pi() /2) +
(dlg.largedia * Math.Pi()/2)), 7, 2, -1, 7);
f.WriteTab; (* print belt length *)
f.WriteInt(dlg.drivespeedrpm);
f.WriteTab;
IF dlg.drivewheel = large THEN
f.WriteRealForm((dlg.largedia / dlg.smalldia)* dlg.drivespeedrpm, 7, 2, -1,” ’);

ELSE
f.WriteRealForm((dlg.smalldia / dlg.largedia)* dlg.drivespeedrpm, 7, 2, -1,” ’);
END; (* print final RPM *)
f.WriteTab;

IF dlg.drivewheel = large THEN
f.WriteString(” 1 : 7);
f.WriteRealForm (dlg.largedia / dlg.smalldia, 7, 3, -1, * 7);
ELSE
f. WriteString(” 1 : 7);
f.WriteRealForm (dlg.smalldia / dlg.largedia, 7, 3, -1, * 7);
END; (* print drive ratio *)

f.WriteLin;
dlg.smalldia := dlg.smalldia + 1;
END:;
f. WriteString(” Compute until ”); f. WriteInt(dlg.noofcalcs); f.WriteString(” results printed”);
f.WriteLn;
f. WriteString(” **** End Report **** 7);
v := TextViews.dir.New(t);
Views.OpenAux(v, ” Pulley Speed Table ”);

dlg.smalldia := tmpdia; (* recover original smalldia value *)
Dialog.Update(dlg);
END Do:

BEGIN
dlg.smalldia := 15; (* set up default values *)
dlg.largedia = 79;
dlg.distanceapart := 60;
dlg.drivespeedrpm := 30; (* ford XD rear wiper motor rpm *)
dlg.noofcalcs = 10;
Dialog.Update(dlg);

END CalcPulley2.

Figure 5.2: CalcPulley Program

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

46 CHAPTER 5. STANDARD CONTROLS
5.1.1 Example Output

#=x Pulley Speed Table O] =]
Large =mall st Belt Mlotor Final Dirive
Fulley Fulley Apart Length Rpm Fpm Ratio
7an 150 600 2677 30 1580 153
7an 160 600 2682 30 148 1 1449
7an 170 600 2708 30 1394 146
7o 180 G0.0 2724 a0 121.7 1. 44
7o 19.0 G0.0 27349 a0 1247 142
7a0 200 G0.0 2705 a0 1185 1. 4.0
7a0 210 G0.0 277 a0 1128 1. 38
7a0 220 G0.0 2787 a0 1077 1. 36
790 230 G0.0 2802 a0 103.0 1. 34
7a.n 2410 G0.0 2818 20 483 1: 33

Compute until 10 results printed
TEHETEN Er-ld Report TEHETEN

Figure 5.3: Example Calculate Pulleys Output

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

5.2. CHECK BOX 47
5.1.2 Setting up a Radio Button

Radio Buttons in Oberon are a lttle awkward to setup! They can return either a Boolean value
or a INTEGER value into a module variable defined by the programmer which must be defined

globally.

In the example program, observe the INTEGER variable

drivewheel in RECORD dlg

which is declared global (*) and can therefore be referenced by a Oberon FORM control.
The sequence for settup up a Radio Button is :

e Define a global INTEGER variable in your module. Compile the module so that the variable
exists for the FORM.
(I assume that you know how to created a FORM)

e Drop a Group Box onto the form

e Drop a |Edit Field | into the Group Box, link this field to the global INTEGER field eg:
dlg.drivewheel.

e Delete the | Edit Field |!

e Drop a Radio Button into the Group Box

Select the Radio Button and enter the properties inspector.
link this Radio Button to the global INTEGER field eg: dlg.drivewheel.
enter text into the label field.

set LEVEL to the VALUE you wish this Radio Button to return when selected by the
user.

click on Apply.

repeat for every Radio Button required.

When your form is executing , if a user selects a Radio Button its LEVEL VALUE is returned
to the global INTEGER field defined, eg dlg.drivewheel, and can be tested in IF or CASE
statements in your program. See example CASE statement in above program on page 44.

5.2 Check Box

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

48 CHAPTER 5. STANDARD CONTROLS

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

Chapter 6

ComboBoxes

Selection Lists and ComboBoxes are a often used form tool for displaying a list of choices to the
user. The standard Blackbox Oberon comboboxes are somewhat limited, but no less useful, than
those supplied by languages like Delphi and Visual Basic. Unfortuately the Blackbox Oberon
documentation and example programs do not actually explain how a programmer should use
them.

Indeed, the example code in ObxDialog does not show you how to access the selected item
by the program! Which is of course the main reason for using these controls. A new module,
ObxDialogBSH, is a version of ObxDialog that does, and it is instructive to compare the two
programs and note the differences.

6.1 Comboboxs Example

= Bsh Dialog Test

Zero P z
sl One E == sixes .
Twea T == zewvens r
Three 8 == eight=
Four A
Fi""'E! 10 ==tens all
S 11 ==elevens bt
Seven % —
[disakle LI
| = Close |
elems |2 E
Selection Made 1EI == nines

Figure 6.1: Demo Comboboxes

PDF created with FinePrint pdfFactory Pro trial verSlon http://www.fineprint.com

http://www.fineprint.com

50 CHAPTER 6. COMBOBOXES

There are a number of aspects of setting up and using these controls:
e You can setup a selectable list either by

— hard coding entries in program code, or

— by using the Blackbox Oberon defined file ‘Strings’ and Oberon Command SetRe-
sources as the data source of entries.

— read a data file or database and build the list dynamically

e If using SetResource file as the source the displayed entries are read (once) from the file
upon starting the Oberon Program.

e There are three different types of list/combo controls to choose from :

— a List Box or
— a Selection Box or

— a Combo Box.

They are similar in action but have subtle differences that effect the way in which the user
interacts with the displayed data.
6.2 Setting up a list

All the Blackbox Oberon lists (List, Selection, Combo) are special data type of Dialog and
must be declared before use :

MODULE DemolLists;
IMPORT Dialog, StdLog, Strings;

VAR

dlg*: RECORD
list*: Dialog.List;
partslist*: Dialog.Combos;
sum-: INTEGER;
disable*: BOOLEAN;
elems*: INTEGER;
ans® : Dialog.String;

END;

sel*: Dialog.Selection; (* handled separately to avoid race condition in notifier *)

Figure 6.2: Declaring List Access

In the above example there is a declaration for each of the available list types, note the sel*
declaration for type Dialog.Selection and its attached comment!

LA ‘race’ condition is where some resource is in conflict with its usage by another resource depending upon
how its called, in the Blackbox Oberon documentation mention is made that the Dialog.Selection’s notifier is

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

6.3. USING EMBEDDED CODE TO LOAD LIST CONTROLS 51
6.3 Using Embedded Code to load List Controls

If you are quite sure of that the list selections are definately not to be changed, then you may
decide to place the code to set up the lists in your program. This is useful for mostly small,
unchanging lists, such as options lists like colour selection, gender (male, female), etc.

The following example program sets up all its lists using internal procedures with the list
elements specifically defined.

MODULE ObxDialogBsh;

(*
Modified example code Obx/Mod/Dialog , showing the actual retrevial of selected data from a dis-
played List, Selection & Combo type.

The original shows the lists working but not how to return the selected data to a program field *)

(* ®”StdCmds.OpenAuxDialog(’Obx/Rsrc/DialogBsh’,’Bsh Dialog Test’)”; *)
IMPORT Dialog, StdLog, Strings;

VAR

dlg*: RECORD
list*: Dialog.List;
combo™*: Dialog.Combo;
sum-: INTEGER;
disable*: BOOLEAN;
elems*: INTEGER;
ans® : Dialog.String;

END:;

sel*: Dialog.Selection; (* handled separately to avoid race condition in notifier *)

Continues +—

called as often as required to resolve include/exclude selections, and presumably this action may cause a race

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

92 CHAPTER 6. COMBOBOXES

PROCEDURE setupList;
BEGIN

sel.SetLen(12);

sel.SetItem(0, "zero 0”); sel.SetItem(1, "one 10”); sel.SetItem(2, ”two 27);
sel.SetItem(3, ”three 3”); sel.SetItem(4, ”four 4”); sel.SetItem(5, "five 57);
sel.SetItem(6, "six 6”); sel.SetItem(7, ”seven 7”); sel.SetItem(8, ”eight 8 7);
sel.SetItem(9, "nine 9”); sel.SetItem (10, "ten 10”); sel.SetItem(11, "eleven 11”);

END setupList;

PROCEDURE SetList (IN 1: Dialog.List; n: INTEGER);
VAR i: INTEGER;
BEGIN
l.SetLen(n);
i:=0;
WHILE i # n DO
CASE i OF
| 0: LSetItem(i, 70 zero”)
| 1: 1.SetItem(i, "1 one”)
| 2: LSetItem(i, 72 two”)
| 3: L.SetItem(i, ”3 three”)
| 4: LSetItem(i, 74 four”)
| 5: L.SetItem(i, 5 five”)
| 6: L.SetItem(i, 76 six”)
| 7: 1.SetItem(i, "7 seven”)
| 8: LSetItem(i, ”8 eight”)
| 9: 1.SetItem(i, ”9 nine”)
| 10: L.SetItem(i, ”10 ten”)
| 11: 1.SetItem(i, ”11leleven”)
END:
INC(i)
END
END SetList;

Continues —

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

6.3. USING EMBEDDED CODE TO LOAD LIST CONTROLS

23

PROCEDURE setCombo;
BEGIN

dlg.combo.SetLen(12);
dlg.combo.SetItem(0, 70 - zero”);

dlg.combo.SetItem(1, 71 - one”);
dlg.combo.SetItem(2, "2 - two”);
dlg.combo.SetItem(3, ”3 - three”);
dlg.combo.SetItem(4, 74 - four”);
dlg.combo.SetItem(5, 75 - five”);
dlg.combo.SetItem(6, 76 - six”);
dlg.combo.SetItem(7, "7 - seven”);
dlg.combo.SetItem(8, 78 - eight”);
dlg.combo.SetItem(9, 79 - nine”);
dlg.combo.SetItem(10, 710 - ten”);
dlg.combo.SetItem(11, ”11 - eleven”)

END setCombo;

Continues —

PROCEDURE ListNotifier* (op, from, to: INTEGER);
BEGIN

dlg.list.GetItem(dlg.list.index, dlg.ans); (* display selected item *)
Dialog.Update(dlg);
END ListNotifier;

Continues +—

PROCEDURE ElemsNotifier* (op, from, to: INTEGER);
BEGIN
IF op = Dialog.changed THEN
IF dlg.elems < 0 THEN
dlg.elems := 0; Dialog.Update(dlg)
ELSIF dlg.elems > 12 THEN
dlg.elems := 12; Dialog.Update(dlg)
END:

SetList(dlg.list, dlg.elems); (* rebuild list *)
Dialog.UpdateList(dlg.list); (* update list *)

END
END ElemsNotifier;

Continues +—

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

o4 CHAPTER 6. COMBOBOXES

PROCEDURE SelNotifier* (op, from, to: INTEGER);
VAR

stmp : Dialog.String;
BEGIN

IF op = Dialog.set THEN (* recalculate sum of selected numbers *)
dlg.sum := (to - from + 1) * (to + from) DIV 2;

ELSIF op = Dialog.excluded THEN (* correct sum after deselection of some numbers *)
WHILE from <= to DO
DEC(dlg.sum, from);
INC(from);
END
ELSIF op = Dialog.included THEN (* correct sum after selection of some numbers *)
WHILE from <= to DO
sel.GetItem(from, dlg.ans); (* display currently selected item *)
INC(dlg.sum, from);
INC(from);

END
END;

Dialog.Update(dlg) (* show new dlg.sum *)
END SelNotifier;

Continues +—

PROCEDURE ComboNotifier*(op, from, to: INTEGER);
BEGIN
dlg.ans := dlg.combo.item; (* collect selected combo list item *)

Dialog.Update(dlg);
END ComboNotifier;

Continues —

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

6.3. USING EMBEDDED CODE TO LOAD LIST CONTROLS %)

PROCEDURE ListGuard* (VAR par: Dialog.Par);
BEGIN

par.disabled := dlg.disable
END ListGuard;

BEGIN
dlg.elems := 2;
SetList(dlg.list, dlg.elems); (* set up list entries (left list) *)
setupList; (* set up ’selection’ box list of items (middle list) *)
setCombo; (* set up 'combo’ box (right hand list)*)

END ObxDialogBsh.

Figure 6.3: Load Lists from Imbedded Code

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

56 CHAPTER 6. COMBOBOXES
6.4 The Resources File

A resources file is a file defined in the sub-system directory Rsrc and is always called Strings, eg:

Quickquote/Rsrc/Strings

This file is used by the declared Blackbox Oberon sub-system (eg: Quickquote) for resources
of a local nature to be used by any program modules in the Quickquote directory, eg special text
translations for Buttons displayed texts, error messages, list entries, language translations, etc,

If the list to be displayed is of known entries (values), but may require modification from time
to time, or have a large number of entries, then placing them into a resources file is the most
appropriate way to maintain the list, as only one line of Blackbox Oberon code for each list is
required to load the list. All the list types (list, selection & combo) allow for loading their list
from the resource file.

It should be noted that all your list controls in a program maybe loaded from the same
resource file as each list will have its own key identifier to separate the list items. You may have
as many lists are required in the resource file. There is only one resources file per sub-system.

6.4.1 Resource Key

Entries in the resources file (Strings) are identified by user defined keys , the key is matched to
that declared in the SetResources procedure call and those matching entries are loaded into the
appropriate list.

A key definition is : ‘#Sub_directory colon Key’

eg: #Quickquote:parts
and used in Blackbox Oberon code like :

dlg.partslist.SetResource(# Quickquote:parts);

The above line of code will search the Quickquote/Rsrc/Strings resource file for entries with
a key 'parts’ and load those entries into dlg.partslist.

In the example code below observe the two PROCEDURES setupList & setupCombo and
note the corresponding key entries in the example resources file on page 61 and find the records
(lines) being loaded into their respective lists.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

6.5. USING SETRESOURCE TO LOAD LIST CONTROLS
6.5 Using SetResource to load List Controls

57

MODULE ObxDialogBsh;
(*

played Lists, Selections & Combo type.

(* ®”StdCmds.OpenAuxDialog(’Obx/Rsrc/DialogBsh’,’Bsh Dialog Test’)”; *)
IMPORT Dialog, StdLog, Strings;

VAR

dlg*: RECORD
list*: Dialog.List;
combo*: Dialog.Combo;
sum-: INTEGER;
disable*: BOOLEAN;
elems*: INTEGER;
ans® : Dialog.String;

END:;

sel*: Dialog.Selection; (* handled separately to avoid race condition in notifier *)

Modified example code Obx/Mod/Dialog , showing the actual retrevial of selected data from a dis-

The original shows the lists working but not how to return the selected data to a program field !!! *)

Continues +—

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

o8 CHAPTER 6. COMBOBOXES

PROCEDURE setupList;
BEGIN
sel.SetResources(” #0bx:Select”); (* use resources file Obc/Rscr/Srings for data *)

END setupList;

PROCEDURE SetList (IN I: Dialog.List; n: INTEGER);
VAR i: INTEGER;
BEGIN
l.SetLen(n);
i:=0;
WHILE i # n DO
CASE i OF
| 0: 1.SetItem(i, "0 zero”)
| 1: LSetItem(
| 2: L.SetItem(i, "2 two”)
| 3: LSetItem(i, 73 three”)
| 4: 1.SetItem(i, 74 four”)
| 5: L.SetItem(i, 5 five”)
(
(
(

i, 71 one”)

| 6: L.SetItem(i, 76 six”)
| 7: 1.SetItem(i, "7 seven”)
| 8: LSetItem(i, ”8 eight”)
| 9: 1.SetItem(i, 79 nine”)
| 10: L.SetItem(i, ”10 ten”)
| 11: 1.SetItem(i, ” 11eleven”)
END:
INC(i)
END
END SetList;

Continues —

PROCEDURE setCombo;
BEGIN

dlg.combo.SetResources(” #0Obx:comboentry”); (* use resources file Obc/Rscr/Srings for data *)

END setCombo;

Continues +—

PROCEDURE ListNotifier* (op, from, to: INTEGER);
BEGIN

dlg.list.GetItem(dlg.list.index, dlg.ans); (* display selected item *)
Dialog.Update(dlg);
END ListNotifier;

Continues —

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

6.5. USING SETRESOURCE TO LOAD LIST CONTROLS

29

PROCEDURE ElemsNotifier* (op, from, to: INTEGER);
BEGIN
IF op = Dialog.changed THEN
IF dlg.elems < 0 THEN
dlg.elems := 0; Dialog.Update(dlg)
ELSIF dlg.elems > 12 THEN
dlg.elems := 12; Dialog.Update(dlg)
END:

SetList(dlg.list, dlg.elems); (* rebuild list *)
Dialog.UpdateList(dlg.list); (* update list *)

END
END ElemsNotifier;

Continues +—

PROCEDURE SelNotifier* (op, from, to: INTEGER);
VAR

stmp : Dialog.String;
BEGIN

IF op = Dialog.set THEN (* recalculate sum of selected numbers *)
dlg.sum := (to - from + 1) * (to + from) DIV 2;

ELSIF op = Dialog.excluded THEN (* correct sum after deselection of some numbers *)
WHILE from <= to DO
DEC(dlg.sum, from);
INC(from);
END
ELSIF op = Dialog.included THEN (* correct sum after selection of some numbers *)
WHILE from <= to DO
sel.GetItem(from, dlg.ans); (* display currently selected item *)
INC(dlg.sum, from);
INC(from);

END
END;

Dialog.Update(dlg) (* show new dlg.sum *)
END SelNotifier;

Continues —

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

60 CHAPTER 6. COMBOBOXES

PROCEDURE ComboNotifier*(op, from, to: INTEGER);
BEGIN
dlg.ans := dlg.combo.item; (* collect selected combo list item *)

Dialog.Update(dlg);
END ComboNotifier;

Continues +—

PROCEDURE ListGuard* (VAR par: Dialog.Par);
BEGIN

par.disabled := dlg.disable
END ListGuard;

BEGIN
dlg.elems := 2;
SetList(dlg.list, dlg.elems); (* set up list entries (left list) *)
setupList; (* set up ’selection’ box list of items (middle list) *)

setCombo ; (* set up ’combo’ box (right hand list) *)

END ObxDialogBsh.

Figure 6.4: Load Lists using SetResources

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

6.6. AN EXAMPLE RESOURCES FILE
6.6 An example resources file

STRINGS

Lookup Lookup

0bxConv.ImportTEXT Obx Text File
0ff Switch Off

On Switch On

comboentry[0] O == zeros
comboentry[1] 1 == ones

comboentry[2] 2 == twos

comboentry[3] 3 == three
comboentry[4] 4 == fours
comboentry[5] 5 == fives
comboentry[6] 6 == sixes
comboentry[7] 7 == sevens
comboentry[8] 8 == eights
comboentry[9] 9 == nines

comboentry[10] 10 == tens

comboentry[11] 11 ==elevens

Select[0] zero

Select[1] One

Select[2] Two

Select[3] Three

Select[4] Four

Select[5] Five

Select[6] Six

Select[7] Seven

Select[8] Eight

Select[9] Nine

Select[10] Ten

Select[11] Eleven

CtrlCol.Prop ObxCtrlCol.InitDialog;
StdCmds .OpenToolDialog(’0bx/Rsrc/CtrlCol’, ’Properties’)

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

61

http://www.fineprint.com

62 CHAPTER 6. COMBOBOXES

6.7 Using a List, Selection or Combo Box to retrieve in-
formation

Having loaded the appropriate data into a List, the List is presented to the end user via a vdu
form control, the user may scroll up/down the list using the mouse or typing the first character
of a possible entry, eg: type ‘e’ will scroll the displayed list to the first entry starting with an
‘e’, a selection is normally made by a mouse click and the program will collect and return the
selected value(s) for further processing.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

6.7. USING A LIST, SELECTION OR COMBO BOX TO RETRIEVE INFORMATION 63
6.7.1 List Boxes

= Bsh Dialog Test

list el combo
0O zero . Zero El]
1 one one B 0 == zeros bt
2 tweo Twwo 1 == one= =
3 three p— Threes 2 ==twos
Four | |z==three
2 five Fiwve 4 == fours
- s ;
B =ix o Six 5 == fives byt
Seven o =
[disakle =l
Iiﬂ Close |
elems |1 2 E
Selection Made l4 four

Figure 6.5: Example List Box Usage

List Boxes return a single index to the selected item depending upon the selected items
position in the list. In the example form above the user has selected entry ‘4 Four’ in the list
List, and the program is returned the indez? value 4, not the selected string value '4 Four’.

Looking at the program code in PROCEDURE listNotifier; on page 58 we see the line of
code,

dlg.list.GetItem(dlg.list.index, dlg.ans);
which uses the indexr set by the user selection, and the Dialog.list objects PROCEDURE

Getitem, to place the actual text value ‘4 Four” into variable dlg.ans, this value is displayed on
the form next to ‘Selection Made’ caption.

2counting from 0 !

