Eidgendssische
Technische Hochschule
ZUrich

Hans Eberle
Stephan Gehring
Stefan Ludwig
Niklaus Wirth

May 1994

Departement Informatik
Institut fur
Computersysteme

Tools for Digital Circuit
Design using FPGAs

215

ETH Zirich

Departement Informatik
Institut flir Computersysteme
Prof. Dr. N. Wirth

Authors' addresses:

Institut flir Computersysteme, ETH Zentrum, CH-8092 Ziirich, Switzerland
e—mail: eberle, gehring, ludwig, wirth@inf.ethz.ch

(c) 1994 Departement Informatik, ETH Zirich

Tools for Digital Circuit Design using FPGAs

H. Eberle, S. Gehring, S. Ludwig, N. Wirth

Preface

This collection of five papers describes concept and facilities of a system to aid in the design of digital
circuits. It is being used in classes and laboratories for circuit design, and also for the development of
prototype circuits in research projects.

The first paper by N. Wirth describes a basic formalism for the specification of digital circuits. It is called
Lola for Logic Language. Although its syntax mirrors that of programming languages, its "programs”
describe static circuits rather than dynamic processes. Its features encourage a structured design, allowing
components of the same type to be instantiated like structured variables in programming languages.

The second paper by S. Gehring gives an introduction to field programmable gate arrays, in particular the
Atmel 6000 architecture used in our laboratories. The Atmel 6002 features 32x32 fine—grained cells
organized in 8x8 blocks. Each cell implements routing or logic functions and contains a register. The
connection network is hierarchical and consists of neighbour connections and a bus structure consisting
of local and express busses.

The third paper by S. Ludwig explains the use of an editor for specifying implementations of circuits based
on a field programmable gate array (FPGA). The editor makes it possible to design a layout for a circuit
interactively. Individual components of the circuit are mapped onto the available FPGA cells visible on the
workstation's display. The editor displays the various possibilities offered by a selected cell in the form of
graphical menus.

The topic of the fourth paper by S. Gehring is a program which tests the compatibility of a layout with a
circuit specification formulated in Lola. This Checker is based on an abstract data structure which the Lola
compiler generates, as well as on the internal layout representation generated by the editor. This data
structure is also used by simplification, analysis, and simulation tools.

The final paper by H. Eberle and N. Wirth specifies the extension of the Ceres workstation containing the
gate array, an Atmel 6002 chip with 1024 cells. It is implemented as a small additional circuit board
interfacing directly with the Ceres processor bus like an 1/0 device. A few additional components are
connected to the FPGA, which are useful in various class exercises. These are a 32K x 8 SRAM, line drivers
for RS—232 and RS—485, a crystal oscillator, a DA and an AD converter, an electrically programmable PLD,
and a DRAM.

Lola: An Object—Oriented Logic Description Language

N. Wirth

Introduction

Lola is a notation (language) for specifying synchronous, digital circuits (logic). In many ways it resembles
a procedural programming language. However, Lola texts describe static circuits rather than dynamic
processes. The objects occurring in a description are variables representing signals, operators representing
gates, and composite structures of such objects.

1. Identifiers, Integers, Logical Values, and Comments

Identifiers are used to denote constants, variables, and types.

identifier = letter {letter | digit} [""].
integer = digit {digit}.
LogicValue = T

Comments are sequences of characters enclosed by the brackets (% and %), and they may occur between
any two symbols within a Lola text.

2. Basic and Simple Types

Every variable in Lola has a type. It is either a basic, predefined type or a structured type defined in the
program text. The basic types are denoted by BIT, TS, or OC, which differ only in their rules governing
assignment. (TS denotes a tri—state bus, OC an open—collector bus). Variables of a basic type have a logic
value, denoted by '0 or '1.

SimpleType = BasicType | identifier ["(" ExpressionList ")"].
BasicType = "BIT" ["TS" ["OC".
Expressionlist = expression {",” expression}.

3. Array types

Array types consist of an array of elements, all of which have the same type. A numeric expression
indicates the number of elements in the array. Elements are identified by an index value. Indices range
from O to the array's length minus 1.

type = {"[" expression "]" } SimpleType.

4. Constant Declarations
Constant declarations serve to introduce identifiers denoting a constant, numeric value.

ConstDeclaration = identifier ":=" expression ";".

5. Variable Declarations

Variable declarations serve to introduce identifiers denoting a logic variable and to associate it with a type.
All variables declared in an identifier list have the same type.

VarDeclaration = IdList ":" type ";".
IdList = identifier {"" identifier}.

6. Expressions

Expressions serve to combine variables with logical operators to define new values. The operators are the
negation, the logical conjunction (and), disjunction (or), and difference (xor). Operands are of any basic
type. Elements of an array are selected by an index: a.5, a.i. If the index is an expression, the form a[exp]
is used.

+ logical disjunction (or)

- logical difference (exclusive or)
¥ logical conjunction (and)

~ negation (not)

A multiplexer is denoted by MUX(s: a, b) and is equal to ~sxa + sxb. The abbreviation MUX(s1, s0: a, b, c,
d) stands for

MUX(s1: MUX(s0: a, b), MUX(s0: ¢, d)).

A register provides the means to specify a value depending on previous values in time (sequential circuit).
The value of REG(e, d) in the next clock cycle is equal to d in the current clock cycle, if e ='1. If e =0, the
previous value is retained. e is called the register's enable signal. The clock signal does not appear
explicitly, but is assumed to be the same implied clock for all registers (synchronous circuit). The short
notation REG(d) stands for REG('1, d).

A latch, denoted by LATCH(e, d), is a storage element which holds a logic value while e ='0. If e =", the
value d is acquired (and the latch is transparent).

A basic SR—flipflop with (active—low) set and reset signals is expressed as SR(s', r').

Apart from logic expressions there exist numeric expressions. They follow the same rules of composition;
their operators are those of addition, subtraction, multiplication, division, and power of 2 denoted by +
(e.g. 4 =16).

selector = {"." identifier | "." integer | "[" expression "]"}.
factor = identifier selector | LogicValue | integer |
"~" factor | "" factor | "(" expression ")" |
"MUX" "(" expression ":" expression "," expression)" |
"MUX" "(" expression "," expression " expression "," expression "," expression "" expression ")" |
"REG" "(" [expression ""] expression ")" |
"LATCH" "(" expression "" expression ")" |
"SR" "(" expression "" expression ")" .
term = factor {("%" | "/" | "DIV" | "MAOD") factor}.

expression = term {("+" | "-") term}.

Note that the selector parameter(s) of MUX is followed by a colon instead of a comma.

7. Assignments

Assignments serve to define a variable's value, which is specified as that of an expression. The form v := x
stands for "let v be equal to x". Hence, an assignment must be understood as a variable's definition (in
contrast to an identifier's declaration). v and x do not have the same roles, and this asymmetry is
emphasized by the use of the symbol := instead of the symmetric equal sign (=).

If a variable is of type BIT, the expression must be of any basic type, and only a single assignment
(definition) is allowed.

6

If the variable's type is TS, the statement must specify a condition (representing a tri-state gate).
Arbitrarily many assignment to the same variable are permitted. However, the value of the bus is defined
only if some condition’s value is 1.

assignment = identifier selector ":=" [condition "|"] expression.

condition = expression.

If the variable's type is OC, arbitrarily many assignments to the same bus variable are permitted. The bus
value is "1, unless any one of the assigned expressions has the value '0 (wired—Or).