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

64 CHAPTER 6. COMBOBOXES
6.7.2 Selection Boxes

= Bsh Dialog Test

0 rero Tero A]

One 0 == zeros .
Twva 1 == ones =

SR pe |3
Four — 3 ==threes
Five 4 == four=s
S 5 == fives bt
Seven % —

[disakle LI

gems 2] l ? _ Ges= |

Selection Made |Three

Figure 6.6: Example Selection Box Usage

Selection Boxes return a set of indices to all selected items chosen on the displayed list, the
use may select multiple choices, and those choices do not have to be consecutive. ie: the user
may choose 1,3, 10 thru 15, etc.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

6.7. USING A LIST, SELECTION OR COMBO BOX TO RETRIEVE INFORMATION 65
6.7.3 Combo Boxes

= Bsh Dialog Test

O Fera Tero A
Cne il
Twweo
S nights
Four — 9 == nine=
Five 10 ==tens= ==
S 11 ==elevens by
Seven % —
[disakle LI
| 3 Close |
elems Izi E
Selection Made i? == SEVENS

Figure 6.7: Example Combobox Usage

Combo Boxes return the actual (one only) selected string value in a combo box list objects
internal variable item. Observe the code in PROCEDURE comboNotifier on page 59 , and the
above example screen where ‘7 == Seven’ has been selected. The following code copies the
selected text value into dlg.ans for displaying beside caption ‘Selection made’.

dlg.ans := dlg.combo.item;

to recover the actual selected text into our program for further processing. Notice that we are
not told the index value of the selected text, although we may use a index to set/get items from
the combo list if we wish, refer to Blackbox Oberon documentation on Dialog.Combo RECORD.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

66 CHAPTER 6. COMBOBOXES
6.8 Dynamically loading a List, Selection or ComboBox

Often a program will need to display changing lists of information, eg : new part#’s, new books
in a library, new accounts, etc, all of which may change in ‘real time’ as other users access the
same information especially in online database situations.

Therefore our programs will need to update the displayed lists every time a user acesses that
list.

Using this powerful concept is not without its hazards however and care must be taken in the
system design to ensure that very large lists are not being re-created continuely as the system
overheads may eventually cause a major slow down in response times or at worse a total systems
crash!

There is little sense in creating lists that contain hundreds of thousands of entries, of parts for
example, however lists of categorys of parts may be more useful for an intial access to any part
required. A little more work by the programmer should offer a more pleasant end user system.

Note: The following example uses a SQL (MySQL) database as the source of
information for building the list. If you are unsure about how Blackbox Oberon
interacts with MySQL database(s) then you are advised to read Chapter 7 now, and
then return here.?

3] had wanted to place the 'dynamic lists’ section in its own chapter after MySQL, but felt it was more useful
keeping the use of Lists together.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

6.9. EXAMPLE DROPDOWN LIST FORM 67
6.9 Example dropdown list form

= Quotation System

Ountes\ Stock Clients ILDad Data] Tax Cndes] Translate Tahle Listauutesl System\ Supplier] Templatesl

—Search Clierts By ;

Name |Ha||eﬂ LI
: -
Cliert Mame FHamihon 3
Hamittan
i Hamittan -
Clisnt Code EHardiman Comparty |Dragcun City Bones
Hardinge
SUMAME. |hHarkin Address [0 Box 241
Harriz byl
First Mame |z |chlden Srjuare

salutation |y |
State Wi Postcode 13555

Tel Mo. o4 42 45 47
Fax. No.

Emeil |dragnncﬂy@nrigin.ne’c.au

First Previous Mext Last | Delete Update ‘ My |

Exit System

Figure 6.8: Dynamic Reload of Dropdown List

This form shows the user has just selected the client named ’Hallett’ from the dropdown
LIST, the program has read and displayed the client record for that client.

The List was re-built when the 'Client TAB was clicked upon by the user, this ensures that
a fresh version of the current client database is displayed in the dropdown List.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

68 CHAPTER 6. COMBOBOXES
6.10 Re-building a Dynamic list

MODULE QuickquoteExtract;
(*

NOTE : This is a extract from the program Quickquote and cannot execute !!

It is meant to be READ to observe the use of SQL code with LIST boxes, showing the dynamic
re-loading of the lookup table displayed by the List box, the List is loaded upon initial startup of the
program and every time the Clients TAB is

clicked upon to ensure curent data is displayed in the List box.

®”StdCmds.OpenAuxDialog(’QuickQuote/Rsrc/QuickQuote’,’Quick Quote)7
QuickQuote : converted from the Delphi / Interbase version into Oberon / MySQL 2001

June 2002 : added SQL loaded listbox for clients

)

IMPORT
Dialog, Views, Strings, SqlDB, SqlControls, Dates , StdLog, StdTabViews, StdCmds,
QuickquoteUtils;

VAR

clrecno,

cllastrecno : INTEGER;

tmps : ARRAY 10 OF CHAR,; (* global conversion fields for SQL row & col display *)
tmpl, tmp2 : ARRAY 5 OF CHAR,;

template_paras* : RECORD
code* : ARRAY 11 OF CHAR;
desc* : ARRAY 51 OF CHAR;
flag® : BOOLEAN;
END:

dlg* : RECORD (* access database variables *)
id*,
password*,
database*,
driver* : ARRAY 32 OF CHAR;
END:;

st* : StdTabViews.View; (* TabNotebook anchor *)
(* ====== SQL Table anchors ======= *)
cl* : SqlDB.Table; (* client table anchor *)

Continues —

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

6.10. RE-BUILDING A DYNAMIC LIST 69

The above variables are defined for the usage of the Listbox which will contain a list of Client
names read dynamically from a MySQL database table.

(* ======== local variables ===============%)
total_quote® : RECORD (* used by SQL SUM *)
total_quoted_price®* : Dialog.Currency;
END;

total_buy* : RECORD (* used by SQL SUM *)
total_buy_price®* : Dialog.Currency;
END:
cnt_items® : RECORD (* used by SQL COUNT *)
total_items® : INTEGER; (* used to accumulate sub totals on quote(s) form *)
client_reccnt®* : RECORD (* used by SQL COUNT *)
cl_totalrecs™ : INTEGER;
END; (* current max number of records in client table *)

tvars® : RECORD (* temp variables for client names key manipulation *)
temp?*,
tempname*,
tempcode* : Dialog.String;
END:

Continues +—

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

70 CHAPTER 6. COMBOBOXES

Client* : RECORD

CODENAME* : (* Dialog.String;*) ARRAY 20 OF CHAR; (* key *)
CODE* : ARRAY 10 OF CHAR; (* key *)
FIRST_.NAME* : ARRAY 15 OF CHAR;

SURNAME* : ARRAY 20 OF CHAR;
SALUTATION* : ARRAY 4 OF CHAR;
COMPANY_NAME* ARRAY 30 OF CHAR,;
ADDRI1* : ARRAY 30 OF CHAR;
ADDR2* : ARRAY 30 OF CHAR,;
ADDR3* : ARRAY 30 OF CHAR;
ADDR4* : ARRAY 30 OF CHAR,;
STATE* : ARRAY 4 OF CHAR;
POSTCODE* ARRAY 5 OF CHAR,;
TELNO* : ARRAY 15 OF CHAR;
TEL_NO_2* : ARRAY 15 OF CHAR;
FAX_NO* : ARRAY 15 OF CHAR;
MOBILE_NO* : ARRAY 15 OF CHAR;
E_MAIL_ADDR* : ARRAY 30 OF CHAR,;
ADDR2_1* : ARRAY 30 OF CHAR;
ADDR2_2* : ARRAY 30 OF CHAR,;
ADDR2_3* : ARRAY 30 OF CHAR;
ADDR2_4* : ARRAY 30 OF CHAR,;
STATE2* : ARRAY 4 OF CHAR;

POSTCODE2* : ARRAY 5 OF CHAR;
CONTACT_NAME* : ARRAY 40 OF CHAR;
NOTES* : ARRAY 80 OF CHAR,;
ABN* : ARRAY 11 OF CHAR;
CREATE_DATE* : Dates.Date;

END;

ClientNames* : RECORD (* List box *)
nameslist* : Dialog.List;
END:;

Continues —

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

6.10. RE-BUILDING A DYNAMIC LIST 71

PROCEDURE LoadClientList (cl : SqlDB.Table);
(* load listbox for client lookup *)
CONST
spaces = |’;
VAR
reccnt : INTEGER;
temp,
tempname,
tempcode : Dialog.String;
BEGIN
cl.Exec(”Select count(*) from client”) ;
cl.Read (0, client_reccnt); (* get # of records in client table *)

ClientNames.nameslist.SetLen (client_recent.cl_totalrecs); (* create a new list *)

cl.Exec(”Select * from client order by CODE_NAME, CODE ”);

FOR recent := 0 TO (client_recent.cl-totalrecs - 1) DO

cl.Read(recent , Client);

temp := Client. CODE_.NAMES ;

ClientNames.nameslist.SetItem (reccent, temp$);

(* place in list *)
END:
Dialog.ShowStatus(””);
END LoadClientList;

Continues +—

The PROCEDURE LoadClientList loads the List with the current Client Names held in the
MySQL Table Client. This procedure should be called whenever the List needs to be re-freshed,
eg, upon program startup, record insertion, deletion. It is up to the programmer to decide when
a refresh is appropriate, especially if this may take some time. In this example code the refresh
is done only when the user clicks the 'Client” TAB on the TAB Notebook display.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

72 CHAPTER 6. COMBOBOXES

PROCEDURE ClientListNotifier* (op, from, to : INTEGER);
VAR
pos : INTEGER;

BEGIN
ClientNames.nameslist. GetItem(ClientNames.nameslist.index, tvars.temp); (* collect cho-
sen listbox entry *)
Dialog.ShowStatus(” Client Selected : ” + tvars.temp$);
IF op = Dialog.changed THEN
cl.Read(ClientNames.nameslist.index , Client);

Dialog.Update(Client);

clrecno := ClientNames.nameslist.index; (* set current recno index *)

END;

END ClientListNotifier;

Continues —

If the program is expected to process the selected list item, a Notifier must be coded and
attached to the ListBox Control (field) on the displayed form. In this example, the program
reads and displays (Update) the MySQL database record that has the same 'record number’ as
the index of the selected List item.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

6.10. RE-BUILDING A DYNAMIC LIST 73

PROCEDURE NotifierProc* (v : StdTabViews.View; from, to : INTEGER);
BEGIN

(* Standard Tabs processing :
notice that when the user clicks on the Clients TAB the ComboBox List is reloaded to ensure that
current data is displayed to the user for selection (| 2 :)

)

CASE to OF

| 0 : Dialog.ShowStatus(’Quotes ’);
| 1: Dialog.ShowStatus(’Stock ’);

| 2:

LoadClientList(cl); (* load client lookup list *)
Dialog.ShowStatus(’Clients ’);

| 3 : Dialog.ShowStatus('Load Data ’);
| 4 : Dialog.ShowStatus('Tax Codes ’);
| 5 : Dialog.ShowStatus('Translate Table ’);
| 6 : Dialog.ShowStatus(’'List Quotes ’);
| 7 : Dialog.ShowStatus(’System ’);

| 8 : Dialog.ShowStatus(’Supplier’);

| 9 : Dialog.ShowStatus(’Templates’);
ELSE

StdLog.String("TAB notify CASE failed ’); StdLog.Int(to); StdLog.Ln;
END; (* enter TAB switch code here *)

END NotifierProc;

Continues +—

Standard Tabs processing :
notice that when the user clicks on the Clients TAB the List is reloaded to ensure that current
data is displayed to the user for selection (| 2 :)

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

74 CHAPTER 6. COMBOBOXES

(* ==== Client record navigation buttons ====== *)

PROCEDURE clFirst*;
BEGIN
clReload;
cl.Read(0, Client);
Dialog.Update(Client);

clrecno := 0;

END clFirst;

PROCEDURE clLast*;

BEGIN

cl.Exec(”Select count(*) from client order by CODE_NAME, CODE”) ;
cl.Read(0, client_reccnt); (* get no of records in client table *)

cllastrecno := client_reccnt.cl_totalrecs -1;
clrecno := cllastrecno;

(* save for table navigation *)
(* StdLog.Int(clrecno); StdLog.Ln; *)

clReload;
cl.Read(cllastrecno, Client);

(* read the last record *)
Dialog.Update(Client);

END clLast;

PROCEDURE clNew*;
VAR

Tstr : ARRAY 21 OF CHAR;
BEGIN

ClearClient;

Continues —

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

6.10. RE-BUILDING A DYNAMIC LIST 75

Strings.Int ToString(Get_Next_Seq(uniseq, ”AUTOINC”) , Client.CODE);

Dialog.Update(Client);
END cINew;

PROCEDURE clDelete*;
BEGIN
cl.base.Exec("DELETE FROM client WHERE :Quickquote.Client. CODE_NAME =
CODE_NAME AND :Quickquote.Client. CODE =CODE ”);
cl.base.Commit();
clReload;
cl.Read(clrecno, Client);
Dialog.Update(Client);
ShowRecNo;
END clDelete;

PROCEDURE clUpdate*;
BEGIN

cl.LExec("DELETE FROM Client WHERE CODE_NAME = :Quickquote.Client. CODE_NAME
AND CODE = :Quickquote.Client. CODE”);
(* does not matter if DELETE fails, ie record not there to delete !!! *)

Strings.Replace(Client. CODE_NAME,0,LEN(Client. SURNAME),Client. SURNAME);
(* StdLog.String(Client. CODE_NAME); StdLog.Ln; *)

cl.Exec(”INSERT INTO Client VALUES (:Quickquote.Client)”);
cl.base.Commit();

clReload;

cl.Read(clrecno, Client);

Dialog.Update(Client);
ShowRecNo;
END clUpdate;

PROCEDURE clPrint*;

BEGIN

Dialog.Beep;
Dialog.ShowStatus(’Print not implimented yet !’);
Dialog.Beep;

END clPrint;

Continues —

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

76 CHAPTER 6. COMBOBOXES

Gl —
PROCEDURE clNext*;
BEGIN
IF clrecno = cllastrecno THEN
Dialog.Beep;
Dialog.ShowStatus(’Reached end of table’); Dialog.Beep;
ELSE
INC(clrecno);
cl.Read(clrecno, Client);
Dialog.Update(Client);
END:;
ShowRecNo;
END clINext;

PROCEDURE clPrevious*;
BEGIN
IF clrecno > 0 THEN
DEC(clrecno);
ELSE
clrecno := 0;
Dialog.ShowStatus('Reached beginning of table’); Dialog.Beep;
END;
cl.Read(clrecno, Client);
Dialog.Update(Client);
ShowRecNo;
END clPrevious;

(* ==== end client navigation butons========== *)

Continues —

The form in section 6.9 has a number of user navigation buttons allowing the user to move
around the available Client records. It should be understood that MySQL (and most other SQL
database systems) does not have the concept of 'next’, previous’ records ! This is due to the
mathematical definition of relational database theory(RDBMS), a subject too complex to explain
here. 4

In summary, RDBMS’s theory allows the database to place stored records in any order and
manner deemed applicable by the implimentor, that is, there is NO defined sequence to any
records stored!, therefore the concept of 'next’,’previous’ record becomes academic, as the 'next’
record in the database most likely would not follow any defined ordering method, ie: not alpha-
betic. However, when a SQL SELECT statement returns records from the query, those records
are said to form a SET, which maybe ordered by the SELECT statement. These records are
accessed by a record number (0,1,2,3,..n) in the Blackbox Oberon SqlTable READ PROCE-
DURE by the program. Therefore because the SET is ORDERED (SORTED) we can access the
'next’, 'previous’ records in the SET by controlling the usage of the record number , in the SET.

4there are many books explaining this theory, in particular those by C. J. Date are very good

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

6.10. RE-BUILDING A DYNAMIC LIST 7

In this example program, notice the usage of the programmer supplied variable clrecno, which
is used to keep track of which RECORD in the SET the program is currently displaying, and if
the user choses a record via the dropdown LIST, then that List entries record indexr becomes the
current clrecno. Also notice that the PROCEDURES clnext, clprevious, clfirst, cllast, etc also
update the variable clrecno.

BEGIN
dlg.id := "7,
dlg.password :=
dlg.database := 7 QuickQuoteMySQL”;
dlg.driver := ”SqlOdbc”;

2799,
9

Dialog.ShowStatus(” QuickQuote Ver 1.0 on ” + dlg.database);
OpenSql;

LoadClientList(cl); (* initial load client lookup list *)
InitializeDisplay;

END QuickquoteExtract.

Figure 6.9: Dynamic Loading and Using ListBox

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

78 CHAPTER 6. COMBOBOXES

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

Chapter 7
The MySQL Database

Blackbox Oberon does not have its own defined a database file system!, however access to many
SQL based database products is possible via the ODBC (Open Database Connection) software
supplied with Blackbox Oberon 2

The choice of which SQL database system is left to the individual, however reliability should
be the main consideration, having a solid reliable product like Blackbox Oberon calling upon a
unreliable database will not enhance your final program.

Fortuantely the Blackbox Oberon to SQL interface tools are well founded and much easier
to use than typical C code interfaces offered by most other languages wishing to use third party
products like databases.?

MySQL is the authors prefered SQL database for usage with Blackbox Oberon .

7.1 Introduction

MySQL is just one of the available SQL database products that may be used with Blackbox
Oberon as the front-end’ user tool. Most SQL databases do not have any knowledge of which
computer(s) or computer language is attempting access to the stored data held by the SQL
database.

SQL (Structured Query Language) was developed as an interactive tool for more easy access
to stored data using the Relational Data Model (RDBMS) of storing data in Tables.

MySQL supplies a Command Line Interface to the standard SQL Language Commands,
SELECT, UPDATE, etc, for use via a keyboard or using scripts held on files and user interfaced
from a DOS session when under a Windows Operating System (all versions).? And a API
(application programming interface) for use by programming languages.

SQL’s design criteria was, and is, for the Query part of the operation, pre & post processing
of the stored data is left to other programming tools, ie: C/C++, Delphi, Oberon, PL/1, Crystal
Reports or whatever.

Over time, SQL based database RDBMS’s have evolved to the Client/Server model of storing
and access data, ie: a SQL Server maintains all the Tables and data stored therein on a seperate
Server Computer, the end-user program wishing to access that data is a Client of that SQL

Lone of the few times you will need to go outside the Blackbox Oberon environment

2at least up to Blackbox Oberon version 1.4

3most languages offer obsure parameter driven interface record structures to make the connection, forcing the
programmer to conform to C data type standards, which may entail ’bit’ fiddling code to conform

4Gui interfaces were not usual when SQL was first designed by IBM in the 1970’s

PDF created with FinePrint pdfFactory Pro trial verslon http://www.fineprint.com

http://www.fineprint.com

80 CHAPTER 7. THE MYSQL DATABASE

Server. It does not matter what programming language the Client program is written in as the
SQI Server will return results of a Query in a SQL standard manner for processing by the Client
Program.

You will need to obtain and install your own copy of MySQL to make use of the following
information, MySQL is not supplied by Oberon microsystems. Your programs will use the
SqlOdbc driver supplied with Blackbox to access MySQL.

Your Blackbox |— == ODEC Py Sl My SGEL Phvysical
Program Client Seryver Ty SGL0
- Pru— - Databasze
Your Computer \\ / Server Computer
LocalHost ar
Metwork
Connection

Figure 7.1: Oberon to Mysql database via ODBC

7.2 Blackbox Oberon MySQL general features

It should be kept in mind that SQL is a quite independent program in its own right, and we
are using its facilities to return data from its database into Blackbox Oberon for processing or
display to a end-user. The Blackbox Oberon to SQL interface has been developed to make this
as effective as possible.

Most languages require complicated interfaces to external software not written in the host
language, the Blackbox Oberon SQL interface, however, makes good use of modules to overcome
this. The central programming interface is Module Sq/DB which only exports two major and a
few minor data types. The major datatypes are SqlDb.Database and SqlDB.Table which supply
the access abstractions for SQL databases and SQL results tables. Data from the results tables
can then be read into Component Pascal RECORDS which represent a single (one) row of a SQL
Table.

7.2.1 Full access to SQL

Via your Blackbox Oberon program you can have full access to all the features of the SQL
language, there is no attempt to define SQL behind special database-aware controls pretending
that SQL is a part of the Blackbox Oberon language.

This has both advantages and disadvantages, in particular, the programmer must check the
syntax of any imbedded MySQL statements to be processed, else unusual results may occur. This

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

7.3. AQUIRING MYSQL 81

is because the MySQL statements declared inside strings from passing to MySQL for execution.
Blackbox Oberon does not attempt to check for syntax or symantic errors in these strings.

7.2.2 Integration of MySQL with Blackbox Oberon

As SQL is a query language, we often need the flexibility to construct SQL statements at run-
time. ie: we cannot know in advance exactly what query a end-user may wish to process, on the
other hand, we should not expect end-users to understand the SQL command language, hence the
use of GUI interface tools like Blackbox Oberon . SQL commands and statements are sent to the
SQL Server in plain text.® Blackbox Oberon has a special built-in metaprogramming facilitie
which allows direct usage of user defined Component Pascal variables within SQL statements.®

This feature make for a much easier programming of SQL queries, as hopefully we will see
later in this chapter.”