8. Control Statements

Statements are either assignments or composites of assignments, namely repeated or conditional
assignments.

relation = expression ("="] "#" | "<" | "<="|">"| ">=") expression.
IfStatement = "IF" relation "THEN" StatementSequence

{"ELSIF" relation "THEN" StatementSequence}

["ELSE" StatementSequence]

"END"
ForStatement = "FOR" identifier ":=" expression "." expression "DO" StatementSequence "END" .
statement = [assignment | UnitAssignment | IfStatement | ForStatement].
StatementSequence = statement {";" statement}.

The expressions in a for—statement must be numeric, and they specify the range of integer values which
the control variable assumes during the repetitions of the statement sequence. The identifier associated
with the control variable is considered as being local to the for—statement, i.e. does not exist in the
for—statement's context. The control variable typically serves as index to array variables.

9. Modules

A module specifies variables and a circuit involving these variables. A module may also contain definitions
of composite types. Modules are the textual units for compilation.

module = "MODULE" identifier ";"
{TypeDeclaration ";"}
["CONST" {ConstDeclaration}]
["IN"{VarDeclaration}]
["INOUT" {VarDeclaration}]
["OUT" {VarDeclaration}]
["VAR" {VarDeclaration}]
["BEGIN" StatementSequence]
"END" identifier "." .

Note that declarations introduce identifiers for variables, and statements define their values. The identifier
at the end of the module's declaration must match the one following the symbol MODULE.

Example: The following circuit represents an 8—bit binary adder with inputs x (x.0 ... x.7), y (y.0 ... y.7),
and the carry ci. Its outputs are the sum s (5.0 ... 5.7) and the carry co.

MODULE Adder;
CONST N :=8;
IN x, y: [N] BIT; ci: BIT;
OUT s: [N] BIT; co: BIT;
VAR ¢: [N] BIT:

BEGIN

5.0 :=x0-y0 - d; c0 = (x0 % y.0) + (x.0 - y.0)xci;
FORi:=1. N-1DO

Si=xid -y —c[i-1]; ci = (xi-yi)+ (xi-yi)*%c[i-1]
END ;

'

co = ¢[N-1]
END Adder.

10. Composite Types and Unit Assignments

In addition to basic types and array types, composite types can be declared. This facility may be compared
to record types in programming languages, and variables (instances) of such types correspond to
components of circuits, i.e. to objects being part of a circuit. A type declaration specifies a composite type,
of which instances are introduced by variable declarations. The heading of a type declaration contains up
to four sections:

1. The section headed by the symbol IN declares input signals to which no assignments within the type
declaration are permitted. The identifiers act as formal names for expressions specified externally in
unit assignments, where the expressions appear in the form of parameters. The types of the formal
names must be BIT or arrays thereof. The corresponding actual expressions must be of any basic type,
of be an array thereof.

2. The section headed by the symbol INOUT declares signals to which assignments within the type
declaration are permitted. As in the case of inputs, the identifiers act as formal names for signals
declared outside the type declaration. Their types must be TS or OC or arrays thereof.

3. The section headed by the symbol OUT declares actual variables. Their type must be BIT or an array
thereof. These output variables are accessible in the scope (type declaration) in which the composite
variable is declared. There they are denoted by the composite variable's identifier followed by the
output identifier as selector (the latter acting like a field identifier of a record). No assignments are
permitted outside the declaration in which the output is declared.

4. The section headed by the symbol VAR declares actual variables. They are not accessible outside the
type declaration.

Summary
allowed types types of corresponding actual parameters
IN BIT BIT, TS, OC
INOUT TS, OC TS, OC
ouT BIT
VAR BIT, TS, OC, declared type

Consider the following example:

TYPE AddElem:

IN x, vy, ci: BIT;

OUT 7, co: BIT:

VAR h: BIT;
BEGINh:=x-y;z:=h-di;co:=(x%y)+ (h%ci)
END AddElem

Avariable u of type AddElem (i.e. an instance of an AddElem) is introduced by the declaration:
u: AddElem
The inputs appear in the form of parameters (expressions) in a statement called unit assignment:

u(a, b, ¢

8

The components of u are obtained by substitution of the actual expressions for the corresponding formal
identifiers:

uh:=a-b;
uz=uh-c¢
uco :=(axb)+(uhxc
An 8-bit adder with inputs X and Y can now be declared as consisting of 8 identical elements
U: [8] AddElem
defined by the following assignments:

U.0(X.0, .0, '0);
FOR i =1 .7 DO U.i(Xi, Yi, U[i-1].co) END

and the sum is represented by the variables U.0.z ... U.7.z. (end of example)

TypeDeclaration = "TYPE" identifier ["%"] ["(" IdList ")"] ;"
"CONST" {ConstDeclaration}]
"IN" {IdList ":" FormalType ";"}]
"INOUT" {IdList ":" FormalBusType ";"}]
"OUT" {VarDeclaration}]
"VAR" {VarDeclaration}]
'BEGIN" StatementSequence]

"END" identifier.
FormalType = {"[" [expression] "]"} "BIT".
FormalBusType = {"[" [expression] "]"} ("TS" | "OC").

UnitAssignment = identifier selector "(" ExpressionList ")".

:
.
.
.
.
.

The number of bracket pairs in a formal type specifies the number of indices used for this parameter. If
an expression is specified, it indicates the length of the corresponding actual arrays given in unit
assignments. The identifier at the end of the declaration must match the one following the symbol TYPE.

11. Parametrized Types

Declared types can be supplied with parameters. They are numeric quantities and are used, for example,
to parametrize the dimension of arrays. Example:

TYPE Counter(N);
IN ci: BIT;
OUT co: BIT; q: [N] BIT;
VAR ¢: [N] BIT;
BEGIN q.0 := REG(q.0 - ci); 0 == q.0 % di;
FORi:=1. N-1 DO q.i := REG(q.i - c[i-1]); ci := q.0 % c[i-1] END ;
co = ¢[N-1]
END Counter

An instance u of a counter with 8 elements is declared as
u: Counter(8)

yielding the variables
u.co, u.q0. .., u.q7 and ucO, ., uc?

Note that u.c is local, i.e. not accessible outside the type declaration. A corresponding unit assignment
with enable signal e is now expressed by

u(e)

Implementation note: Currently, the actual parameters have to be repeated in unit assignments as specified in the

variable declaration, viz. u(s, e).

12. Lola Syntax

identifier = letter {letter | digit} [""].
integer = digit {digit}.
Logicvalue=""0"| """,

SimpleType = BasicType | identifier ["(" ExpressionList ")"].
BasicType = "BIT" | "TS" | "OC".

Expressionlist = expression {"," expression}.

type = {"[" expression "]" } SimpleType.
ConstDeclaration = identifier ":=" expression ";".
VarDeclaration = IdList ":" type ";".

IdList = identifier {"" identifier}.

selector = {"."identifier | "." integer | "[" expression "]"}.
factor = identifier selector | LogicValue | integer |

"~" factor | "¢" factor | "(" expression ")" |

m

"MUX" "(" expression ":" expression "," expression)" |

m m m

"MUX" "(" expression "," expression " expression "," expression "," expression "" expression ")" |
"REG" "(" [expression ""] expression ")" |
"LATCH" "(" expression "" expression ")" |

"SR" "(" expression "" expression ")" .
term = factor {("¥" ["/" | "DIV" | "MOD") factor}.

expression = term {("+" | "-") term}.

assignment = identifier selector ":=" [condition "|"] expression.
condition = expression.

relation = expression ("="| "#" | "<" | "<="| ">" | ">=") expression.
IfStatement = "IF" relation "THEN" StatementSequence

{"ELSIF" relation "THEN" StatementSequence}
["ELSE" StatementSequence]

"END"
ForStatement = "FOR" identifier ".=" expression "." expression "DO" StatementSequence "END" .
statement = [assignment | UnitAssignment | IfStatement | ForStatement].