7.2.3 Extensibility

We will access MySQL via the ODBC (Open DataBase Connectivity) facility, which offers our
Blackbox Oberon programs a degree of independence from the actual version of MySQL we
are using. If we install a newer version, our Blackbox Oberon programs will still run as only
the ODBC ’connection’ will be changed, our programs remain the same, without the need to
recompile. In fact, it is possible to use several different ODBC drivers to different databases in
the same application concurrently.ie: use MySQL, ACCESS and MS-SQL Server at the same
time from the one Blackbox Oberon program via ODBC connections.

7.2.4 Separation of program logic and user interface

A major design feature of Blackbox Oberon is the separation of the user interface (usually the
GUI Form) and the actual program code executed by user actions using that form, eg Press a
Button. The GUI form has no information about the actions being executed by the button.
Therefore the GUI form maybe modified, eg fields moved, without requiring changes to the
called code. A Blackbox Oberon program accesses and updates database contents via so-called
interactor objects, ie: Component Pascal records. These record variables are used as sources and
destinations of MySQL command parameters or result data from MySQL queries. ie: MySQL
reads and writes directly into Blackbox Oberon record variables and does any data conversion
from SQL as necessary.

7.3 Aquiring MySQL

Versions of MySQL are available for many different Operating Systems, from www.mysql.com.
Please observe the liciencing agreement.

There are also many addon utilities, esp. API (Application Programming Interfaces) for
numerious programming languages.

5They might not be actually , but when you read your SQL statements in Blackbox Oberon code, that’s how
you will see them.

6 Almost all other programming languages set up text (Character strings) parameter passing areas to interface
with SQL, or C compliant STRUC definitions, a sometimes tedious and error ridden task to code.

"We dont need to understand how its done, just believe it is done

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

82 CHAPTER 7. THE MYSQL DATABASE

The SqlOdbe (Open Data Base Connection) supplied with Blackbox is used.

7.4 The MySQL Book

Although the Mysql distribution contains comphrensive documentation and a excellent reference
manual, it is recommended that you aquire a copy of the book: "MySQL” by Paul DuBois ®
Published by New Riders www.newriders.com

ISBN 0-7357-0921-1

This will save you considerable printing time and paper!. There is also a very informative
Appendix A on obtaining and installing the MySQL Software, although the supplied installation
information on the distribution files should be considered the latest information.

7.5 Installing and running MySQL

Following the installation documentation for the selected Operating System and MySQL version,
you will eventually have a server task® (eg Mysqld.nt) running which is normally started up at
system boot, also several client tasks are installed at this time. Your Blackbox programs become
clients to this server once they have opened a database for access. One of these supplied client
tasks is called mysql, and is used as a interactive tool to create databases, tables, queries, etc, in
command line mode. ie no GUI interface. Most GUI interfaces to SQL databases are done via
third party languages like Blackbox, Delphi, Visual Basic, Perl, C/C++, etc. It is unusual for a
SQL database to have a native GUI interface tool.

This server task (mysqld on a windows NT machine) is the interface program task between
the user program and the ODBC drivers. Blackbox’s SqlOdbc & SqlDB modules when called,
translate your SQL statements into appropriate ODBC functions, which in turn setup and make
system calls to mysqld to access the database files (tables), data is returned to the user program
via other SQL statements (see later example code), the mysqld server then ’sleeps’ until another
user program issues a SQL statement.

The mysql server task is left running even after your program terminates, as all other MySQL
interaction will be via this server task. Indeed, once loaded, the mysql server usually stays active
until system power off.

7.5.1 ODBC & MySQL

Note that Blackbox’s ODBC driver is called SqlOdbc, the spelling is important, but the generic
word ODBC is mostly used in this text. The word SqlOdbc is only used in the Blackbox Open-
Database procedure, as will be shown in the example Blackbox code.

To interface to a Mysql database an ODBC entry must be made by the ODBC administrator
program to install an ’alias™? so that a connection between MySQL and your Blackbox program
via a ODBC entry can be made at your program execution.

1. Install MySQL (see mysql book or reference manual)

8a really excellent book indeed, which also contains very useful examples

9This server task maybe installed on your computer or a separate computer via a network
Othe use of alais’s is useful, it allows us to change our databases name, location, etc, and not have to change
our program as long as the alias name remains the same.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

7.5. INSTALLING AND RUNNING MYSQL 83

2. Install MySQLODBC program.(see mysql book or reference manual)
3. Start the ODBC administrator (assume NT 32 bit version here)

(a) Under tab ”User DSN”, press " Add”

(b) choose the Mysql line from the displayed database drivers available.
)
)

(c

(d) a Mysql configure dialog box should appear (you can ignore most of it !), enter,

press ”Finish”

i. Windows DSN name testmysql
(your database alias)

ii. Mysql Host (name or IP) : localhost
(localhost, if not a networked database)

iii. Mysql database name : testdb
(the actual database name, and Mysql Sub-Directory name)

iv. press OK

4. You should now see an entry for the just created "testmysql” alias in the avaliable ODBC
connections.

5. press OK to exit.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

84 CHAPTER 7. THE MYSQL DATABASE

[-

TDX mysql Driver default configuration E

Thiz iz in public domain and comes with MO WARBAMTY of any kind
Enter a database and optionz for connect

windows DSMH name: IM
bMuSOL host [hame or [P]: Ilncalhnat

MySCL database name: I.ﬁ.class

I=zer:

Fazsword:

il

Fart [if not 3308];

SEL cammand on connect;

Optionz that affectz the behaviour af MpODBC

[Dot optirize column width | Pad CHAR to full length

| Return matching rows | Return table names in SOLDescribeCoal

| Trace MyODBC | ze compressed protocol

[Allow BIG results [lgnore space after function names

[Dan't prompt on connect | Force use of named pipes

[Sirmulate JDBC 1.0 | Change BIGINT columns to INT

[lgnore # in B.table [Mo catalog [exp)

[Use manager cursars [exp) [Read options fram C: S chf

[Don't use setlocale [Safety [Check thiz if vou have problems)
(] Cancel

Figure 7.2: Example Mysql ODBC alias setup

The Windows DSN and Mysql Database Name fields do not have to be the same name. They
both happen to be ’Aclass’ in the example above.

Apart from ’localhost’ the values for Windows DSN name and Mysql database name above
are your entries which allow the ODBC driver to connect to the real database. Your Blackbox
program will always refer to the Windows DSN name as its database name in the OpenDatabase
call (see later), the ODBC driver will pass messages to the MySQL drivers make the actual
connection to the 'real” database , called "Aclass’ here.

Your BlackBox program does not need to know the actual physical location of the database,
or the value in MySQL Database Name, and depending upon the MySQI Host Name entrie the

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

7.5. INSTALLING AND RUNNING MYSQL 85

database maybe located on your computer (localhost) or a LAN or WAN, or Internet, etc. if
a IP address is entered by you. Whenever Blackbox refers to a ’database’ you should use the
Windows DSN Name, not the actual database name (Mysql Database Name).

Should the physical location of the database change, no changes are required in your Blackbox
program as long as the alias remains unchanged.

The use of the alias is not restricted to usage by your Blackbox program, other development
tools, Reports Writers (such as Crystal Reports) , Database Browsers,and other programming
languages can make use of the alias to access the same MySQL database at the same time.

You will find a powerful SQL Browser for Windows written in Delphi via the MySQL web
site, a very useful database development tool to be used in conjunction with MySQL’s command
line interface tools.

It is useful to note that you may have both your Blackbox Oberon session running and
a MySQL session running (in its own DOS session) at the same time when developing you
database. You can develop your SQL commands direct to MySQL and get immediate results, or
error reports, rather than have to write special Oberon code to decode MySQL results returned
to your program.'!

7.5.2 Create an MySQL database

Before any Blackbox program can make use of the just created ODBC alias (testmysql), the real
database (testdb) must exist.

Assuming that Mysql has been sucessfully installed, enter the operating systems command
line interface, a DOS session under windows, and start up the Mysql client : mysql.

eg while in a DOS Window :

C:>mysql
Welcome to the Mysql monitor.

Type ’help’ for help.

mysql>CREATE DATABASE testdb; <press enter>
mysql>exit <press enter>
C:>

This will create a database called testdb in the mysql date files area which was created when
mysql was installed. Neither your Blackbox program or any of the client tools need to know this
physical location for any MySQL usage, as they will access this database via the Windows DNS
value set up in your ODBC.

7.5.3 Creating MySQL Tables

By itself a SQL database actually holds no data, it is the tables within the database that contain
the users data. After creating a database you must use other MySQL commands to create those
tables your programming task require. Tables can be quite complex data structures but in general

this technique is especially useful when developing SELECT statements as any SQL syntax errors are reported
directly to you in plain text, also you can observe if the SELECT is returning the data you expect, once you are
satisfied, then you place that SQL statement in your Oberon Program

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

86 CHAPTER 7. THE MYSQL DATABASE

the simpler the design the easier the database will be to program against with your Blackbox
code.
There are basically three ways to create tables:

1. interactively by using mysql client.
2. by a batch file.

3. by a Blackbox (or other language) program.

While the third option has some attractions , it suffers from the chicken & egg problem, you
need to know how to program MySQL with Blackbox to do it (there is an example of this in
Blackbox SQL examples).

The first option is quite a good method, while learning to do simple tables setups, however
if you need to modify your table structures later you will have to re-enter all your instructions
exactly again.

The second option is the most useful technique as it does not suffer the problems of 1) &
3) , you only need to know enough SQL command language to setup your tables (no Blackbox
coding required) and you can re-run the batch file, also called a script file, as often as needed.
The script may create as many tables as necessary by one simple run of the script. The main
advantage of using a script is that you will not forget some small but important requirement
when developing your complete database.

InteractiveMySQL (DOS session) under Windows N'T

c:>mysql

mysql>CREATE DATABASE testdb;
mysql>CREATE TABLE Companies
(id INTEGER,

name CHAR(255)

ceo CHAR(255)

employees INTEGER) ;

mysql>CREATE TABLE Ownership
(owner INTEGER,

owned INTEGER,

percent INTEGER);

mysql>exit

c:>

This will create two tables, Companies &€ Ownership under the database name testdb.

Table Companies has the fields : id, name, ceo, employees.

Table Ownership has the fields : owner, owned, percent.

The fields have MySQL defined data types , INTEGER and CHAR. These are not Black-
box data types, however SqlOdbc will convert the datatypes as necessary during input/output
processes.

7.5.4 MySQL Script file to create the tables.

The following MySQL commands are entered into a text file, usually suffixed as .sql, using a text
editor, not a word processor, and then executed as if you had typed each line into a interactive

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

7.5. INSTALLING AND RUNNING MYSQL 87

session. It is advisable not use a word processor, eg WORD, WordPRO, etc to create a script
file as the script must not contain any special control characters, eg underline, bold, etc in the

file, just straight Ascii text is allowed.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

38 CHAPTER 7. THE MYSQL DATABASE

eg contents of file : setup_aclass.sql

drop table if exists Aclass;
create table Aclass (

yacht_name char(33) not null,
rego char(5) not null,
version INTEGER mnot null,
loa REAL,
ohang_fore REAL,
ohang_aft REAL,
1wl REAL,
gbl_port REAL,
gbl_stb REAL,
weight REAL,

port_freeboard_fore REAL,
port_freeboard_mid REAL,
port_freeboard_aft REAL,
stb_freeboard_fore REAL,

stb_freeboard_mid REAL,
stb_freeboard_aft REAL,
draught_measured REAL,
mast_H REAL,
jib_mast_I REAL,
main_luff_A REAL,
main_foot_B REAL,
jib_foot_J REAL,
mast_foot_K REAL,

sail_additional_area REAL,
primary key (yacht_name , rego , version));

to use this file:

c:>mysql Aclassdb < setup_aclass.sql

if sucessfully executed, this script will create a table called Aclass in a database named
Aclassdb. Note the use of the DROP TABLE IF EXISTS statement , this ensures that if the
table already exists, from a prior run of the script, or manually created for example, then the
script will not abort because you are trying to create an already existing table. This is a MySQL
feature and may not be available in other SQL implimentations

7.6 Databases, tables, and interactors

In a Blackbox Oberon environment a database is represented by a SqlDB.Database object. As
long as this object exists, MySQL commands can be executed, the actual database may be local,
remote or on a server.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

7.6. DATABASES, TABLES, AND INTERACTORS 89

7.6.1 Databases verses Tables verses Fields.

In a typical MySQL environment the user can consider the MySQL system to be a database
and the tables in that database. Within the table definitions are the actual fields one wishes to
program against.

ie: a MySQL Database has Table(s) which have Field(s)

Within a Database every Table must have a unique name, within a table each fieldname must
also be unique, however the same fieldname can be used in any of the tables. Your program
must qualify which tablename + fieldname is being refered to in your code to avoid updating the
incorrect field

ie : Tablename.fieldname (* note the ’decimal point’ connecter *)

The SQL language is quite independent of Oberon and was designed as a Query Language,
and thus has no knowledge of GUI’s, Report Writers, User Programs, etc that may wish to use
data held in the database. Most SQL implimentations offer various tools for the user to create
databases & tables, interact with those tables ie: make a query, enter data or report against
those tables.

At first sight SQL appears to be a very simple language, however, if the database design
contains many tables with many relationships between them then expecting the end user to enter
actual SQL statements on order to extract information will lead to great user dis-satisfaction with
your program !.

Oberon is used as a front-end to SQL in such a way that the user is usually offered a GUI
Form to interface to the underlying SQL database and this removes the need for the end-user to
write SQL programs, your Oberon program will collect information from the user, create or use
an appropriate SQL command, execute the SQL command, collect the results and display back
to the user.

There are two fundimental SQL statement types, those that do not return a result table and
those that do.

Not Returning a Results Table | Returning a Results Table
ALTER SELECT

CREATE SHOW

DELETE DESCRIBE

DROP EXPLAIN

FLUSH
GRANT
INSERT

KILL

LOAD DATA
LOCK TABLES
REPLACE
REVOKE

SET

UNLOCK
UPDATE

Figure 7.3: Summary of MySQL Statements (commands)

The not returning results SQL commands will execute the required task and may return a
execution status, but no table (or ”"answer”) result is available for further processing.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

90 CHAPTER 7. THE MYSQL DATABASE

The returning results SQL commands (especially a SELECT statement) will return a table
of results to Oberon from the SQL for further processing. Note that a query may return a empty
result table if the query failed to find asked for data,

eg:
SELECT * FROM COMPANIES WHERE ID = "IBM",

and column ID does not have "IBM” in your table COMPANIES. This is not a failure of the
SELECT statement but a ”failure” of your question (query) , ie: the answer is "no entries for
ID = ”IBM”, therefore there are no rows to return to your program.

7.6.2 Database
The following Blackbox Oberon declaration describes the SqlDB.Database type:

Database = POINTER TO ABSTRACT RECORD

res: INTEGER;

async: BOOLEAN;

showErrors: BOOLEAN;

(d: Database) Exec (statement: ARRAY OF CHAR), NEW, ABSTRACT;

(d: Database) Commit, NEW, ABSTRACT;

(d: Database) Abort, NEW, ABSTRACT;

(d: Database) Call (command: Command; par: ANYPTR), NEW, ABSTRACT;
(d: Database) NewTable (): Table, NEW, ABSTRACT

END;

Procedure Exec is used to execute SQL statements which don’t return result tables; e.g., DELETE
or INSERT statements, such as:

database.Exec ("DELETE FROM Companies WHERE id = 5")

Transactions are started automatically when the first modifying SQL command is executed. A
transaction is terminated either by calling Commit or Abort.

Warning: don’t use a database’s SQL transaction statements, since they may interfere with
Commit and Abort. Mysql versions to and including 3.23.43 do not support transaction state-
ments, later versions may.

A database object is obtained by calling SqIDB.OpenDatabase:

PROCEDURE OpenDatabase (protocol, id, password,
datasource: ARRAY OF CHAR;
async: BOOLEAN;
OUT d: SqlDB.Database;
OUT res: INTEGER);

This procedure opens the database given by the pair (protocol, datasource). where the ODBC
Alias (Odbce DSN name) and MySQL Driver name are defined. (”SqlOdbc”) If that database is
already open from a previous call to OpenDatabase, the same database connection may be used,
without considering the id and password information again.

See the example program ’karin’ on page 134 for details of using the OpenDatabase procedure.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

7.6. DATABASES, TABLES, AND INTERACTORS 91

If an application returns result tables from a database, typically generated by SELECT state-
ments, the program needs to also provide table objects, which represent the returned result tables.

The contents of a results table is static, ie: it represents a snapshot of the database contents
of the MySQL query at the time the statement is executed. A results table can be considered as
a local and independent copy of the database contents.

Several tables can be used simultaneously.

7.6.3 Database Status Response

A status response maybe available to test for correct execution of the command.
eg:

SqlDB.0OpenDatabase(driver, id, password, database,

SqlDB.async, SqlDB.showErors. db, res);

IF res = 0 THEN
table := db.NewTable()

(¥ <<<<<<<< create a table object <<<<<< *)

ELSIF res <= 3 THEN
Dialog.ShowMsg("\#Sql:CannotLoadDriver")

ELSE
Dialog.ShowMsg("\#Sql:ConnectionFailed")

END

The SqlDB.OpenDatabase returns a status response, in res, so that the programmer can check
for a successful execution.

7.6.4 Table Object

A table object is obtained by calling its database object’s NewTable procedure.
An SqlDB.Table is declared as

Table = POINTER TO ABSTRACT RECORD
base-: Database;
rows, columns, res: INTEGER;
strictNotify: BOOLEAN;
(t: Table) Exec (statement: ARRAY OF CHAR), NEW, ABSTRACT;
(t: Table) Available (): BOOLEAN, NEW, ABSTRACT;
(t: Table) Read (row: INTEGER; VAR data: ANYREC), NEW, ABSTRACT;
(t: Table) Clear, NEW, ABSTRACT;

(t: Table) Call (command: TableCommand; par: ANYPTR), NEW, ABSTRACT
END;

The variables (rows, columns) denotes the number of rows and columns of the most recently
returned result table.

The Table. Exec can only be used with results returning MySQL statements, usually SELECT,
but refer to page 7.6.1. This contrasts with Database.Exec which cannot return a results table.

table.Exec(”SELECT * FROM Companies WHERE id = 17”)

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

92 CHAPTER 7. THE MYSQL DATABASE
7.6.5 Read a table row

Read can be used to read a row from the result table into an interactor (i.e. an exported record
variable). The interactor can then be manipulated by the Blackbox Oberon program or by its
graphical user interface elements. For example, the following statement

table.Read (22, company);
reads the contents of row 22!2 of table into the variable company, which might be declared as

VAR

company*: RECORD
idx: INTEGER;
namex, ceox: ARRAY 32 OF CHAR;
employees*: INTEGER

END;

Record fields and rows of a result table are matched in the order that they are defined in
the record or in the database, respectively (MySQL doesn’t define an order, but every actual
database product does). Record fields to be matched must be exported. If there are non-exported
record fields, they are simply ignored.

12Unfortuantely, Rows are counted from 0, so row 22 is actually row 23

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

7.6. DATABASES, TABLES, AND INTERACTORS 93
7.6.6 Checking if a SQL statement executed successfully

To add to the programmers confusion, most SQL implimentations do not offer any status response
to sucessful execution. However , Oberon’s SqlDB interface does return a status value via a
predefined variable ,res, which is defined in both the Database and Table definitions

The following code extraction illustrates a technique of using the Table.rows variable value
to check if the preceding SELECT statement was sucessful. (this should work with any SQL as
most SQL’s return the number of rows affected by the last SQL command)

(* *)
MODULE AclassRating94; (* in directory Yachting *)
VAR

AclassTable*x : SqlDB.Table; (* anchor to Mysql database *)

yot*x : RECORD
(* this is the MySQL record structure *)

regox* : ARRAY 11 OF CHAR; (x EG : KA219/01 *) (* key *)
yacht_namex* : ARRAY 33 OF CHAR;
loax : REAL;

......... etc

PROCEDURE FindSqlx*;
BEGIN
AclassTable.Exec("Select * from Aclass where rego =:YachtingAclassRating94.yot.rego ");
(* attempt read (select) one record from database *)
IF AclassTable.rows = 1 THEN (* a record was found *)
AclassTable.Read(0, yot);
(* now read the actual record into Oberon record "yot" area *)
(* returned table records are numbered from zero (0) *)
Dialog.Update(yot);
(* update display (form) fields *)
ELSE
yotLoaded := FALSE;
(* no record found, or multiple records returned *)
(* for the required yacht rego number *)
END;
END FindSql;
(x *)

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

94

CHAPTER 7. THE MYSQL DATABASE

7.6.7 Data Types Supported

The following Component Pascal types are interpreted by SqlDB:

BOOLEAN

BYTE, SHORTINT, INTEGER
SHORTREAL, REAL

ARRAY OF CHAR
Dates.Date

Dates.Time
Dialog.Currency
Dialog.List
Dialog.Combo

SqlDB.Blob

MySQL Data Type Mapping
(* still working on this , currently still MS-SQL server info *)
How these types are mapped to MySQL data types depends on the actual SQL database

product and the Sql driver. The following example table applies to MySQL product which is
accessed via ODBC:

MySQL Component Pascal

{bit, tinyint, smallint, integer, bigint} {BYTE, SHORTINT, INTEGER,
BOOLEAN(| Dialog.List}

{real, float(m)®), double precision} {SHORTREAL, REAL}

{char(n)@©) varchar(n)®©) long varchar} | {ARRAY OF CHAR(), Dialog.Combo}

{decimal(m, d)®), numeric(m, d)(®} Dialog.Currency

{date, timestamp(®} Dates.Date

{time, timestamp(¥} Dates.Time

Figure 7.4: MySQL to Blackbox Oberon Data Type Conversion

Note:

1.
2.
3.