StatementSequence = statement {";" statement}.

module = "MODULE" identifier ";"
{TypeDeclaration ";"}
"CONST" {ConstDeclaration}]
"IN" {VarDeclaration}]
"INOUT" {VarDeclaration}]
"OUT" {VarDeclaration}]
"VAR" {VarDeclaration}]
["BEGIN" StatementSequence]
"END" identifier "." .
FormalType = {"[" [expression] "]"} "BIT".
FormalBusType = {"[" [expression] "]"} ("TS" | "OC").
TypeDeclaration = "TYPE" identifier ["%"] ["(" IdList ")"1 "}"
["CONST" {ConstDeclaration}]
"IN" {IdList ":" FormalType ";"}]
"INOUT" {IdList ":" FormalBusType ";"}]
"OUT" {VarDeclaration}]
"VAR" {VarDeclaration}]
["BEGIN" StatementSequence]
"END" identifier.
UnitAssignment = identifier selector "(" ExpressionList ")".

"
"

[
[
[
[
[

[
[
[
[

13. Lola—Compiler Error Numbers

undefined identifier
multiple definition of identifier

field identifier not visible
identifier mismatch
field identifier undefined

identifier expected

MODULE expected

. must be followed by identifier or number
= expected

(expected

) expected

] expected

bad factor

relation expected

, expected

: expected

= or (expected

THEN expected

.. expected

; expected

. expected

END expected

DO expected

BIT, TS, OC, or identifier expected

indexed variable is not an array

bad selector

.is not preceded by a record or an array variable
too few actual parameters

too many actual parameters

record type expected

expression is not a constant
integer expression expected
parameter type mismatch

array length mismatch

index is not an integer

index out of range

incompatible types

illegal operation

illegal assignment, y not of type BIT
illegal assignment (x an input?)
illegal bus assignment

illegal TS—assignment to a non-bus

code too long
expression too complex
too many variable names
constant too large

10

11

14. User Guide

A Lola module is compiled by the command

LSC.Compile % (text in the marked viewer)
LSC.Compile @ (text starting at most recent selection)

After a successful compilation, the corresponding Data Structure is generated, upon which successive
steps operate. Successful compilation and generation is immediately followed by a simplification step
and a search for cycles.

Simplification is based on the following axioms

~(~X) =X LATCH('1, x) = x
X¥'0="0 X¥"1=x
X+'0=x X+"1="
x-"0=x X—="1=n~x

Cycles are broken by registers and tri—state gates; hence detected cycles are those within combinational
circuits only.

A listing of the involved variables and their expressions is obtained by issuing the command
LSD.Show

Further commands are

LSD.Init removes the Data Structure generated and collects free heap space
LSD.Openlog reopens the Log viewer
LSD.ClearLog delete text in log viewer

15. Implementation Notes

Knowledge about the Data Structure generated by the Lola System is necessary when building other
tools, such as comparators with other structures (like layouts) or automatic circuit generators.

The following interface components of module LSD (Lola System Data) are relevant for the subsequent
presentation:

CONST Namelen = 8;
Bit =1; TS = 2; OC = 3; Array = 4; Record = 5;
not =8; and = 9; or = 10; xor = 11; mux = 12; mux1 =13;
reg =14; Ich =15; sr =16; sr1 =17; ts = 18; tsc = 19; occ = 20;

TYPE Name = ARRAY Namelen OF CHAR;
Signal = POINTER TO SignalDesc;
Variable = POINTER TO VarDesc;

SignalDesc = RECORD
X, y: Signal;
fct: SHORTINT;
val, u, v: SHORTINT
END :

VarDesc = RECORD (SignalDesc)
name: Name;
next, dsc: Variable
END :

VAR org: Variable; state: SET;
zero, one: Variable;
Log: Texts.Text;

12

PROCEDURE WriteName(VAR W: Texts.Writer; v: Variable);
PROCEDURE New(f: SHORTINT; x, y: Signal): Signal;

PROCEDURE This(org: Variable; VAR name: ARRAY OF CHAR): Variable;
PROCEDURE Simplify(org: Variable);

PROCEDURE Loops(org: Variable);

The structure is a binary tree of Variables rooted in the global variable org. The field name indicates a
variable's identifier, and fct indicates its type. If it is Array or Record, the field dsc denotes the list of the
variable's components linked by the field next. Note that org designates a pseudo—variable standing for
the record containing all global variables of the module. Its name is that of the module.