6.

0 = FALSE, 1 = TRUE
character string of fixed string-length n
variable-length character string with a maximum string length n

only the date or the time part is used, not both simultaneously note that the ANSI date order is
year-month-day (2000-12-25)

. m & d are precision & scale denoting how many decimal characters are displayed for the field,

scale the number of decimal places eg decimal(9,2) = a field of max 9 characters, with 2 decimals.
this is not the storage size, only the displayed size.

this is ASCII characters not Blackbox Oberon View Characters.

Note: Values of any MySQL data type can be read in a textual form, into an ARRAY OF CHAR.
MySQL datetime values can be mapped either to Dates.Date or to Dates. Time, but not to both
simultaneously.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

7.6. DATABASES, TABLES, AND INTERACTORS 95
7.6.8 BlackBox interface to SQL Code

BlackBox uses a interesting approach which combines the convenience of embedded SQL with
the flexibility of declaring Blackbox Oberon variables explicitly in MySQL statements . For
this purpose, Blackbox Oberon uses run-time type information, not directly avaliable to a the
application programmer, to access global variables, as they occur in an SQL string.

For example, if there is a global and exported integer variable searchld in module Sample,
the following SQL statement can be used:

SELECT * FROM Companies WHERE id = :Sample.searchld

SqlDB Provides procedures to execute such a string eg SqlDB.Database.Exec, SqlDB.Table. Exec.
and these procedures will replace all variables starting with a colon by the appropriate run-time
values, and often converting these to appropriate text representations for processing by MySQL.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

96 CHAPTER 7. THE MYSQL DATABASE

For additional convenience, whole record variables can be used in SQL strings. Their fields
will be expanded suitably. For example, if there is a global and exported interactor company in
module Sample with the fields id, name, ceo, employees'® then SqlDB will expand the following
MySQL command string

INSERT INTO Companies VALUES (:Sample.company)
is expanded into
INSERT INTO Companies VALUES (555, 'Dragon City’, 'Hallett’; 1)

assuming that company.id = 555, company.name = ”Dragon City”, company.ceo = ”Hallett”
and company.employees = 1. Before sending the newly formed string off to MySQL for processing.

7.6.9 Type Row

Normally, a table’s Read procedure is performed on an interactor that contains one record field per
result table column. This provides automatic mapping between relational data and Component
Pascal objects, ie: an object-oriented front-end for SQL databases.

7.6.9.1 Dynamically access a MySQL Tables column names

If you are developing a specialized tools such as a database browsers , a report writer, etc, then
you will to extract the exact definition of the tables you will be accessing, and therefore you
cannot define the known interactor types in advance. For these special cases, a more general
dynamic mechanism is provided.

Instead of passing a Blackbox Oberon variable RECORD interactor to Read, a variable of
the special type SqlDB.Row is passed instead. The result of the Read will an array of pointers
to strings. Each string contains the textual (actual column name) representation of one table
column of the row read. If SqlDB.names is passed as row parameter, the strings will contain the
names of the table columns, instead of values.

String = POINTER TO ARRAY OF CHAR;

Row = RECORD fields: POINTER TO ARRAY OF String END

7.6.10 Blobs

Binary Large Objects, or ”blobs”, allow to store unstructured data as large ARRAY OF BYTE
variables. Do not use ARRAy OF CHAR as BYTE allows access to every bit in a BYTE. For
example, large image bitmaps (photographs, scanned images), or any other data may be stored
in blobs. A blob is represented as a record

Blob = RECORD

len: INTEGER;

data: POINTER TO ARRAY OF BYTE
END

13Refer to 7.6.5 for MySQL record structure

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

7.6. DATABASES, TABLES, AND INTERACTORS 97

The field len indicates the number of valid bytes in data. Data is a pointer to the byte array.
A Blob that is used in several Read operations reuses the same data array if possible, i.e. if the
new data takes at most as many bytes as the previous result’s data.

7.6.11 Asynchronous operation

There is a detailed section in Blackbox Oberon documentation describing the usage of SQI
databases where a discussion on Asynchronous verses Synchronous modes of accessing sql databases.
Its interesting reading , but you can basically ignore the problems addressed therein unless you
wish to delve deeper into the workings of Client/Server operations.

7.6.12 ODBC driver (Windows only)

Microsoft’s Open Database Connectivity (ODBC) is an interface standard for accessing relational
SQL databases. There are ODBC drivers for most relational products.

SqlOdbc is an Sql driver, supplied with Blackbox Oberon , which builds a bridge to the ODBC
driver manager. Given a suitable 32-bit ODBC driver, this allows Blackbox Oberon access to
database(s) via ODBC and Sql.

SqlOdbc supports all features of Sql, except asynchronous operation.

7.6.13 Displaying MySQL tables

As SQL database records are based upon the concept of tables, it is useful to be able to display
the results of a MySQL Query in a tabular fashion'*, module SqlControls provides appropriate
table display controls

A serious limitation of Blackbox Oberon SQL Table Controls, is that the displayed fields
(columns & rows) cannot be edited, however its possible to select a field in a table. See example
code 7.7 to see how this is done.

A table control needs to be linked to a global variable of type SqlDB.Table.

eg:
MODULE SqlBrowser;
VAR

tablex: SqlDB.Table; (* anchor for database *)

A table control may also denote a notifier with the following signature:

TableNotifier = PROCEDURE (t: SqlDB.Table;
row, column: INTEGER;
modifiers: SET)

It is called whenever the user has clicked into a field of the table, indicating the table, its row
and column numbers, and the track message’s modifier set (-; Controllers.TrackMsg).

A table control is used in one of two ways: either it is opened in its own window, or it is
embedded in some container, typically a form view.

Ygimilar to the now traditional spreadsheet layout

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

98 CHAPTER 7. THE MYSQL DATABASE
7.6.14 Table control in its own Window

The seperate window provides scrollbars if necessary.
See module SqlBrowser for a example of using a separate window fo SQL results table.

7.6.15 Table control in a form

See module UpdtCompanies and Form UpdtCompanies for example of a SQL Table control in a
form. (UpdtCompanies is a modified version of SqlBrowser)
To insert a SQL Table control on a form :

1. make sure form is in Layout mode (Dev — > Layout Mode)

2. Select menu option, (Controls — > Insert SQL Table), a blank memo icon control will
appear on the form, position and adjust the size as required. It is usually wrapped in
a scroller view, select SQL Control , then, (Tools— >Add Scroller) which provides the
scrollbars.

3. Link the SQL Table Control to the SqlDB.Table via the Sql Table Control Properties
Inspector

See below, the SQL Table Control has been selected (left ckick), then (right click) , then chose
Properties from popup menu to open the Inspector Dialog. By filling in the Link & Notifier details
the necessary links are made from the SQL Control to the Oberon Modules code.

MODULE SqlBrowser;

Items*: SqlDB.Table;
(* anchor for database *)

PROCEDURE ItemsNotifier* (t : SqlDB.Table ;
row, col : INTEGER;
modifier : SET);

(* this procedure executed whenever a user mouse ’clicks’ in a SQL table field, the value of row
& col will be set to the clicked on row/col number, counting from 0 *)

VAR
tmpl, tmp2 : ARRAY 5 OF CHAR;
ans : SqlDB.Row;

BEGIN
t.Read(row, company) ;

(* on user click in a SQLTable row field, read the pointed ’at’ record into company update
fields *)

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

7.6. DATABASES, TABLES, AND INTERACTORS 99

Strings.IntToString(row, tmpl);
Strings.IntToString(col, tmp2);
Dialog.ShowStatus("Clicked on :" + " Row : " + tmpl +
" Col : " 4+ tmp2 + "-$>$" +
company.ceo) ;

(* display the current field parameters in the window status line *)

(* place your code to process the SQL Table data here *)

END TableNotifier;
(* *)

Whenever the program executes a SQL statement that affects the SqlDB.Table the results
will be displayed in the linked SQL Table control.

7.6.16 The Table Notifier

Whenever the mouse is ’clicked” in a displayed SQL Grid field an event is raised and program
executes the Procedure TableNotifier, where Tuable is the name you have defined as a VAR.
In the example below the table name is Items.

eg:

MODULE ListItems;

Items*: SqlDB.Table;
(* anchor for database *)

You also must supply a Procedure called ItemsNotifier, which is where processing continues
upon detection of the mouse click. There must be a SqlDB.Table declaration and a Procedure
TableNotifier defined for every MySQI Table you wish to have a grid displayed upon a form that
user interaction is required.

PROCEDURE ItemsNotifier* (t : SqlDB.Table ;
row, col : INTEGER;
modifier : SET);

7.6.17 Linked SQL Controls

Often a program will need to access multiple tables from a database at the same time. Displaying
father — > child (1 — > many) relationships between two (or more) tables displaying data in
their own SQL grids is a common feature of user interfaces. eg: Invoices, parts lists, etc.

To achieve this, the program will need to define , for each table, the following :

1. a SqlBD.Table variable for each table

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

100

CHAPTER 7. THE MYSQL DATABASE

2. a Oberon RECORD area for each table

and optionally

3. a SqlDB Table control for any grid results layout required.

4. table Notifiers for each table using a SqIDB Table control.

See the example extract below from program, Quickquote, for examples of this.

MODULE Quickquote;

(*
cl* : SqlDB.Table;

stk*: SqlDB.Table;

SQL Table anchors

*)

(% client table anchor *)
(* Stock table anchor *)

(* —- other anchors -- %)

ghdr* : SqlDB.Table;
gitem*: SqlDB.Table;

(* Quote_Header table anchor *)
(* Quote_Item table anchor x*)

(¥ ====== (Oberon/SQL RECORD LAYOUTS ====== %)
Quote_header* : RECORD (* Quote Header Record *)
QTS_CLIENT_CODE* : ARRAY 5 OF CHAR; (x key *)
QTS_QUOTE_NO* : INTEGER; (x key *)
QTS_QUOTE_DATEx* : Dates.Date;
QTS_MEMO_PAGE* : SqlDB.Blob;

END;

Quote_items* : RECORD (* Quote Item Record %)
QU_CLIENT_CODE* ARRAY 5 OF CHAR; (x key *)
QU_QUOTE_NO* INTEGER; (x key *)
QU_ITEM_SEQ* INTEGER; (x key *)

QU_STOCK_CODEx

QU_STOCK_DESCRIPTIONx* :

QU_BUY_PRICE*
QU_QUOTED_PRICEx*

QU_QUANTITY_REQUIRED* :

END;

ARRAY 20 OF CHAR;
ARRAY 80 OF CHAR;
: Dialog.Currency;

: Dialog.Currency;
INTEGER;

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

7.6. DATABASES, TABLES, AND INTERACTORS 101

PROCEDURE ghdrNotifier* (t : SqlDB.Table;
row, col : INTEGER;
modifier : SET);

(* When the user clicks upon an row/column entry displayed in the Quote Header SQL Table
Control, this code will attempt to find (by SQL select) the corresponding Quote Item table
records belonging to this quote and display them in their own SQL Table Control. (a typical one
to many display concept, eg father — > child relationship) *)

BEGIN
Dialog.ShowStatus("Clicked in ghdr");
ghdr.Read(row, Quote_header); (* read clicked on row *)
Dialog.ShowStatus("Client Selected : " +
Quote_header.QTS_CLIENT_CODE) ;

qitem.Exec("select * from quote_item where QU_CLIENT_CODE=
:Quickquote.Quote_header.QTS_CLIENT_CODE ");
(* read header items list using data from Quote Header table *)

Dialog.Update(qitem) ; (* update qitems display *)
END ghdrNotifier;
(x *)
PROCEDURE qitemNotifier* (t : SqlDB.Table;
row, col : INTEGER;
modifier : SET);

BEGIN
Dialog.ShowStatus("Clicked in qitem");
END gitemNotifier;

(*** end code extract **xx)

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

102 CHAPTER 7. THE MYSQL DATABASE

+% Quotation System

Cuotes lStDCk l Clients] Load Data | Tax Codes | Translate Tablel ListQuutesl Systeml Supplierl Templates]
Guicte Header
| CLIENT_CODE QUOTE_NO QUOTE_DATE MEMO _PAGE ﬂ
60 3360 2001-02-05 J
4545 2001-04-22
=709 173 AN -MA-nA ﬂ
Create Quote | Delete Guote Copy Guote Print Selected Guote J
ITEM_SEQ | STOCK_CODE STOCK_DESCR BUY PRICE | QUOTED_PRICE| QTY...
282500 CP-1BM-P233MHZ B8E 233MMK CPU 83.00 96.80 0
283250 | CP-PENTIUM2-266 INTEL PENTIUM |l 286 CPU 329.00 361.50 0
284125 |CP-PENTIUM2C266 |INTEL CELEROM 266 CPU NON CACHE CPU| 162.00 185.80 0
285062 WWlS57555 WIDED BR00CL TRIDENT 10 VGA 16BIT 45.00 49.50 0
#lems| 4| 63100 | 69410
Exit System

Figure 7.5: Gui Form displaying MySQL 1 — > Many record relationship

The user has clicked on Quote Header SQL Table Control, Client Code field ”45” and the
Quote Items SQI table Control now displays data found for that Client’s Quote(4545). Notice
the vertical Scroll Bar on the Quote header, these SQL Table Control’s allowing viewing by the
user of many Quote Header/Ttems records. '°

However, it is possible to ‘compress’ a column completely on the displayed form, thus showing
two vertical lines together, a bit primitive but useful. Simply drag one dividing vertical line with
your mouse until the displayed information disappears

When a table control is generated by a program, rather than by manual form creation, it
is not necessary to link it to a global table pointer variable. Instead, the table pointer can be
directly passed as parameter in the call to

SqlControls.dir.NewTableOn(table).

15As of Blackbox version 1.4 it is not possible to to control the layout of the columns, except font size, thus
headings, colour, justification,etc cannot be adjusted. The SQL table design however can help with the headings
by making them as descriptive as possible to the user (if not to the programmer !)

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

7.7. EDITING MYSQL TABLE ENTRIES 103
7.7 Editing MySQL Table Entries

As mentioned in the standard Blackbox Oberon manual, you cannot modify (edit) data in
SQL displayed table controls.! However we can still allow user the update facility with a little
ingenuity. In the example displayed below the fields we wish to allow editing upon are displayed
as a 'side bar’ to the main MySQL Table display on the left. As the user browses around the
MySQL Table, upon a mouse click (currently either left or right click) in any column then, that
rows data is read into the Modules RECORD area by execution of the user supplied SQLNotifier
Procedure and displayed in the ’side bar’ fields, the user may edit any of the displayed fields, and
upon pressing the button that record will be updated and the MySQL table refreshed
to show the newly entered values.

= Quotation System

Quotes Stock ICIients I Load Datal Tax Codes | Translate Tahle List@uutesl System\ Supplier] Templatesl
CATEGORY | STK_CODE | STK_SEQ DESCR BUY_PRICE j
Cahles CABOE305 | 1998-12-02 D &UDID CABLE FOR CREATIVE CARDS 200 Catagory
Cables CABOG3SE | 2001-12-23| D AUDIO CABLE TO SUIT YAMAHA CARDS 200 Cables
Cables CABDS7SS | 2001-12-23 L&N ETHERNET BNC CRIMP CONMECTOR 200
Cables CAB0002 | 2002-02-25 CABLE PLATE BPO1 DEZSM(SERIAL PORT) 13.00 Sk Coe
Cables CABNMO | 2001-12-23 CABLE PLATE BPO3 DB2SMAPS 2 SERPSZ) 500 CAB10002
Cables CABNMS2 | 2001-12-23 | CABLE PLATE BP04 D25MAD1 SF(SERIGAN) 500
Cables CABNO258 | 2002-02-19 CABLE PLATE BPOG USE % 2 12.00 Stock Seq.
Cables CABN0355 | 2001-12-23 CABLE DB25M TO DB25F 10 METRES 12.00
Cables CABMD452 | 2001-12-23 CABLE DB25M TO DB25F 3 METRES B6.00 2li2 e 25
Cables CAB0505 | 2001-12-23 CABLE DB25M T DB25F 5 METRES 33.00 Buy Price
Cables CABO0752 | 2001-12-23 CABLE BCRGSS THIN ETHERNET PERIM 1.00
Cables CAB0805 | 2001-12-23 CABLE THIM ETHERNET (100 INC BNC) 1500 3joo
Cables CABNZTO08 | 2001-12-23 CABLE CEMSO/CENS0 1 METRE 10,00
Cables CABN2T52 | 2001-12-23 CABLE CENSODE2S 1 METRE 10.00 Tz Rate]_
Cables CABM2805 | 1998-12-02 CABLE CEMSO/SCS2 1 METRE 2000
Cables CABN4005 | 1995-12-02 CABLE CHAS0S WIDED 5 BNG TO DE15 35.00 Margin § |—
Cables CABG952 | 2001-12-22 CABLE 3.5 FOD DATA ADAPTOR 200
Cables CABNTI0Z | 2001-12-22 CABLE DB25 TO SCSI-I 1 METRE (ZIF) 3000 _
Cables CABT402 | 2001-12-23 CABLE DC2 DATA, (IDE FOR CD ROM) 202 LHE r
Cables CABMTOSE | 2001-12-23 CABLE 34 WAY DATA FOR FOD'S 100 ¥
. o
Delete ‘ Update ‘
Exit System

Figure 7.6: Edit MySQL Table using ’side bar fields’

In the above snapshot, we have changed the price from $13.00 to $9.00 for stock item
CAB10002, but have not pressed .

Instead of using a ’'side bar’ we could just as easily used a modal form, see Chapter 10, where
upon clicking on the column, a new form with the fields for the row selected would be displayed

16In my opinion a major failing of the SQL interface under Blackbox Oberon , but there are fairly obvious
technical reasons for this.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

104 CHAPTER 7. THE MYSQL DATABASE

for editing, upon pressing the [Update| or | Delete | buttons of the called form, the appropriate
field validation and MySQIl comamnds would modify the database and refreshed the displayed
MySQL Table.

PROCEDURE invNotifier* (t : SqlDB.Table;
row, col : INTEGER;
modifier : SET);
BEGIN
inv.Read(row, Inventory);
Dialog.Update(inv);
END invNotifier;
[——
PROCEDURE invUpdate*; (* update current inventory record *)
VAR
BEGIN
inv.base.Exec(”"DELETE FROM inventory WHERE
:Quickquote.Inventory. CATEGORY = CATEGORY
AND :Quickquote.Inventory.STK_CODE = STK_CODE 7);
(* delete currently selected record *)
QuickquoteUtils.SqlDate(Inventory. STK_SEQ);
(* get sysdate in Mysql format yyyy-mm-dd, update inventory record *)
inv.base.Exec("INSERT INTO inventory VALUES
(:Quickquote.Inventory)”);
inv.base.Commit();
(* insert modified record *)

inv.Exec(”SELECT * FROM INVENTORY
ORDER BY CATEGORY ,STK_CODE");
Dialog.Update(inv);
(* redisplay updated table reords *)
END invUpdate;

PROCEDURE invDelete*; (* delete current inventory record *)
BEGIN
inv.base.Exec(”"DELETE FROM inventory
WHERE CATEGORY = :Quickquote.Inventory. CATEGORY
AND STK_CODE = :Quickquote.Inventory.STK_CODE 7);

inv.base.Commit();
inv.Exec(”SELECT * FROM INVENTORY
ORDER BY CATEGORY , STK_.CODE”);
Dialog.Update(inv);
END invDelete;
S ——

Figure 7.7: Code to Update / Delete selected MySQI Table Entry

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

7.8. DESIGN RULES 105
7.8 Design rules

The following paragraphs are taken from the Blackbox Oberon SQL reference information, as
they are rules they are copied verbatim - (©) Oberon Microsystems.!”

This section gives some rules which should be followed when designing a database application.
The reason for each rule is given after the rule in stalics.

1. Interactors or at least their types must be exported if they should be used as place holders
in SQL statements.

Non-exported types are not accessible through metaprogramming, and thus controls and the
SQL string translation mechanism could not be used with them.

2. A globally anchored database and all its table pointers must be set to NIL if the database
ought to be closed.

If a global pointer variable is not set to NIL, the garbage collector cannot reclaim the data
structures anchored in it. Upon garbage collection of a database, the database is closed if
there are no more pointers to it. Note that a table contains a pointer to its database object
and thus anchors it.

3. A database pointer should not be declared as global variable.

Normally there are global table pointers, which contain references to their databases. A
global database pointer would be one more pointer to set to NIL eventually; and anchor
views can only set table pointers to NIL.

4. Database.Exec may only execute non-row-returning (no results table) statements, e.g.
DELETE or INSERT. Note: Table.base.Exec is equivalent to Database.Exec because a
Table control points to its Database control.

A result table must always be assigned to a table and via the table to an interactor, otherwise
it cannot be accessed by the application.
5. Table.Exec should only execute row-returning (results table) statements, e.g., SELECT.

Note: Table.base.Exec is equivalent to Database.Exec because a Table control points to its
Database control.

17T have added some remarks also.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

106 CHAPTER 7. THE MYSQL DATABASE

6. The order and types (but not necessarily the names) of fields in an interactor variable must
match those defined in the SQL database. The number of fields must be the same as the
number of columns.

eg:

Oberon interactor record MySQL table definition

inrecx : RECORD CREATE TABLE Ownership
company_owner : INTEGER; (owner INTEGER,
owner_by : INTEGER; owned INTEGER,
percent_owned : INTEGER; percent INTEGER
END; PRIMARY KEY (owner));

7. Only complete tables may be assigned to an interactor by Table.Read, no partial assignment
is allowed.

There must be a corresponding Oberon field defined for every field in the MySQL table
definition, like the example above.

8. The correspondence of result table columns and interactor fields is given by their respective
declaration order. Nested arrays, records and pointers are handled recursively.

9. Pointers must not be NIL except for POINTER TO ARRAY OF CHAR which are allo-
cated automatically if the pointer is NIL or if the bound array is too small to receive the
corresponding string.

10. Scalar result variables are treated as tables with table.rows = 1 and table.columns = 1.

That is: a SELECT COUNT(ID) FROM ACLASS statement will return the result in a
SQL Table with one entry — the count of records found

11. After an SQL statement which may render a row inconsistent with the database, use a
SELECT statement to re-establish consistency.

For example, an interactor may still contain the value of a row which has just been deleted
through a DELETE statement. FExec on the table will flush the old result table and possibly
assign a new one, thus refreshing the displayed MySql records

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

Chapter 8

The Report Generator : BxRepGen

While the report possibilities using Oberon Views are extremely powerful, they are a bit complex
at first approach, while developing MySQL programs the programmer often needs 'quick’ reports
to check out the current state of tables being used. Therefore, I wrote the program BxRepGen
(Blackbox Report generator) to solve this problem. The complete code is supplied here, hopefully
as an aid to futher development by other Oberon users.

The below form snapshots show the steps necessary to generate a basic standard report of a
user selected Database Table. This was the tool used to generate the base of the Karin Report

shown in 9.2.2

= BxRepGen - Report Generator

Databasze Takle Report Mame [alzo saved filename) Aligs Code (ODBC name)

Manual Ertry SCL Statemert:

Execute SEL SHOW DATABASES
Clear SGL

Diglog Area for Show and Deszcribe Buttons Select which Fields to generate (click repartfieldflag)
Showe DB
Database
Aclass
ElackBox
ExRepGen
LoadQd
CuickCluote
karin
Display Fields mysgl
test
Clear Gen Area Report Fisld Heading Wicith
Close | o

Figure 8.1: BxRepGen - Show available Databases

After the user has pressed the|Show DB [button, BxRepGen displays a list of all the available
databases accessable by MySQL.

PDF created with FinePrint pdfFactory Pro trial velSion http://www.fineprint.com

http://www.fineprint.com

108 CHAPTER 8. THE REPORT GENERATOR : BXREPGEN

= BxRepGen, - Report Generator.

Database Takle Repott Mame [alzo saved filename) Aligs Code (CDBC natne)
|karin | I
—Manual Entry . SGL Statement:

Execute SGL SHCWY TABLES

Clear SGL
Diglog Area for Show and Dezcribe Buttons Select which Fields to generate (click repartfieldtiag)

i’

Showy DBE's :
Tables_in_ka...

i Show Tables

receipts

Dezcribe Table

Dizplay Fields

Gen. Repart

Clear Gen Area Report Field Heading Wilctth

dii

Cloze | |EI

Figure 8.2: BxRepGen - Show Tables in selected Database

By clicking on the desired database in the list displayed and then press | Show Tables | button
then the available Tables in that database will be displayed.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

= BxRepGen, - Report Generator.

109

Database Takle Repott Mame [alzo saved filename) Aligs Code (CDBC natne)
|karin 1reu:eip13 I
Manual Ertry . SGL Statement:
Execute SGIL DESCRIBE receipts
Clear SGL
Diglog Area for Show and Dezcribe Buttons Select which Fields to generate (click repartfieldtiag)
Show DB's .
Field Type Mull
Show Tables recdate date YES
{Describe Takle supplier char{40) TES
goods char(30) TES
total decimal(d.2) YES
SEq int(11]
rechumber char{10) YES
Dizplay Fields
Gen. Repart
Clear Gen Area Repart Field Heading Wicth
Cloze
_ e | g | o | p

Figure 8.3: BxRepGen - Describe Selected Table

By clicking on the desired Tuble in the list displayed , then pressing the |Describe Table | will
display theFields in the chosen Table.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

110 CHAPTER 8. THE REPORT GENERATOR : BXREPGEN

= BxRepGen, - Report Generator.

Database Takle Repott Mame [alzo saved filename) Aligs Code (CDBC natne)
|karin 1reu:eip13 FepartzDemokarin |karinru1ySG!L
Manual Ertry SEL Statement:
DESCRIBE receipts
Clear SGL
Diglog Area for Show and Dezcribe Buttons Select which Fields to generate (click repartfieldtiag)
.
Field Type Null 1| mysglfieldn... | mysqlfieldt... | oberon
Showe Tables
recdate date YES recdate date recd
supplier char(40) YES supplier char(40) Sup
goods char(30) TES goods char(30) goo
total decimal(d,2 TES .
: 8.2) total decimal(9,2) tot;
= 1) 58 int{ 11} 58
rechumber char{10) YES g
_ , recnumbper char(10) recnur
Dizplay Fields
A I I
Clear Gen Area Repart Field Heading Wicth
Close ‘ | 1 ﬂ |Reu:eip1# |E|

Figure 8.4: BxRepGen - Display Selected Fields in Selected Table

You then click on the required Fields,(visit each displayed field (row) in turn and click once),
from the displayed list of Field Names, when you have chosen the desired fields, then click on
Display Fields| button to display a new list in the right hand table display.

By entering data in the two fields below this table you can enter Field Heading information
and if necessary a field width value. You may revisit any field in this list and turn its selection
status to Y’ or 'N".

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

111

BxRepGen - Report Generator

Database J=) BxRepGen Field List

| MODULE ReportsReportsDemokcarin;
1 IMPORT Dialog, Dates, Strings, SqlDB, SqlControls, Ports, Views,
Texthodels, TextControllers, TexthMappers, TextRulers, TextViews:
1 VAR
| conn: RECORD (" connect to database variables *)
16t
passivord®,
database®,
driver” . ARRAY 32 OF CHAR;
END;

kannDB™ . SgDE Table; (* anchor to Mysql database *)

receipts | RECORD " Oberon MySGL record area ™)
: recdate” - Dates Date;

supplier™: ARRAY 40 OF CHAR;

goodst ARRAY 30 OF CHAR;

total® . REAL;

seq” : INTEGER;

recnumber™ - ARRAY 10 OF CHAR:
= e

Figure 8.5: BxRepGen - The Generated Report

Enter the Report Name and its ODBC Alias name in the top two fields, then press| Gen. Report
to generate the complete report.

You must save this generated report in the appropriate Blackbox Oberon MOD folder, then
compile the report. There should be no errors !

You would usually place a entry for this report in a menu for easy execution, of course the
report may be run from a program if desired. Refer to page 134.

Now you may edit the report to suit you exact needs.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

112 CHAPTER 8. THE REPORT GENERATOR : BXREPGEN

MODULE Bxrepgen;

(* ®”StdCmds.OpenAuxDialog("Bxrepgen/Rsrc/Bxrepgen’,’Report Generator’)” *)

(*

simple report generator for MySQL databases

(c) 2001, Brett S Hallett : Dragon City Systems

)

IMPORT
Dialog, Views, Strings, TextModels, TextControllers, TextMappers, TextViews, Ports, Tex-
tRulers, SqlDB, SqlControls, StdLog, DcsUtils;

CONST
showdb = 0; showtbls = 1; describetbl = 2; displaysql = 3; (* for selectflag switch *)
CONST
techar = 0; teint = 1; tereal = 2; tedate = 3; tetime = 4; (* for field data type switch *)
VAR
t : TextModels.Model; f: TextMappers.Formatter; v: TextViews.View;
r : TextRulers.Ruler; (* connections to text output area *)

selectflag : INTEGER; (* switch set when user presses particular button™)

reportfieldheading®™ : ARRAY 32 OF CHAR;
reportfieldwidth* : INTEGER;

Bxtable* : SqIDB.Table; (* anchor for database *)
BxGenTbl* : SqlDB.Table;

lc : RECORD (* lowercase copies of various fields textual names *)
databasename : ARRAY 64 OF CHAR;
tablename : ARRAY 64 OF CHAR;
reportname : ARRAY 64 OF CHAR;
END:;

dlg* : RECORD
reportname* : ARRAY 32 OF CHAR;
aliasname* : ARRAY 32 OF CHAR;
END;

conn*: RECORD
id*,
password*,
database*,

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

113

driver* : ARRAY 32 OF CHAR;
statement® : ARRAY 1024 OF CHAR;
END; (* database access fields *)

dbs* : RECORD
databasename* : ARRAY 32 OF CHAR;
END; (* record for database name *)

tbls* : RECORD
tablename* : ARRAY 32 OF CHAR;
END; (* record for table name *)

describeflds* : RECORD

field* : ARRAY 64 OF CHAR;
type* : ARRAY 20 OF CHAR;
fnull* : ARRAY 4 OF CHAR;
tkey* : ARRAY 3 OF CHAR;
default* : ARRAY 7 OF CHAR;
extra* : ARRAY 5 OF CHAR;

END; (* data as returned by MySQL describe comand *)

Bxfields* : RECORD
mysqltablename® : ARRAY 64 OF CHAR,;

fieldseq* : INTEGER;

reportfieldflag* : ARRAY 2 OF CHAR;
mysqlfieldname* : ARRAY 64 OF CHAR;

mysqlfieldtype* : ARRAY 20 OF CHAR;

oberonfieldname* : ARRAY 64 OF CHAR;

oberonfieldheading® : ARRAY 32 OF CHAR;

oberonfieldtype* : ARRAY 20 OF CHAR;

oberonfieldcode* : INTEGER; (* for fieldtype case selects *)

oberonfieldsize_m* : INTEGER; (* scale *)

oberonfieldsize_d* : INTEGER; (* precision *)

reportfieldwidth* : INTEGER; (* for report heading/column output only *)

comments* : ARRAY 255 OF CHAR;

END; (* selected fieldnames table for code generation and output to Bxfields table*)

D —
PROCEDURE setupRulers; (* for code generation *)
CONST

cm = 10 * Ports.mm; (* universal units *)
VAR

reccnt : INTEGER,;

x .y, z : INTEGER;

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

114 CHAPTER 8. THE REPORT GENERATOR : BXREPGEN

BEGIN

t := TextModels.dir.New(); (* create empty text carrier *)
f.ConnectTo(t); (* connect a formatter to text *)
r := TextRulers.dir.New(NIL); (* set up rulers for the report *)

TextRulers.AddTab(r, 10 * Ports.mm);
TextRulers.AddTab(r, 20 * Ports.mm);
TextRulers.AddTab(r, 30 * Ports.mm

)

()
()
()
TextRulers.AddTab(r, 40 * Ports.mm);
TextRulers.AddTab(r, 50 * Ports.mm)
()
()
(
(

)

TextRulers.AddTab(r, 60 * Ports.mm
TextRulers.AddTab(r, 70 * Ports.mm);
TextRulers.AddTab(r, 80 * Ports.mm);
TextRulers.AddTab(r, 100 * Ports.mm);

(* set up TABS for report *)
TextRulers.SetRight(r, 120 * Ports.mm);

9

f. WriteView(r); (* write the ruler tabs *)
END setupRulers;

PROCEDURE CreateSqlRecord (IN table : ARRAY OF CHAR) ;

VAR

reccnt : INTEGER;
BEGIN

recent 1= 0;

f.WriteString(table$);
f. WriteString(” : RECORD (* Oberon MySQL record area *) ”);
f. WriteLn; (* Oberons SQL record header *)

WHILE recent <= BxGenTbl.rows -1 DO

BxGenTbl.Read(recent, Bxfields);
(* read records 1 at a time, starting from first (again) *)

Strings. ToLower (Bxfields.mysqglfieldname, Bxfields.oberonfieldname);
f.WriteTab;
f.WriteString(Bxfields.oberonfieldname$);
f. WriteString("* : 7);
f.WriteString(Bxfields.oberonfieldtype$);
f.WriteLn;

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

115

INC(recent);
END;
f.WriteTab;
f. WriteString("END;”);
f.WriteLn;
END CreateSqlRecord;

(¥ ================c=c======c=c—c—==¥)

PROCEDURE CreateSqlClose(IN name : ARRAY OF CHAR);
BEGIN
fWriteString(” (* ============================%)");
f.WriteLn;
f.WriteString("PROCEDURE CloseSQL;”);
f.WriteLn;
f. WriteString(”BEGIN”);
f.WriteLn;
f. WriteString("IF 7); f.WriteString(name$); f. WriteString(” # NIL THEN”);
f.WriteLn;
f.WriteTab; f.WriteString(name$); . WriteString(”.Clear;”);
f.WriteLn;
f.WriteTab; f.WriteString(name$); f. WriteString(” := NIL;”);
f.WriteLn;
f.WriteTab; f.WriteString(”END;”);
f.WriteLn;
f.WriteString("END CloseSQL;”);
f.WriteLn;
£ WriteString(” (* ============================*)");
f.WriteLn;
END CreateSqlClose;

S —
PROCEDURE CreateSqlOpen(IN name : ARRAY OF CHAR);
BEGIN
f.WriteLn;
f.WriteString("PROCEDURE OpenSQL;”);
f.WriteLn;
f. WriteString(” VAR db: SqlDB.Database; (* variable db cannot be a global variable | *)”);
f.WriteLn;
f.WriteTab;
f.WriteString("res: INTEGER;”);
f.WriteLn;
f. WriteString(”BEGIN”);
f.WriteLn;
f.WriteTab;
f.WriteString(” CloseSQL;”);

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

116 CHAPTER 8. THE REPORT GENERATOR : BXREPGEN

f.WriteLn;

f.WriteTab;

f.WriteString(” SqlIDB.OpenDatabase(conn.driver,conn.id,conn.password,conn.database,”);

f.WriteLn;

f.WriteTab;f.WriteTab;

f.WriteString(” SqlDB.async, SqlDB.showErrors, db, res);”);

f.WriteLn;

f.WriteTab; f WriteTab; f WriteTab;

f WriteString(” (* open the database wusing variables setup in record conn *)”);
f.WriteLn;

f.WriteTab;

f. WriteString(”IF res = 0 THEN");

f.WriteLn;

f.WriteTab; f. WriteTab;

f. WriteString(name$); £ WriteString(” := db.NewTable()”);

f.WriteLn;

f.WriteTab;

f. WriteString(” ELSIF res <= 3 THEN”);

f.WriteLn;

f.WriteTab;f.WriteTab;

f.WriteString('Dialog.ShowMsg(” #Sql: CannotLoadDriver”)’);

f.WriteLn;

f.WriteTab;

f. WriteString("ELSE”);

f.WriteLn;

f.WriteTab;f.WriteTab;

f.WriteString('Dialog.ShowMsg(” #Sql: ConnectionFailed”)’);

f.WriteLn;

f.WriteTab;

f. WriteString("END”);

f.WriteLn;

f.WriteString("END OpenSQL;”);

f.WriteLn;

£ WriteString(” (* =============================%*)");

f.WriteLn;
END CreateSqlOpen;

S
PROCEDURE CreateReportTabs; (* for generated report code *)
VAR

reccnt : INTEGER;

rc : INTEGER;
BEGIN

recent 1= 0;

WHILE recent <= BxGenTbl.rows DO

BxGenTbl.Read(recent, Bxfields);

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

117

(* read records 1 at a time, starting from first *)
IF Bxfields.reportfieldflagy = Y’ THEN
(* only generate print statements for user selected fields *)
f.WriteTab;

f. WriteString(’TextRulers.AddTab(r , ’);
IF recent = 0 THEN
rc := 1;
f. Writelnt(rc);
ELSE
f.Writelnt(reccnt * 25);
END:;

f.WriteString(’ * Ports.mm);’);
f.WriteLn;

CASE Bxfields.oberonfieldcode OF
| techar :
| tcreal, tcint : f.WriteTab;
f. WriteString(’TextRulers.MakeRight Tab(r); ’);
f.WriteLn;
(* set tab to right justify for numerics *)
| tedate, tctime :
END:
END; (* if *)
INC(recent);
END; (* while *)
f.WriteLn;
f.WriteTab;
f. WriteString('f. WriteView(r);’);
f.WriteLn;
END CreateReportTabs;

(S

PROCEDURE CreatePrintDateTime;

VAR

BEGIN
f.WriteTab;

f.WriteString('Dates.GetDate(date);’);
f.WriteString('Dates.DateToString(date, 1, sdate);’);
f. WriteString(’f. WriteString(sdate$ + 7 7);’);
f.WriteLn;
f.WriteTab;
f.WriteString("Dates.GetTime(now);’);
f.WriteString('Dates. TimeToString(now, stime);’);

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

118 CHAPTER 8. THE REPORT GENERATOR : BXREPGEN

f. WriteString(’f. WriteString(stime$);’);
f.WriteLn;

END CreatePrintDateTime;
(F=m=====———e—eeeeee e %)
PROCEDURE CreatePrintHeadings;
VAR
reccnt : INTEGER,;
BEGIN
reccnt = 0;
WHILE recent <= BxGenTbl.rows - 1 DO
BxGenTbl.Read(recent, Bxfields);
(* read records 1 at a time, starting from first *)
IF Bxfields.reportfieldflagd = 'Y’ THEN
(* only generate print statements for user selected fields *)
f.WriteTab;
f.WriteString('f. WriteTab;’);
f.WriteLn;
f.WriteTab;
f. WriteString(’f. WriteString(”’); f. WriteString(Bxfields.oberonfieldheading$);
f. WriteString(””); ’);
f.WriteLn;

END; (*if *)
INC(recent);
END; (* while *)
f.WriteLn;
f.WriteTab;
f.WriteString('f. WriteLn;’);
f.WriteLn;

END CreatePrintHeadings ;

PROCEDURE CreatePrintStatements;
CONST
tcchar = 0; tcint = 1; tcreal = 2; tcdate = 3; tctime = 4;
(* BxRepGen field data types code for CASE | not a Blackbox type code ! *)

VAR

reccnt : INTEGER,;
BEGIN

recent 1= 0;

WHILE recent <= BxGenTbl.rows -1 DO

BxGenTbl.Read(reccnt, Bxfields);

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

119

(* read records 1 at a time, starting from first *)
IF Bxfields.reportfieldflagy = Y’ THEN
(* only generate print statements for user selected fields *)

CASE Bxfields.oberonfieldcode OF
| techar :

f.WriteTab;f.WriteTab;
f.WriteString(’f.WriteTab;’); f.WriteLn;
f.WriteTab;f.WriteTab;
f. WriteString(”f. WriteString(”); f.WriteString(lc.tablename);
f. WriteString(”.”); f. WriteString(Bxfields.oberonfieldname$);
f.WriteString(”$);”);
f.WriteLn;
f.WriteTab;f.WriteTab;

f.WriteLin;

| teint :
f.WriteTab;f.WriteTab;
f.WriteString('f. WriteTab;’); . WriteLn;
f.WriteTab;f.WriteTab;
f. WriteString(” f. WriteInt(”); f. WriteString(lc.tablename);
f.WriteString(”.”); f. WriteString(Bxfields.oberonfieldname$);
f. WriteString(”);”);
f.WriteLin;
f.WriteTab;f.WriteTab;
f.WriteLin;

| tcreal :
f.WriteTab;f.WriteTab;
f.WriteString('f. WriteTab;’); . WriteLn;
f.WriteTab;f.WriteTab;
f.WriteString(”f.WriteRealForm(”); f.WriteString(lc.tablename);
f. WriteString(”.”); f. WriteString(Bxfields.oberonfieldname$);
f.WriteString(”,7,”);
f.WriteInt(Bxfields.oberonfieldsize_m);
f.WriteString(”,-”);
f.WriteInt(Bxfields.oberonfieldsize_d);
f. WriteString(”,” *);”);
f.WriteLin;
f.WriteTab;f.WriteTab;
f.WriteLn;

| tedate :

f.WriteLn;

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

120 CHAPTER 8. THE REPORT GENERATOR : BXREPGEN

f.WriteTab;f.WriteTab;
f.WriteString('f. WriteTab;’); . WriteLn;
f.WriteTab;f.WriteTab;
f. WriteString(” Dates.DateToString(”); f.WriteString(lc.tablename);
f.WriteString(”.”); f. WriteString(Bxfields.oberonfieldname$);
f.WriteString(”,0,sdate);”);
f.WriteLin;
f.WriteTab;f.WriteTab;
f. WriteString(”f. WriteString(sdate$);”);
f.WriteLn; f.WriteLn;
| tctime :

f.WriteLn;
f.WriteTab;f.WriteTab;
f.WriteString('f. WriteTab;’); . WriteLn;
f.WriteTab;f.WriteTab;
f. WriteString(” Dates. TimeToString(”); f. WriteString(lc.tablename);
f. WriteString(”.”); f. WriteString(Bxfields.oberonfieldname$);
f.WriteString(”,0,stime);”);
f.WriteLn;
f.WriteTab;f.WriteTab;
f.WriteString(” f. WriteString(stime$);”);
f.WriteLn; f.WriteLn;
END; (* case *)
END; (* if *)
INC(recent);
END; (* while *)
f.WriteTab;f.WriteTab;
f.WriteString(”f.WriteLn;”); f.WriteLn;