The "value" of a variable is represented by an expression tree rooted in field x. This tree consists of
elements of type Signal. Each node denotes an operator specified by field fct and operands given by fields
x and y. A node with fct = not uses y as its operand, and the operator MUX, having 3 operands, is
represented by a pair of nodes

(mux, sel, (mux1, x, y))

The "value" x of a variable of type TS, to which expressions €0, e1, €2, ... are assigned, is a list of nodes
with fct = tsc (tri-state connection), linked by the y—field. The x—fields denote the expression trees for €0,
e1, €2, The same holds for variables of type OC, where the list nodes have the fct-value occ (open
collector connection).

The field y of Variables is used as a back—pointer designating their immediate ancestor. This field is used
by procedure WriteName for composing a variable's full name. The fields val, u, and v are free for use by
other programs.

13

Field-Programmable Gate Arrays
and the
Atmel AT6002 Architecture

Stephan W. Gehring

Introduction

Field-programmable gate arrays (FPGAs) are user—programmable logic devices used for the
implementation of logic circuits. They can be programmed quickly and repeatedly and are thus well
suited for prototyping circuits and application specific integrated circuits (ASICs). In general FPGAs consist
of three components: a matrix of programmable logic cells, a programmable routing network connecting
the cells and special input/output cells which connect the the matrix of logic cells to external signals.

ID ID ID |D/7 Logic Cell

= = = = =]

Routing
D- _ _ _ -D Network
= = = = =

~ H K K O
P 1 1 1
0000

General model of an FPGA (top view)

1/0 Cell

Among different FPGA architectures the routing topology varies as well as the number of cells and the
cell's complexity. The cell complexity ranges from very simple logic cells, such as two—input NAND gates,
to complex cells with many inputs, lookup tables and registers. FPGAs featuring simple cells are often
termed fine—grained, complex FPGAs coarse—grained.

An FPGA is programmed by fixing the function of the cells and interconnection network in a so-called
configuration. In the architecture discussed here a configuration is stored in an on-chip static RAM
(SRAM). The bits of the SRAM control the operation of the cells and network. The FPGA can be
reprogrammed by simply loading a different configuration into its SRAM.

[o]]] =] — Cells and Network

00000060 DDfSRA/\/\controlling

Cells and Network

SRAM controlling cells and network (side view)

14

The AT6002 Architecture

The AT6002 FPGA is arranged hierarchically as a matrix of 4 x 4 blocks which in turn contain 8 x 8
identical logic cells each. At the periphery, the logic cells are connected to input/output cells.

Block

Logic Cell

L]

1/0 Cell

The AT6002 Architecture

Along with the hierarchical organization of the cells, the chip features a hierarchical routing network, in
which blocks have direct connections to neighboring blocks and logic cells to neighboring logic cells.

At the core of the chip, the total of 32 x 32 fine—grain logic cells provide combinational, sequential, and
routing functions. As depicted in the figure below, a cell consists of an inner and an outer part.