END CreatePrintStatements;

PROCEDURE CreatePrintAll (IN database, table : ARRAY OF CHAR);
BEGIN

f. WriteString(PROCEDURE PrintAll*; 7);

f.WriteLn;

f.WriteString("CONST 7);

f.WriteLn;

f.WriteTab;

f. WriteString(’cm = 10 * Ports.mm; (* universal units *) ’);
f.WriteLn;

f.WriteString("VAR ’);

f.WriteLn;

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

121

f.WriteTab;

f.WriteString(’t : TextModels.Model; f : TextMappers.Formatter; v : TextViews.View; ’);
f.WriteLn;

f.WriteTab;

f. WriteString('r : TextRulers.Ruler; ’);
f.WriteLn;

f.WriteTab;

f.WriteString('recent : INTEGER,; 7);

f.WriteLn;

f.WriteTab;

f.WriteString('date : Dates.Date; ’);

f.WriteLn;

f.WriteTab;

f. WriteString('now : Dates.Time; ’);

f.WriteLn;

f.WriteTab;

f.WriteString(’sdate : ARRAY 40 OF CHAR,; ’);
f.WriteLn;

f.WriteTab;

f.WriteString(’stime : ARRAY 16 OF CHAR; *);
f.WriteLn;

f.WriteLn;

f. WriteString((BEGIN’);

f.WriteLn;

f.WriteTab;

f. WriteString(”t := TextModels.dir.New();”);
f.WriteLn;

f.WriteTab;

f. WriteString(” f.ConnectTo(t);”);

f.WriteLn;

f.WriteTab;

f. WriteString("r := TextRulers.dir.New(NIL);”);
f.WriteLn;

CreateReportTabs;

f.WriteTab;

f. WriteString(database); f.WriteString(’.Exec(”SELECT * FROM ’);
f.WriteString(table); f.WriteString(””);’);

f.WriteLn;

f.WriteTab;

f. WriteString(’IF ’);f. WriteString(database); . WriteString(”.rows = 0 THEN");
f.WriteLn;

f.WriteTab; f.WriteTab;

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

122 CHAPTER 8. THE REPORT GENERATOR : BXREPGEN

f.WriteString(’f.WriteString(”No records found”); ’);
f.WriteLn;

f.WriteTab; f.WriteTab;

f. WriteString((RETURN; 7);

f.WriteLn;

f.WriteTab;

f.WriteString("END; (* check for no records read *) ’);
f.WriteLn;

CreatePrintDateTime;
CreatePrintHeadings;

f.WriteTab;

f. WriteString('recent := 0; ’);

f.WriteLn;

f.WriteTab;

f. WriteString("WHILE recent <= "); f.WriteString(database); f. WriteString(”.rows -1 DO ”);
f.WriteLn;

f.WriteTab;f. WriteTab;

f. WriteString(database); f.WriteString(”.Read(reccnt, ”); f.WriteString(lc.tablename);

f. WriteString(”);”);

f.WriteLn;

CreatePrintStatements;

f.WriteTab;f.WriteTab;

f. WriteString("INC(recent); ’);

f.WriteLn;

f.WriteTab;

f.WriteString(CEND; (* while loop *) 7);

f.WriteLn;

f.WriteTab;

f. WriteString(’f. WriteString(” **** End Report **** 7); 7);
f.WriteLn;

f.WriteTab;

f. WriteString (v := TextViews.dir.New(t); ’);

f.WriteLn;

f.WriteTab;

f.WriteString('Views.OpenAux(v, ” ’); f.WriteString(lc.tablename$); f. WriteString(’ List ”); ’);
f.WriteLn;

f.WriteString("END PrintAll; *);
f.WriteLn;

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

123

END CreatePrintAll;

PROCEDURE CreatePreamble(IN tablename, reportname : ARRAY OF CHAR);
VAR

tmpl : ARRAY 64 OF CHAR;
BEGIN

tmpl := "defaultreport”;
IF reportname$ # 77 THEN
tmpl := reportname$;

END:

f. WriteString("MODULE Reports”);
f.WriteString(tmpl$ + ”;”);
f.WriteLn;

f.WriteString("IMPORT Dialog, Dates, Strings, SqIDB, SqlControls, Ports, Views,”);

f.WriteLn;

f.WriteTab; f. WriteTab;

f. WriteString(” TextModels, TextControllers, TextMappers, TextRulers, TextViews; ”);
f.WriteLn;

f.WriteString(”VAR”);

f.WriteLn;

f.WriteString(”conn : RECORD (* connect to database variables *)”);
f.WriteLn;

f.WriteTab;

f. WriteString(”id*,”);

f.WriteLn;

f.WriteTab;

f.WriteString(” password*,”);

f.WriteLn;

f.WriteTab;

f.WriteString(” database*,”);

f.WriteLn;

f.WriteTab;

f. WriteString(”driver* : ARRAY 32 OF CHAR;”);
f.WriteLn;

f.WriteTab;

f.WriteString("END;”);

f.WriteLn; f.WriteLn;

f.WriteString(lc.databasename$); f.WriteString(”* : SqlDB.Table;”);
f. WriteString(” (* anchor to Mysql database *)”);
f.WriteLn; f.WriteLn;

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

124 CHAPTER 8. THE REPORT GENERATOR : BXREPGEN

END CreatePreamble;

S
PROCEDURE CreateProgFinal (IN tablename, reportname : ARRAY OF CHAR);
VAR

tmpl : ARRAY 64 OF CHAR;
BEGIN

tmpl := "defaultreport”;
IF reportname$ # 77 THEN
tmpl := reportname$;
END:

f.WriteLn;
f. WriteString(”BEGIN”);
f.WriteLn;

f.WriteTab;
f.WriteString(’conn.id := 77; 7);
f.WriteLn;

f.WriteTab;
f.WriteString(’conn.password := "7; ’);
f.WriteLn;

f.WriteTab;
f. WriteString(’conn.database := 7’); f. WriteString(dlg.aliasname$); f. WriteString(*”;’);
f.WriteLn;

f.WriteTab;
f.WriteString(’conn.driver := ”SqlOdbc”; 7);
f.WriteLn;

f.WriteTab;
f.WriteString(” OpenSQL;”);
f.WriteLn; f.WriteLn;

f. WriteString("END Reports”); f.WriteString(tmp1$); f. WriteString(”.”);
f.WriteLn;

END CreateProgFinal;

PROCEDURE CloseSQL*;

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

125

BEGIN
IF Bxtable # NIL THEN
Bxtable.Clear;
Bxtable := NIL;
END:;

IF BxGen'Tbl # NIL THEN
BxGenTbl.Clear;
BxGenTbl := NIL;

END;

END CloseSQL;

PROCEDURE OpenSQL*;
VAR dbl, db2 : SqlDB.Database;
res: INTEGER;
tmps : ARRAY 5 OF CHAR;
BEGIN

CloseSQL;

(* open first database *)
SqlDB.OpenDatabase(conn.driver, conn.id, conn.password, conn.database,
SqlDB.async, SqlDB.showErrors, dbl, res);

Strings.Int ToString(res, tmps);
Dialog.ShowStatus(”Res dbl is ” + tmps);

IF res = 0 THEN
Bxtable := dbl.NewTable();
ELSIF res <= 3 THEN

Dialog.ShowMsg(” #Sql: CannotLoadDriver”)
ELSE

Dialog.ShowMsg(” #Sql: ConnectionFailed”)
END:

(* open second database *)
SqlDB.OpenDatabase(conn.driver, conn.id, conn.password, conn.database,
SqlDB.async, SqlDB.showErrors, db2, res);

Strings.Int ToString(res, tmps);
Dialog.ShowStatus(”Res db2 is 7 + tmps);

IF res = 0 THEN

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

126 CHAPTER 8. THE REPORT GENERATOR : BXREPGEN

BxGenTbl := db2.NewTable();
ELSIF res <= 3 THEN

Dialog.ShowMsg(” #Sql: CannotLoadDriver”)
ELSE

Dialog.ShowMsg(” #Sql: ConnectionFailed”)
END;

END OpenSQL;

PROCEDURE executeThis (user_statement: ARRAY OF CHAR);
BEGIN

IF (user_statement$ # ””) & (Bxtable # NIL) THEN

conn.statement := user_statement$;

Dialog.Update(conn);
Bxtable.Exec(user_statement); (* execute the SQL statement entered by the user*)
Dialog.Update(Bxtable); (* update the SQL table display area *)

END

END executeThis;

PROCEDURE Execute*; (* attached to a button for ahhoc queries *)
BEGIN

IF Bxtable = NIL THEN

Dialog.ShowStatus(”SQL Database not Opened”);

END:;

executeThis(conn.statement);
Dialog.Update(conn);
END Execute;

PROCEDURE ClearGenArea™;
BEGIN

BxGenTbl.Exec(”DELETE FROM BxFields”);
BxGen'Tbl.base.Commit;

setupRulers; (* destroyes any currently used textModel area *)

END ClearGenArea;

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

127

PROCEDURE ShowDB*; (* press button : display the available database names *)

BEGIN
dbs.databasename := ' ’; Dialog.Update(dbs);
tbls.tablename := ' ’; Dialog.Update(tbls);

selectflag := showdb; (* set tablenotifier case switch *)
Dialog.ShowStatus(’Show Databases :”);

executeThis("'SHOW DATABASES’);
Dialog.Update(Bxtable);
END ShowDB;

(* e e R *)

BEGIN
tbls.tablename := "’ ’; Dialog.Update(tbls);

IF dbs.databasename$ =’ > THEN
Dialog.Beep;
Dialog.ShowStatus(’No database selected - click Show DB, then select a Database’);
RETURN;
END:
selectflag := showtbls; (* set tablenotifier case switch *)
Dialog.ShowStatus(’Show Tables for :> 4+ dbs.databasename$);
executeThis("USE ’ + dbs.databasename$);
executeThis("'SHOW TABLES’);
Dialog.Update(Bxtable);
END ShowTables;

PROCEDURE DescribeTable*; (* press button : display the fields of the selected table *)
VAR
row : INTEGER,;

BEGIN
IF tbls.tablename$ =’ > THEN
Dialog.Beep;
Dialog.ShowStatus(’No Table selected - click Show Tables, then select a Table Name’);
RETURN:
END:;
selectflag := describetbl; (* set tablenotifier case switch *)
Dialog.ShowStatus('Describe Tables :*);

PROCEDURE ShowTables*; (* press button : display the avaliable table for selected database *)

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

128 CHAPTER 8. THE REPORT GENERATOR : BXREPGEN

executeThis('DESCRIBE ’ + tbls.tablename$);
Dialog.Update(Bxtable);

END DescribeTable;

PROCEDURE DisplaySqlFields*;
BEGIN
IF tbls.tablename$ =’ > THEN

Dialog.Beep;
Dialog.ShowStatus(’No Table selected - click Show Tables, then select a Table Name’);
RETURN;
END;
BxGenTbl.Exec("SELECT * FROM Bxfields’);
(* BxGenTbl.Exec(’SELECT oberonfieldname, reportfieldlag FROM Bxfields’); *)

Dialog.Update(BxGenThl);
(* note: this SELECT displays in own SQL Table area and does
not need a case switch to be set see; BxGenTblINotifier *)

END DisplaySqlFields;

S —
PROCEDURE GenerateReport*;
(* generate a Oberon Record Structure *)
CONST
cm = 10 * Ports.mm; (* universal units *)
VAR
reccnt : INTEGER,;
x,y, z : INTEGER;
tmpl : ARRAY 64 OF CHAR;
BEGIN

setupRulers; (* destroys any currently used textModel area *)
Strings. ToLower(tbls.tablename$, lc.tablename);
Strings. ToLower(dbs.databasename$, lc.databasename);

lc.databasename := lc.databasename + "DB”;
lc.reportname := dlg.reportname$;

Dialog.ShowStatus(’Generate Structure for :’+ lc.tablename$);

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

129

BxGenTbl.Exec(”SELECT * FROM BxFields ”);
(* select all the records in Bxfields, later code can now simply
scan over these records using BxGenTbl.Read(row,record) statements *)

IF BxGenTbl.rows = 0 THEN
StdLog.String(”No records found ”);
Dialog.ShowStatus(” No records found”);
RETURN;

(* ============== Generate code procedures ============ *)
CreatePreamble (lc.tablename, lc.reportname);

CreateSqglRecord (lc.tablename);

CreateSqlClose (lc.databasename);

CreateSqlOpen (lc.databasename);

CreatePrintAll (lc.databasename, lc.tablename);

CreateProgFinal (lc.tablename, lc.reportname);

v:= TextViews.dir.New(t); (* create a text view for the generated text t, above *)
Views.OpenAux(v , ”BxRepGen Field List”);
(* open the text view in its own window *)

END GenerateReport;

PROCEDURE Commit*;
BEGIN
Dialog.ShowStatus(’Commit:’);
IF Bxtable # NIL THEN
Bxtable.base.Commit
END
END Commit;

PROCEDURE Clear*;

BEGIN

Dialog.ShowStatus(’Clear:’);
conn.statement := " 7;
Dialog.Update(conn);

END Clear;

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

130 CHAPTER 8. THE REPORT GENERATOR : BXREPGEN

PROCEDURE TableNotifier* (t : SqlDB.Table ;
row, col : INTEGER;
modifier : SET);
(* this procedure executed whenever a user mouse ’clicks’ in a SQL table field,
the value of row & col will be set to the clicked on row/col number, counting
from 0 *)
VAR
tmpl, tmp2 : ARRAY 5 OF CHAR;
ans : SqlDB.Row;

reccnt : INTEGER,;
BEGIN
CASE selectflag OF (* the case is controlled by selectflag which is set by the
appropriate button press on the form *)
| showdb :
t.Read(row, dbs); (* read the database name *)
| showtbls :
t.Read(row, thls); (* read the table name *)

| describetbl :

t.Read (row , describeflds); (* read the table descriptor *)

Bxfields.mysqltablename := tbls.tablename$;
Bxfields.fieldseq := row;
Bxfields.reportfieldflag = "N";
Bxfields.mysqlfieldname := describeflds.field$;
Strings.ToLower(describeflds.field$, Bxfields.oberonfieldname);
Bxfields.mysqlfieldtype := describeflds.type$;

DcsUtils.ConvertMySqlTypeToOberon (Bxfields.mysqlfieldtype,
Bxfields.oberonfieldtype,

Bxfields.oberonfieldcode,
Bxfields.oberonfieldsize_m,
Bxfields.oberonfieldsize_d);

o,

Bxfields.comments : ;
BxGenTbl.Exec(”DELETE FROM Bxfields WHERE fieldseq = :Bxrepgen.Bxfields.fieldseq”);
BxGenTbl.Exec(”INSERT INTO Bxfields VALUES (:Bxrepgen.Bxfields) 7);

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

131

BxGenTbl.base.Commit;
END; (* case *)

END TableNotifier;
D —
PROCEDURE BxGenTblNotifier*(t : SqlDB.Table ;
row, col : INTEGER;
modifier : SET);
BEGIN
t.Read (row , Bxfields);

IF Bxfields.reportfieldflag = "N’ THEN
BxGenTbl.Exec("UPDATE Bxfields SET reportfieldflag = ”Y”, oberonfieldheading = :Bxrep-

gen.reportfieldheading, reportfieldwidth = :Bxrepgen.reportfieldwidth WHERE fieldseq = :Bxrep-
gen.Bxfields.fieldseq’);

ELSE

BxGenTbl.Exec('UPDATE Bxfields SET reportfieldflag = "N”, oberonfieldheading = :Bxrep-
gen.reportfieldheading, reportfieldwidth = :Bxrepgen.reportfieldwidth WHERE fieldseq = :Bxrep-
gen.Bxfields.fieldseq’);

END;

BxGenTbl.base.Commit;

DisplaySqlFields; (* redisplay to show updated field changes *)

END BxGenTblNotifier;

(* ====== set up defaults in form ======= *)
conn.id :=

conn.password := "";

conn.database := "BxRepGen”;

conn.driver := ”SqlOdbc”;

Dialog.ShowStatus(” Blackbox Report Generator ver 1.0”);
Dialog.Update(conn);
OpenSQL;

END Bxrepgen.

Figure 8.6: The BxRepGen program

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

132 CHAPTER 8. THE REPORT GENERATOR : BXREPGEN

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

Chapter 9

‘Karin’ a small Blackbox Oberon &
MySQL system

This small example Blackbox Oberon system, called karin, is a complete working Blackbox
Oberon program, it consists of a VDU Form, its Blackbox Oberon MODULE code, a Blackbox
Oberon Report program and its report output.

%2 Enter Karin Receipts

Load Karins Receipts

Date 110372001 E
Fec. Mumber |Rggg

Supplier |Drag0n City
Description |Services

Yalue 456.29]

Save I Print I Cancel |

Figure 9.1: Karin : collecting the receipt data form

PDF created with FinePrint pdfFactory Pro trial velsion http://www.fineprint.com

http://www.fineprint.com

134 CHAPTER 9. ‘KARIN’ A SMALL BLACKBOX OBERON & MYSQL SYSTEM
9.1 The data collecting program

This program was written for Karin to simply enter her taxation receipts into some form of
database so that simple reports could be printed to aid in the filling out of her taxation forms.
This system does that job and that job alone, a case of the KISS principle! at work, the Form
simply collects the data with no allowance for Browsing, Deleting, Editing the data entered —
just collect it.?

MODULE KarinReceipts;
IMPORT Dialog, Dates, Strings, SqlDB, SqlControls, Ports, Views,
TextModels, TextControllers, TextMappers, TextRulers, TextViews;
VAR
conn : RECORD (* connect to database variables *)
id*,
password*,
database*,
driver* : ARRAY 32 OF CHAR;
END;

karinDB* : SqlDB.Table; (* anchor to Mysql database *)

receipts®* : RECORD (* Oberon MySQL record area *)
recdate* : Dates.Date;
supplier* : ARRAY 40 OF CHAR;
goods* : ARRAY 30 OF CHAR;
total* : Dialog.Currency;
seq- : INTEGER;
recnumber® : ARRAY 20 OF CHAR;
END:;

The above code defines the RECORD structures used by Blackbox Oberon MySQL inter-
action via ODBC, conn : RECORD has its values set prior to attempting to calling OpenSQL,
these values are initialised by the code at the very bottom of this program just above "END
KarinReceipts.”

The receipts : RECORD is the record area that MySQL will READ a single database record

into as the table is processed. This RECORD must match exactly the data types, but not
necessarily the variable names as defined in the MySQL table definition.

'Keep It Simple - Stupid !

2the complete system took about 30 minutes to create, ie: define the MySQL Database, define the Tables,
setup a ODBC entry, write the data entry module and create the Form, then generate a report using my Blackbox
Oberon Report generator to build the base report and modify the report, make a menu - finished

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

9.1. THE DATA COLLECTING PROGRAM

135

PROCEDURE CloseSQL;

BEGIN

IF karinDB # NIL THEN
karinDB.Clear;
karinDB := NIL;
END;

END CloseSQL;

PROCEDURE OpenSQL;
VAR db: SqlDB.Database; (* variable db cannot be a global variable ! *)
res: INTEGER;
BEGIN
CloseSQL;
SqlDB.OpenDatabase(conn.driver,conn.id,conn.password,conn.database,
SqlDB.async, SqlDB.showErrors, db, res);
(* open the database using variables setup in record conn *)
IF res = 0 THEN
karinDB := db.NewTable()
ELSIF res <= 3 THEN
Dialog.ShowMsg(” #Sql: CannotLoadDriver”)
ELSE
Dialog.ShowMsg(” #Sql: ConnectionFailed”)
END
END OpenSQL;

The above code is typical of standard MySQL Open & Close operations, with some min-

imual error checking, notice the use of the data defined in the conn :

SqlDB.OpenDatabase statement.

RECORD., esp in the

PROCEDURE ClearRec;

BEGIN
receipts.supplier :=
receipts.goods =" 7;
receipts.total.val := 0;;
receipts.total.scale := 2;

9 9,

receipts.recnumber := ;

” 9.,
9

Dialog.Update(receipts);

END ClearRec;

The above code clears the Forms fields and then updates the displayed image.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

136 CHAPTER 9. ‘KARIN’ A SMALL BLACKBOX OBERON & MYSQL SYSTEM

PROCEDURE Save*;
BEGIN
karinDB.base.Exec(”INSERT INTO RECEIPTS VALUES (:KarinReceipts.receipts)”);
(* insert the complete receipts record *)
karinDB.base.Commit();
(* ensure record is written *)
ClearRec;

The above code is Linked to the Button Save, using the Object Inspector when creating the
Form on page 133, and is executed when the user presses (clicks on) the Save button.

The code simply inserts the current form data into the table, clears the form fields then
returns to the Oberon ’wait’ loop.

BEGIN
conn.id :=
conn.password = "7;
conn.database := "karinMYSQL”;
conn.driver := ”SqlOdbc”;
OpenSQL;

CLOSE
CloseSQL;

END KarinReceipts.

9999,
I

Figure 9.2: Karin : data collection program dissected

The above code is executed once when the program is executed and sets up the necessary values
for MySQL ODBC connections and access to be made.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

9.2. THE REPORT OUTPUT 137
9.2 The report output

The following screen printout show the receipt records up to the one just entered by the data entry
screen®, this neatly illustrates the multi-tasking of MySQL with the Blackbox Oberon program,

as soon as the record is committed to MySQL its available for access by other programs, eg: the
4

report program

* receipts List E][El@l
IKarins Receipts Tuesday, 29 January 2002 120747 Pk =
Rec Date Reac # Supplier Soods Total SeqiE
2/02¢2002 123 * B 12 23 1
2/0242002 321 I B 34 56 2
2/0242002 231 O P 1.01 3
2/02¢2002 342 O B 10149 <
2/0242002 GGG O, OO .01 o
12/0242002 4565 max sleap 33200 53
12/0242002 2134 ma stuff 1212 K
12/022002 GGG Mlax medicineg 5579 =
110342001 Ragg Ciragon City Services A56.29 11
51520
=== End Report =
B

Figure 9.3: Karin : reporting the collected receipt data

9.2.1 The report program code

The report program was generate by a small program I wrote, BxrepGen, which allows me to
choose MySQL Databases, Tables and Fields , attach Column Headings, and create the neces-
sary Blackbox Oberon code to have a complete simple report running in a few minutes. Most
developers would probably use report programs like Crystal Reports® but I prefered to keep my
systems in the Blackbox Oberon framework where possible, without ignoring the advantages of
using a powerful tool like Crystal Reports.

The main advantage of using BxRepGen is that I do not have to be concerned in remember-
ing® to include the necessary code required to assemble a working report, all the SQL connection
code, the Blackbox Oberon to SQL record structure, and of course the record handling logic to
select data from the database. The automatic generation of code to drive the Blackbox Oberon

3actually the screen shows just before inserting the record displayed , as pressing the Save button clears the
screen immediately after the insertion!

4T have seen too many SQL Client/Server systems that use complex buffering schemes which hold records in
memory so you cant be sure you are reporting the latest records eg: Delphi & Interbase!

5a vastly more powerful and complex tool than BxRepGen!

61 found writing report programs from scratch was always more time consuming than I felt was necessary -
hence BxRepGen

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

138 CHAPTER 9. ‘KARIN’ A SMALL BLACKBOX OBERON & MYSQL SYSTEM

TextModels, TextMappers, TextRulers, and TextView interface Modules certainly makes report
creation very easy. From this base report I add specialized code to product the exact report
required.

It should be noted that there are lots of features not included in BxRepGen , eg: control
breaks, header & footers, multi-table selects, and hundreds of features that Crystal Reports
offers, however BxRepGen is still a useful tool.”

9.2.2 The generated report program explained

The following section is the complete report program which produced the report displayed on
9.2. Each section of the program is explained, with the exception of a few lines extra code the
complete program was generated by BxRepGen .

MODULE KarinReport;
IMPORT Dialog, Dates, Strings, SqlDB, SqlControls, Ports, Views,
TextModels, TextControllers, TextMappers, TextRulers, TextViews;

VAR
conn : RECORD (* connect to database variables *)
id*,
password*,
database*,
driver* : ARRAY 32 OF CHAR;
END:;

karinDB* : SqlDB.Table; (* anchor to Mysql database *)

receipts : RECORD (* Oberon MySQL record area *)
recdate* : Dates.Date;
supplier®* : ARRAY 40 OF CHAR;
goods* : ARRAY 30 OF CHAR;
total* : REAL;
seq® : INTEGER;
recnumber® : ARRAY 20 OF CHAR;
END:

The above code defines the RECORD structures used by Blackbox Oberon MySQL inter-
action via ODBC, conn : RECORD has its values set prior to attempting to calling OpenSQL,
these values are initialised by the code at the very bottom of this program just above "END
KarinReport.”

The receipts : RECORD is the record area that MySQL will READ a single database record
into as the table is processed. This RECORD must match exactly the data types as defined in
the MySQL table definition, naturally BxRepGen does this as automatically.

"the generated report is a complete Blackbox Oberon Module that can be easily modified by the user as
BxRepGen creates Blackbox Oberon source code

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

9.2. THE REPORT OUTPUT 139

PROCEDURE CloseSQL;

BEGIN

IF karinDB # NIL THEN
karinDB.Clear;
karinDB := NIL;
END;

END CloseSQL;

PROCEDURE OpenSQL;
VAR db: SqlDB.Database; (* variable db cannot be a global variable ! *)
res: INTEGER;
BEGIN
CloseSQL;
SqlDB.OpenDatabase(conn.driver,conn.id,conn.password,conn.database,
SqlDB.async, SqlDB.showErrors, db, res);
(* open the database using variables setup in record conn *)
IF res = 0 THEN
karinDB := db.NewTable()
ELSIF res <= 3 THEN
Dialog.ShowMsg(” #Sql: CannotLoadDriver”)
ELSE
Dialog.ShowMsg(” #Sql: ConnectionFailed”)
END
END OpenSQL;

The above code is typical of standard MySQL Open & Close operations, with some min-
imual error checking, notice the use of the data defined in the conn : RECORD., esp in the
SqlDB.OpenDatabase statement.

PROCEDURE Tabs(f :TextMappers.Formatter; notabs : INTEGER);

VAR

cnt : INTEGER;
BEGIN

FOR cnt := 1 TO notabs DO f.WriteTab; END;
END Tabs;

The Procedure Tabs, above, is a simple routine that is used to position the printing ”cur-
sor” position when writing to the report output TEXTVIEW. Very similar to TAB stops in a
WordProcessor or Typewriter.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

140 CHAPTER 9. ‘KARIN’ A SMALL BLACKBOX OBERON & MYSQL SYSTEM

T —
PROCEDURE PrintAll*;
CONST
cm = 10 * Ports.mm; (* universal units *)
VAR
t : TextModels.Model; f : TextMappers.Formatter; v : TextViews.View;
r : TextRulers.Ruler;
reccnt : INTEGER,;
date : Dates.Date;
now : Dates.Time;
sdate : ARRAY 40 OF CHAR;
stime : ARRAY 16 OF CHAR;

reptotal : REAL;
stmp : ARRAY 15 OF CHAR;

The above code is the start of PrintAll procedure and defines the local variables used by the
report.
Notice the variables defined as t.f,v & r these are variables that link the parts of the Blackbox
Oberon Text subsystem ie: t is a TextModel, f the Formatter which connects to t, and v the
View which allows the report output to be seen (and printed). r is a TextRuler.(see below)

BEGIN
t := TextModels.dir.New();
f.ConnectTo(t);
r := TextRulers.dir.New(NIL);

TextRulers.AddTab(r , 25 * Ports.mm);

TextRulers.MakeRightTab(r); (* make previous TAB stop right justified *)
TextRulers.AddTab(r , 50 * Ports.mm);

TextRulers.MakeRightTab(r); (* make previous TAB stop right justified *)
TextRulers.AddTab(r , 60 * Ports.mm);

TextRulers.AddTab(r , 90 * Ports.mm);

TextRulers.AddTab(r , 140 * Ports.mm);

TextRulers.MakeRightTab(r); (* make previous TAB stop right justified *)
TextRulers.AddTab(r , 150 * Ports.mm);

f. WriteView(r);

The above code creates the TextModel ¢ and f connected to ¢, also a TextRuler r. The
AddTab code places a TAB position into the TextRuler, the MakeRightTab code set the current
AddTab as right justified output. This is the easiest way to line up Currency fields. Note that
left justified alignment from the tab is the default

The f. WriteView(r); code places the TABS onto the output VIEW, or on the printed page if
you prefer.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

9.2. THE REPORT OUTPUT 141

karinDB.Exec(”SELECT * FROM receipts”);

IF karinDB.rows = 0 THEN
f.WriteString(”No records found”);
RETURN;

END; (* check for no records read *)

The above code makes the actual call to MySQL to find and return the records need from
the table receipts held in database Karin. The code also check if no records were found and if so
stops the report

f. WriteString(” Karins Receipts ”);
Tabs(f,3);
Dates.GetDate(date);
Dates.DateToString(date, 1, sdate);
f.WriteString(sdate$ + 7 7);
Dates.GetTime(now);
Dates.TimeToString(now, stime);
f.WriteString(stime$);

The above code writes the report heading, extracts and reformats the system Date & Time.
Notice the conversion process required to transform the actual system Date & Time values into
CHAR for printing. We have to get the value, convert it to a CHAR form and then we can print
it.

f.WriteLn; f.WriteLn;
f.WriteTab;

f. WriteString(”Rec Date”);
f.WriteTab;

f. WriteString(”Rec #”);
f.WriteTab;
f.WriteString(” Supplier”);
f.WriteTab;
f.WriteString(” Goods”);
f.WriteTab;

f. WriteString(” Total”);
f.WriteTab;
f.WriteString(” Seq#”);

f.WriteLn; f. WriteLn;

The above code prints the column headings, the actual texts were entered when building the
report with BxRepGen . Note the use of the WriteTab which will ensures correct placement of
the heading above the data values to be printed later. (The heading and data printing will use
the same Tab positioning to achieve this.)

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

142 CHAPTER 9. ‘KARIN’ A SMALL BLACKBOX OBERON & MYSQL SYSTEM

reccnt := 0; reptotal := 0;
WHILE recent <= karinDB.rows -1 DO
karinDB.Read(reccnt, receipts);

f.WriteTab;
Dates.DateToString(receipts.recdate, 0, sdate);
f.WriteString(sdate$);

f.WriteTab;
f.WriteString(receipts.recnumber$);

f.WriteTab;
f. WriteString(receipts.supplier$);

f.WriteTab;
f. WriteString(receipts.goods$);

f.WriteTab;
f.WriteRealForm(receipts.total,7,11,-2,” 7);

f.WriteTab;
f.WriteIntForm(receipts.seq, 10, 6, ’ ', FALSE);

f.WriteLn;

INC(reccnt);

reptotal := reptotal 4 receipts.total;
(* accumulate report total *)

END; (* while loop *)

f.WriteLn;

Tabs(f, 5);

f.WriteRealForm(reptotal,7,11,-2,” *);

f.WriteLn;

f. WriteString(” **** End Report **** 7);

v := TextViews.dir.New(t);

Views.OpenAux(v, ” receipts List ”);
END PrintAll;

The above code is the actual 'driving loop’ which reads every record returned by the SQL
SELECT above. As each record is printed, it is counted & a total accumulated of receipts.total.
The lines of code in bold were the lines added by me after BxRepGen had completed its
generation task.

BxRepGen automatically generates the correct Write call for the particular data type for the
variable returned from MySQL. The WriteRealForm or WriteIntForm procedures are generated
as they offer the most control over the output format.

8 According to Warford setting up these Write parameters is cause for much confusion to beginner Blackbox
Oberon programmer

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

9.2. THE REPORT OUTPUT 143

9999,

conn.password := "7;
conn.database := "karinMYSQL”;
conn.driver := ”SqlOdbc”;
OpenSQL;

END KarinReport.

The above code is executed once when the report is executed and it sets up the necessary
values for MySQL ODBC connections and access to be made

Figure 9.4: Karin : report program dissected

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

144 CHAPTER 9. ‘KARIN’ A SMALL BLACKBOX OBERON & MYSQL SYSTEM

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

Chapter 10

Modal Form Execution

Although Blackbox Oberon is a non-modal system, in that almost every GUI form displayed
can be 'put aside’ by the user! and returned to when desired. This is particularly nice way for
the user to operate as they can select other programs from the menu, use them and then return
to exactly where they were before selecting the other program, without loss of previously entered
data.

= BlackBox |
Fil= Edit Attributes Info Dew Tools Controls SQL ©Obx Tut Dragon BxRepGen EKarin Hw29 QuickQuote Yachks Window Help

uotation

N SYSIEm

Quotes] Stock Clients 1 Load Data] Tax Codes 1 Translate Table ListOuotes] Swstem] Supplier Templates 1

Template Header

= Conwvert $ to Text Iﬁl = r$_<| Heacler
CODE o= || L)]
AMD 900 mplate J Delete Template ‘
Hi-tsch Most Convert Currency Value to Text Words
Initel 550
L&RGE 5¥5
D SRR TR 99909999 99
.
TemrIaEems FIMET s MIME MILLICH MIME HUMDRED AMD MIMET MIME -~
THOUSAMD MINE HUMDRED &R0 MIMETY MINE DOLLARS AMD
TMPLT_CODE SEQ 99 CEMTS >
Std System 1235
Std System 150
St Svstem 200 &
Std Svystem 250 Bty
St Svystem 300

Exit System

Figure 10.1: Showing two separate program executing (non-modal)

In the above example the user was running the QuickQuote system, and simply executed
the Cheque Conversion program by selecting it from a menu, QuickQuotes form display is not
effected by this other execution.

In fact Blackbox Oberon has no standard method of making forms modal. ie: writing your
own form that when called will expect the calling form to wait for the called form to return.

lsome exceptions are Operating System Dialogs where the user is expected to make a choice before continuing
procesing ie: select a input file dialog, chose a printer, etc, where modal operation make sense.

PDF created with FinePrint pdfFactory Pro trial veldion http://www.fineprint.com

http://www.fineprint.com

146

CHAPTER 10. MODAL FORM EXECUTION

However it is possible without too much effort to achieve this.

The following example is extracted from a larger Blackbox Oberon program, called Quick-
Quote, that allows the user to create a new "Template Header’ record by calling a data entry form
from the currently displayed form by pressing the |Create Template | button, the caller appears
to wait for the data entry form to return before continuing processing the returned data, ie: like

a modal form.

This is not the case in reality, however the effect is similar.

10.1 Snapshots of MODAL operation

+= Quotation System

Quotes] Stock l Clignts] Load Data | Tax Codes | Translate Table] LiStOuotes] Systeml Supplier Templates l

Template Header

CODE

DESCRIPTION

j Edit Templste Header

AwiD 300

900 mHz Cpu based system

Create Template | Celete Template |

Hi-tech

Mozt curretly powerful configuration

Intel G50

5§50 mHz based system

LARGE S5

LARGE POWER SYSTEM

Small AviD

Template tems

Started configuration

I

Standard small configuration

TMPLT_CODE

SEQ

STOCK_CODE

OTY_REQ

Shd System

123

CP-IEM-P2533MHT

Shd System

150

WC-AGP-TRI-4MB

Shd System

200

CC-SCE15054,

Shd System

250

WISET 105

(ol Ll Ll Ly (]

Shd System

300

MO-SAMSUNG-7O0S

Exit System

Figure 10.2:

Before pressing | Create Template | Button

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

10.1. SNAPSHOTS OF MODAL OPERATION

147

Quotes] Stock

l Clients] Load Data | Tax Codes | Translate Table] ListOuotes] System] Supplier Templates l
Template Header

—Edit Template Header -
CODE DESCRIPTION -]
A0 250 550 mHtz cpu based system Create Template J Delete Template I
A0 900 900 mHz Cpu based system
Hi-tech Mozt curretly poyverful conficgurstion
Inte! 850 = Create Template Header,
Small Al
Sl Syt Template Code]LARGE oy
Template tems
TMPLT_CODE SEC
Srmsiiin |LARGE CONFIGURATION]

Ok ‘ Cancel I

Exit System

Figure 10.3: First form waits for user to fill in second form

+= Quotation System

Quotes] Stock.] Clients] Load Data | Tax Codes | Translate Table] List0u0t991 System] Supplier Templates

Template Header
—Edit Template Header
CODE DESCRIPTION ;]
WD 500 500 mHz Cpu based system Creste Tempists | Delste Tempiats |
Hi-tech Mozt curretly powerful configuration
Intel 550 5§50 mHz based system
LARGE S¥5 LARGE CONFIGLRATION
Small AhD Started configuration
St System Standard small configuration il
Template tems

TMPLT_CODE

SEQ STOCK_CODE OTY_REQ

Exit System

Figure 10.4: Upon return from second form, after pressing button

Notice the new entry in the top MySQL table 'LARGE SYS’, which was passed back to the
caller from the called data entry form for insertion into the Template table.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

148 CHAPTER 10. MODAL FORM EXECUTION
10.2 How was it done?

The modal effect was achieved by using the Blackbox Oberon event loop to our advantage. If
you study the supplied Blackbox Oberon documention you will see mention to an event loop,
this is an internal loop coded to wait for an event to happen, and then react to that event, ie;
keyboard press, mouse click, etc,

What this means to your program in effect, is that after executing a Procedure, either system
or user supplied, Blackbox Oberon waits for the next event to happen before continueing
processing, so therefore if the last command in a procedure is to call another form the calling
program will in effect wait /.

When the user pressed | Create Template| , the called form is displayed, the user enters data
into the displayed data entry fields, which are linked to fields defined in the caller

eg: QuickQuote.templateParas. CODE, QuickQuote.templateparas. DESC.

User presses button which executes the procedure, templateOK*, in the caller, and then
closes the called form. Note that all the procedures are defined in the caller (QuickQuote), or are
Blackbox Oberon supplied standard procedures, ie: StdCmds.CloseDialog, QuickQuoteTemplate
is only the called form, and has no program code.

The button is defined as :

Template Code ' i Inspector

& (QuickQuote)QuickquoteTemplate. [[O[X]

Cantral: JCDmmand Button
-Descri R
Lirk;
...... Label: |0H

Guard: |

Motifie:]
template Exec("Delet{ | D& IS Priae Font
:Quickquote.template | [©ancel ™ Opticr 4
Strings Replace(Temy] T ©ption 2]
Strings REeplace! Temy

ik Cancel | Apply | [t |

Figure 10.5: Definition of Button

The ’trick’ is to get the called form to execute a procedure in the caller, and then close the
called form,

Link: Quickquote.templateOK;StdCmds.CloseDialog

Blackbox Oberon does not know that its been tricked into processing a form in a 'modal’
fashion !

The button simply excutes a

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

10.2. HOW WAS IT DONE? 149
Link: StdCmds.CloseDialog

command and Blackbox Oberon simply closes the form, and enters the event loop. The
calling program does not have to check for any data entry, rejected usage of the form, etc, as the
forms are actually fully non-modal and considered by Blackbox Oberon to be separate. They
just appear to be modal forms to the end-user.

10.2.1 QuickQuote : Template Procedures

(* =============== Template procedures ==================== %)
PROCEDURE templateClear;
BEGIN
Template. CODE := " 7;
Template. DESCR =" 7;
END templateClear;
[
PROCEDURE templateReload;
BEGIN
template.Exec(”SELECT * FROM TEMPLATE order by CODE”);
END templateReload;
e ——
PROCEDURE templateCreate*;
BEGIN

template_paras.flag := FALSE;

9 9,

template_paras.code := ;

9.,

template_paras.desc := " 7;

StdCmds.OpenToolDialog(’QuickQuote\Rsrc\ QuickquoteTemplate’,’Create Template Header’);
(* NOTE : the call to QuickquoteTemplate *must™® be the last executable statement in this procedure
to make Quickquote & Quickquote Template to act like MODAL forms !!!
BSH 4/1/02 *)
END templateCreate;
(e
PROCEDURE templateDelete*;
BEGIN
template.Exec(” Delete from Template where CODE = :Quickquote. Template. CODE”);
template.base.Commit();
templateReload;
Dialog.Update(Template);

END templateDelete;

continues —

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

150 CHAPTER 10. MODAL FORM EXECUTION

PROCEDURE templateOK*;
(* templateOK is called from form QuickquoteTemplate OK button to emulate MODAL form actions
between Quickquote & QuickquoteTemplate , BSH 4/1/02%)

BEGIN
template_paras.flag := TRUE;
Dialog.ShowStatus(”Create NEW template : ” + template_paras.code +” lim ” + tem-

plate_paras.desc);

templateClear;

template.Exec(” Delete from template where CODE = :Quickquote.template_paras.code”);
Strings.Replace(Template. CODE,0,LEN(template_paras.code), template_paras.code);
Strings.Replace(Template. DESCR,0,LEN(template_paras.desc), template_paras.desc);

template.Exec(”Insert into Template VALUES (:Quickquote.Template)”);
template.base.Commit();

templateReload;
END templateOK;

PROCEDURE templateNotifier* (t : SqlDB.Table;
row, col : INTEGER;
modifier : SET);

BEGIN
Strings. Int ToString(row, tmpl); Strings.IntToString(col, tmp2);
Dialog.ShowStatus(” Clicked in template : row : 7 + tmpl + 7 col :” + tmp2);

template.Read(row, Template); (* read clicked on row *)
Dialog.ShowStatus(”Selected CODE :” + Template. CODE);

Strings.Extract(Template. CODE,0,LEN(Template. CODE) ,template_paras.code);
Strings.Extract(Template. DESCR,0,LEN(Template. DESCR),template_paras.desc);

Dialog.Update(template_paras);
templitems.Exec(”select ~* from template.items where TMPLT_CODE = :Quick-
quote.Template. CODE ”);

(* read THIS headers ITEMS list from second table *)

Dialog.Update(templitems); (* update template items display *)
END templateNotifier;

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

Chapter 11

Programming with Recursion

Recursive procedures are ones which call themselve from within their own code body and while
considered ’elegant’ by some computer scientists as it leads to much shorter written code!, they
are often very hard to debug because of the automatic? use of the systems ’stack’ as each call is
processed to save the current values of variables as the next call is to be processed.?

Most computer books give the example of computing Factorial to show off the recursion
technique?*, however as I have never needed to use a factorial in my programming career the
example I will give is a real one from a commercial data processing system I developed many
years ago for a client.’. Another classic recursion example, with useful application, is the famous
QuickSort algrothim which is not only clever but very fast as well. Recursion is also well suited
to searching lists & tree structures.

11.1 Printing Cheque Value as Words

My client needed to print cheques in a format acceptable for processing by their Bank and the
format had to conform to quite strick layout. The most difficult part being the printing of the
Cheques monetory VALUE in Text Words as one would hand write the cheque.

eg:
input : = 20000
output : = "TWENTY THOUSAND DOLLARS AND 0 CENTS”

input : 20001.99
output : "TWENTY THOUSAND AND ONE DOLLARS AND 99 CENTS”

and NOT
input : 345.00
output : "THREE FOUR FIVE 00 CENTS®

hecause you are calling yourself and you already have been written !

2this is the clever part of recursion

3Warford’s book see 1.2 has a very good chapter on recursion and its mechanics, so I’ll assume you’ve read
that

4boring!

5In Paradox for Windows, based upon a AWK program example published in "The AWK Programming
Language” by Aho, Kernighan & Weinberger in 1988. My version is more complex due to Australian FEnglish
being used rather than American English. I translated into Blackbox Oberon without too much effort

PDF created with FinePrint pdfFactory Pro trial velsion http://www.fineprint.com

http://www.fineprint.com

152 CHAPTER 11. PROGRAMMING WITH RECURSION

Translating a single numeric digit to a text Word is simply looking up an Array , using the
numeric digit as the array index, where the real problems occur is the ’correct’” grammar and
the placement of the ’"AND’ word and plural meanings, ie ONE DOLLAR not ONE DOLLARS,
TWENTY THOUSAND AND ONE DOLLAR not TWENTY THOUSAND ONE DOLLAR,
etc.

The main ’trick” to remember with recursive coding is , there must be a a well defined
end to the recursion!. In the case of Factorial when the value 1 is reached, then the calculation
is complete, and the program will start returning from each call passing the answer back to the
caller. In the example of Cheque Value to Text Words, recursion is complete when we have
processed the last dollar unit.

There are two program shown here, a small testing progrm that calls the NumToWords
Procedure in MODULE ChqLib, and Procedure IntoWords which is the recursive procedure and
is defined local to MODULE ChqLib and is not accessable to external procedures. This is a
typical example of information hiding that MODULES offer the application programmer, only
the procedures that the user (in this case another programmer) needs to access are allowed to
be seen externally to the MODULE, thus only the procedure NumToWords is available to the
caller.

Developing recursive procedures is perhaps more natural to Mathematical Programmers than
Commercial Programmers as Mathematicians tend to think in small functions calling other func-
tions. integrations, etc.”

As pointed out by Warford recursion can cause large overheads in processing time and stack
manipulations, however this example does not incur great overheads as the depth of the recursion
is generally quite small and the number of variables needed to be kept on the stack per recursion
is also small. And remember it only the procedures variables, and some system information, that
is placed on the stack, not the procedure itself!

"so dont waste your time trying to discover a reason to use recursion. I recall many years ago I was developing
a Text Editor in SIMULA and was coding away and at one point I needed to call a ’goto line’ procedure, and I
was currently coding that procedure! - a truly recursive happening.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

11.1. PRINTING CHEQUE VALUE AS WORDS 153

MODULE TestDollarLib;
(*
® ”StdCmds.OpenAuxDialog(’Book/Rsrc/TestDollarLib’,’Convert $ to Text’)” ””

)
IMPORT ChgqLib, StdLog, Dialog , Math;

VAR

dlg* : RECORD
cheqvalue* : Dialog.Currencys;
words* : ARRAY 200 OF CHAR;
END;

PROCEDURE Do*;

BEGIN
ChqLib.NumToWords(dlg.cheqvalue, dlg.words);
Dialog.Update(dlg);

END Do;

BEGIN
dlg.cheqvalue.scale := 2;
END TestDollarLib.

Figure 11.1: Calling Cheque Conversion Library

=+ Convert § to Text

Convert Currency Value to Text Words

Chegue Yalue 123 65

QRME HUMDRED AMD TWENTY THREE DOLLARS AMD BS s
CEMTS

Figure 11.2: Convert $ value to text Words

The Module above accepts a currency value from the user form, and when Convert button is
pressed, calls NumToWords, which will return the cheque value in text variable words.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

154 CHAPTER 11. PROGRAMMING WITH RECURSION

MODULE ChqLib;
(* a set of two procedures to convert a Currency value into a string of words
for printing cheques, etc

To use :
your program must call NumToWords, which sets up the environment for the
recursive calls to IntoWords to convert the CURRENCY value into TEXT WORDS
suitable for printing on a Cheque (for example).

Note: the the output Text Words is in the style of a typical handwritten cheque,
with correct grammer, not just the subsitution by character position.

Typical results:
eg:
input : (dialog.Currency) = 20000
output : (string) = "TWENTY THOUSAND DOLLARS AND 0 CENTS”

input : (dialog.Currency) = 20001
output : (string) = "TWENTY THOUSAND AND ONE DOLLARS AND 0 CENTS”

input : 20001.99
output : "TWENTY THOUSAND AND ONE DOLLARS AND 99 CENTS”

and NOT
input : 345.00
output : "THREE FOUR FIVE 00 CENTS
as used by some lesser cheque writting algorithims.

")

IMPORT Dialog, Math, Strings , StdLog;
TYPE

string = ARRAY 20 OF CHAR;

bigString = ARRAY 200 OF CHAR; (* build cheque valuse text sentence here *)
VAR

units : ARRAY 22 OF string; (* 20 entries of 10 characters *)
tens : ARRAY 12 OF string; (* 10 entries of 10 characters *)
(* array of numeric word equivalences *)

PROCEDURE IntoWords (dols : LONGINT; OUT CheqWords : ARRAY OF CHAR);
VAR

strl, str2 : bigString;

t_dols, t_rem : LONGINT;
BEGIN

Continues —

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

11.1. PRINTING CHEQUE VALUE AS WORDS

155

e Mk L Mk,
strl := ; str2 .= ;

IF dols >= 1000000 THEN
t_dols := (dols DIV 1000000);
t_rem := (dols MOD 1000000);
IntoWords(t_dols, strl);
IntoWords(t_rem, str2);

CheqWords := strl + "MILLION ” + str2 ;
RETURN
END:;
(* process values 1 MILLION DOLLARS and above*)

IF dols >= 100000 THEN

t_dols := (dols DIV 100000);
t_rem := (dols MOD 100000);
IntoWords(t_dols, strl);
IntoWords(t_rem, str2);
IF trem >= 1000 THEN

CheqWords := strl + "JHUNDRED AND ” + str2 ;
RETURN;
ELSE

IF trem > 0 THEN

CheqWords := strl + ”"HUNDRED THOUSAND AND ” + str2 ;

RETURN;
ELSE
CheqWords := strl + "THUNDRED THOUSAND ” + str2 ;
RETURN
END
END
END; (* process values 1 HUNDRED THOUSAND DOLLARS and above *)

IF dols >= 1000 THEN

t_dols:= (dols DIV 1000);

trem := (dols MOD 1000);

IF dols DIV 10000 >= 20 THEN

Strings.Extract(tens| (dols DIV 100) +1], 0, 99, strl);

(* pick up string equivalent of numeric value *)
IntoWords(t_rem, str2);
IF t_rem >= 100 THEN
CheqWords := strl + "THOUSAND ” + str2;
RETURN
ELSE
IF t-rem > 0 THEN

Continues —

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

156 CHAPTER 11. PROGRAMMING WITH RECURSION

CheqWords := strl + "THOUSAND AND ” + str2;
RETURN
ELSE
CheqWords := strl + "THOUSAND ” + str2;
RETURN
END;
END;
ELSE
IntoWords(t_dols, strl);
IntoWords(t_rem, str2);
IF t_rem >= 100 THEN
CheqWords := strl + "THOUSAND 7 + str2;
RETURN
ELSE
IF t_rem > 0 THEN
CheqWords := strl + "THOUSAND AND ” + str2;
RETURN
ELSE
CheqWords := strl + "THOUSAND ” + str2;
RETURN
END;
END;
END:;
END; (* process values 1 THOUSAND DOLLARS and above *)

IF dols >= 100 THEN
t_dols := (dols DIV 100);
t_rem := (dols MOD 100);
IntoWords(t_dols, strl);
IntoWords(t_rem , str2);
IF trem > 0 THEN
CheqWords := strl + "HUNDRED AND ” + str2;

RETURN
ELSE
CheqWords := strl + "HUNDRED ” + str2;
RETURN
END:
END; (* process values 1 HUNDRED DOLLORS and above *)

IF dols >= 20 THEN
t_dols := dols DIV 10;
Strings.Extract(tens| t_dols + 1], 0, 99, strl);
(* get string name for number *)
t_rem := (dols MOD 10); IntoWords(t_rem , str2);
CheqWords := strl + 7”7 4 str2;

Continues —

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

11.1. PRINTING CHEQUE VALUE AS WORDS

157

RETURN
END;

Chquords = unitS[dOIS+l] + ’757;
RETURN
END IntoWords;

PROCEDURE NumToWords* (dollars : Dialog.Currency ;
OUT dollarsInWords : ARRAY OF CHAR);
VAR
tmpprice : REAL;
int_dollars : LONGINT;
int_cents : LONGINT;
str_cents : ARRAY 4 OF CHAR;

BEGIN
tmpprice := dollars.val / Math.IntPower (10, dollars.scale);

int_dollars := ENTIER (tmpprice);
int_cents := dollars.val MOD 100;
(* extract dollars & cents *)
Strings.IntToString(int_cents, str_cents);

IF int_dollars = 0 THEN
dollarsInWords:= "ZERO DOLLARS AND ” + str_cents$
+ 7 CENTS 7;
RETURN
END:;

IF int_dollars = 1 THEN
dollarsInWords:= ”ONE DOLLAR AND ” + str_cents$ + 7 CENTS 7;
RETURN
ELSE
IntoWords (int_dollars , dollarsInWords);
dollarsInWords := dollarsinWords + 7 DOLLARS AND ” + str_cents$ + 7 CENTS ”;
END:;

END NumToWords;

BEGIN

(* conversion tables loaded ONCE when MODULE first called *)

(* convert Currency to REAL for processing *)

Continues —

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

158 CHAPTER 11. PROGRAMMING WITH RECURSION

units[l] =""7;
units[2] :="ONE ”;
units[3] :="TWO 7;
units[4] = "THREE ”;
units[5] :="FOUR 7,
units[6] = "FIVE 7,
units[7] = "SIX ”;
units[8] :="SEVEN ”;
units[9] := "EIGHT ”;
units[10] := "NINE ”;
units[11] :="TEN ”;
units[12] :="ELEVEN 7;
units[13] := "TWELVE ”;
units[14] := ?THIRTEEN ”;
units[15] = "FOURTEEN ”;
units[16] := "FIFTEEN ”;
units[17] = ”SIXTEEN
units[18] := "SEVENTEEN ”;
units[19] := "EIGHTEEN ”;
units[20] = " NINETEEN ”;
tens[1] =77,
tens|[2] :="TEN 7;
tens[3] = "TWENTY 7;
tens|[4] := "THIRTY ”;
tens[5] :="FORTY 7;
tens|6] ="FIFTY ”;
tens|[7] = "SIXTY ”;
tens|8] := "SEVENTY ”;
tens|9] := "EIGHTY ”;
tens[10] := "NINETY ”;
END ChqLib.

Figure 11.3: The Cheque Conversion Module

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

11.1. PRINTING CHEQUE VALUE AS WORDS 159

The CheqLib Module, when called, sets up the text words array, then excutes the Num-
ToWords procedure, this checks for values less then or equal to one (1) dollar and if so proceses
that value here and returns to the caller, otherwise the whole dollars value is used in the first
call to IntoWords.

IntoWords keeps calling itself recursively, breaking up the whole dollars into Millions, Hun-
dreds of Thousands, Thousands, Hundreds, Tens, Units until the last single digit dollar value
is obtained whereby the program starts its return ’cycle’ passing back the Text Word for the
current single digit.

In the following table, read down the left side columns then back up the right columns to get
the feel of recursion.

Read Down Read Up
Processed By | Input Dollars Cents | Final Text Words
NumToWords 1026.34 34 | ONE THOUSAND AND

TWENTY SIX DOLLARS
AND 34 CENTS
Whole Dollars | Remainder | Returned Text Words

| IntoWords 1026 T
| IntoWords 1000 | 26 (dollars) | ONE THOUSAND AND T
| IntoWords 20 | 6 (dollars) | TWENTY T
| IntoWords 6 nothing | SIX T

Figure 11.4: Example recursion processing

This type of problem could also, and usually is, be done in an iterative manner, however
the use of recursion proved to be the best method. I originally started to develop the program
iteratively and it soon became quite difficult to keep track of when to insert the ’AND’ word,
whereas in the recursive code that decision just fell into place ! ,probably reflecting the very
essence of recursive technique.

Benefits :

1. recursion leads to a more natural expression of the problem, no need to set up local variables
to hold temporary values which can obscure the intent of the code.

2. the code automatically processes the largest values entered, there is no need to keep track
of where the code is in the processing cycle, ie: are we processing , hundreds or thousands ?
ete.

3. the code automatically continues to call it self until the dollar units are is reached, the code
does not know how many digits there is in the number to be converted.

4. the returned text words sentence is dynamically formed as the recursion returns from each
call, no need to have special string formatting code to create the sentence.

Disadvantages:
1. more complex to debug initially

2. not everybody understands the recursion principle so maintance may be a problem

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

160 CHAPTER 11. PROGRAMMING WITH RECURSION

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

Chapter 12

Debugging Oberon Code

Unfortunately programmers are all prone to making errors !, and therefore we all need access to
techniques of being able to prove that our programs actually produce the results desired.

To this end numerious debugging techniques have been developed and these vary considerably
depending upon the programming language being used.

Typical debug methods are (not an exhaustive list) :

1. ‘trace’ code a programmer inserts in the program that prints small bits of information
about the current ‘state’ (values) in selected variables or procedures entered/left. All
languages offer this useful technique, however some languages make such a mess of the
program output that debugging the output is almost a difficult as debugging the program!.
Blackbox Oberon offer the special view - Log accessed via module StdLog, that allows the
programmer to easily output trace information without disturbing form or report output
from the running program. A very useful feature.

2. ‘debug windows’ that allow the program to execute under control of the programmer who
can observe that actual line of code (in text form) and modify variables as the program
executes, most modern languages support this style of debugger. Oberon does not, as
explained in the Blackbox Oberon documention, because the very nature of object oriented
languages is the internal complexity of the interactions between objects, modules, etc, as
the program executes, that following the code is a very difficult exercise.?

3. ‘defensive error trapping’ debugging via special code that is executed just before the actual
procedure code is executed is a technique developed especially for OOPL’s and championed
in the Eiffel language and also offered in Blackbox Oberon .

lthat means YOU & ME !

2I’d have to agree with this observation, while debugging Delphi code, when written like Pascal and not OOP,
the debugger is very useful, however when debugging Delphi OOP code the numerious ’other’ procedures that
enter the code cycle when stepping thru code becomes a nightmare, not impossible just very difficult.

PDF created with FinePrint pdfFactory Pro trial vel§ion http://www.fineprint.com

http://www.fineprint.com

162 CHAPTER 12. DEBUGGING OBERON CODE
12.1 Trace Code

The following small module has many lines of debugging code imbedded in the source code,
they are commented out for normal processing. However, when activated, this code will

produce a small trace script on the StdLog view for inspection every time the procedure is
called.

MODULE QuickquoteUtils;
IMPORT Dates, Strings, StdLog, SqlDB;

PROCEDURE SqlDate*(OUT ndate :ARRAY OF CHAR);
(* get system date dd/mm/yyyy and return yyyy-mm-dd for MYSQL records *)
VAR

date : Dates.Date;

sdate : ARRAY 11 OF CHAR;

syear : ARRAY 5 OF CHAR;

smonth : ARRAY 3 OF CHAR;

sday : ARRAY 3 OF CHAR;

strt : INTEGER; (* current FIND start position *)
fnd : INTEGER; (* current position of found ’/’ in a sdate *)
BEGIN
Dates.GetDate(date); (* get todays date as integer dd mm yyyy *)

Dates.DateToString(date, Dates.short, sdate); (* convert to string form dd/mm/yyyy™*)
(*** StdLog.String(sdate); (* trace system date returned*) *)

strt := 0; (* start on first character *)
Strings.Find(sdate, ’/’, strt , fnd); (* look for first / *)
(*** StdLog.Ln; StdLog.Int(strt); StdLog.String(” ”); StdLog.Int(fnd); StdLog.Ln; *)
Strings.Extract(sdate, strt, (fnd - strt), sday);

strt := fnd+1; (* start 1 char after first / *)
Strings.Find(sdate, ’/’, strt, fnd); (* look for second / *)
(*** StdLog.Int(strt); StdLog.String(” ”); StdLog.Int(fnd); StdLog.Int(fnd - strt); StdLog.Ln; *)
Strings.Extract(sdate, strt, (fnd - strt) , smonth);

Strings.Extract(sdate, fnd+1, 4, syear); (* get yyyy *)
ndate := syear$ + - + smonth$ + -’ + sday$; (* form yyyy-mm-dd *)
(*** StdLog.String(” ” + ndate$); StdLog.Ln; (* trace converted date *) *)
END SqlDate;

END QuickquoteUtils.

Figure 12.1: Debugging using Trace Code

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

12.1. TRACE CODE 163

In example the module is converting the standard operating systems time (Windows
dd/mm/yyy in this case) into the yyyy-mm-dd form required for MySQL database records.?
The string extraction process needs to extract and collect the various parts of the date :day
, month, year, into seperate string variables for re-packing into the required format for
passing back to the caller.

The code simply scans the text version of the systems date from left to right picking out
the parts of the text for dd, mm, yyyy. It does this by using the '/’ character as field
delimiters to the parts of the date.

The tracing code, if activated, will display the progress of this scanning on the Log file thus

CEX

compiling "Quickquote” 5064 3224 -
27103/2002
02
3 5
2002.03-27
b

Figure 12.2: Poor Trace Log of Date Conversion

Now, while the above information is useful and correct it suffers from one very important
fault. It does not identify from where it came, nor what the information is !!.

Better output would be :

- EX

SQL Datelrace : Enter: 271032002 _
strt Ofnd: 2
st 3fnd:Slen 2
2002-03-27
SQL DateTrace : Ext
b4

Figure 12.3: Better Trace Log of Date Conversion

This output is still quite simple, but it tells us which procedure created this trace, and, the
variable names and values, so we can relate this information back to the source code of the
procedure being debugged

3this module is NOT the best method of creating the required date format!

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

164 CHAPTER 12. DEBUGGING OBERON CODE

Remember that a trace of a variables value, without information about its source in a
program of many hundreds of procedures will not be very informative to you as you debug,
let alone any programmer that has the misfortune to debug YOUR program in future !

The code below illustrates a better method of manipulating the systems date into the
format required.

MODULE QuickquoteUtils;

IMPORT Dates, Strings, StdLog, SqlDB;
PROCEDURE SqlDateQuick*(OUT ndate :ARRAY OF CHAR);
(* get system date dd/mm/yyyy and return yyyy-mm-dd for MYSQL records *)
VAR
date : Dates.Date;
syear : ARRAY 5 OF CHAR;
smonth : ARRAY 3 OF CHAR;
sday : ARRAY 3 OF CHAR;

BEGIN
Dates.GetDate(date); (* get todays date as integer dd mm yyyy *)
Strings.IntToStringForm(date.day, Strings.decimal, 2, ’0’, FALSE, sday);
Strings.IntToStringForm (date.month, Strings.decimal, 2, ’0’, FALSE, smonth);
Strings.IntToStringForm(date.year, Strings.decimal, 4, ’0’, FALSE, syear);

ndate := syear$ + -’ + smonth$ + -’ + sday$; (* form yyyy-mm-dd *)
END SqlDateQuick;

END QuickquoteUtils.

Figure 12.4: A better method of system date conversion

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

12.1. TRACE CODE 165
Why is it better?. Well,

(a) its a lot less code !, and simpler to read and understand.

(b) it uses the Dates.Date variable datatype as the direct source of the current date, which
can be assumed to be correct?

(c) it uses the standard Oberon systems functions for all the manipulation of the date
data and we should be able to rely upon those functions to work correctly

(d) no pointers to places in a string are used, unlike the first example, page 162 , this
reduces the possibiity of programer error.

(e) no code is required to calculate the length of the extracted string (s), as required when
using the Strings.Extract procedure calls.

4if we can’t rely upon Blackbox Oberon to produce correct results from standard functions we should not be
using Blackbox Oberon at all

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

166 CHAPTER 12. DEBUGGING OBERON CODE
12.2 ASSERT

At first sight the ASSERT seems to be nothing more than a different way of using IF
statements to ensure that procedure input parameters values are within a specified range,
while this is true, the ASSERT offers more than that in that they are syntacally easier
to construct, allow direct connection to a user defined error message and are more easily
identified as something special to the reader of the code.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

http://www.fineprint.com