- nhode

-

The inner part is in one of four possible states and features two inputs and two outputs, labelled A and B:

State 0 Straight routing

State 1 Cross routing

State 2 Half adder

State 3 Half adder with register

ES axl

State 0 State 1 State 2 State 3
States

15

The inner part's inputs and outputs feed through the outer part, which is configured in one of six possible
modes. The outer part connects to neighbouring cells (A, B) and to local buses (L). The six modes are
called

Write output A is also written to a local bus L

Tri-state Ais written to a local bus L through tri—state gate

Read reads L and combines it with A through an AND gate

Mux reads L and combines it with A through an AND gate
and ~L with B through another AND gate

Turn-B local bus cornerturn

Turn-0 local bus cornerturn

& E * 0
“ L |E) B * B M E
Write Tri-5tate Read Bl Turn-E Turn-0

Modes (inputs at the top, outputs at the bottom)

State and mode may be freely combined yielding 24 possible configurations per cell. For example, a
multiplexer can be composed by combining mode Mux with state 2:

State 2

Composing a Multiplexer

At the logic cell level of the routing network hierarchy, the AT6002 FPGA features nearest neighbor
connections between cells. Two input signals (A, B) may be chosen independently from any of the four
direct neighbors of each cell (N, E, S, W). Instead of a neighbor input, a logical constant "1 may be
selected as an input. In addition to the A— and B-inputs, one of four local buses connected to each cell
can be used as an input (L-input).

The outputs of the state (A— and B—output) are immediately available on all four sides of the cell and may
serve as inputs to the neighboring cells. Optionally, the A—output can also be fed to a local bus
(L-output). A cell may be configured to use a local bus either as an input or as an output, but not both at
the same time. The only exception is the so—called cornerturn, which serves to route a signal from a
horizontal to a vertical bus, and vice-versa. In this case, the local bus is available neither as input nor as
output.

16

A B A B
A A A A
‘v ‘v LBusN
B Iy I T A
AT, I T 5 B
A | y A | y
LBusS
‘v ‘v LBusN
B Iy I T A
AT, I T 5 B
A | y A | y
LBusS
\{ \{ v v
B A B A
LBusw LBusk LBusw LBusk

Logic Cell connections

At the block level of the routing network hierarchy, the AT6002 FPGA provides buses. Buses are used to
carry signals over longer distances. There are two types of buses, local buses and express buses. The eight
cells of a row or column within a block can be connected by local buses. Columns can be connected
through the two local buses LBusW and LBusE, rows through the local buses [BusN and [BusS. The local
buses of adjacent blocks are separated from each other but may be joined through repeaters. Paired with
each local bus is an express bus. Express buses are not directly accessible from a cell but must be
connected through a repeater and a local bus. Express buses are typically used to carry signals over long
distances quickly.

A/B type
neighbor connections

Block x/y

Block x/y+1

Repeater

Local Bus

H N H N H N Express Bus

Connection network

17

Repeaters are programmable switches used to separate or join the buses of adjacent blocks. Each pair of
local and express buses enters a repeater at the block boundary. Two pairs of buses may be connected in
any of 28 different ways (e.g. connect local bus 1 to express bus 2 and express bus 1 to local bus 2). The
connections are unidirectional. At the periphery of the logic cell array, express buses are connected to the
border cells.

The logic cells at the periphery of the AT6002 FPGA can be connected to external signals by means of
input/output cells or pads. Each 1/0 pad is connected to a pair of logic cells. The input cell feeds the pad
input to the logic cell array while the output cell connects the logic cell output to the pad through a
tri-state gate. This gate can be configured to be constantly on or off or to be controlled by a local bus
parallel or perpendicular to the array boundary.

Input Cell Local Bus

A

0 — ’7
Local Bus 1 D

Output Cell
1/0 Pads

At the chip level, a global clock and a global reset signal can be used for the registers found inside the
logic cells. Each column of 32 registers can be clocked or reset independently of other columns. Two
programmable multiplexers are positioned at the top (clock) and the bottom (reset) of each column.
They allow to chose between four different sources for the clock and reset signal, respectively.

global clock
1 I 1 I
o o
EBusS o o
o o
EBUsN ° °
o o
: [% : [%
global reset | [

Register Control Signals

18

CL-Editor User Manual

Stefan H.-M. Ludwig

Abstract

The CL-Editor is a program package for the graphical design of circuits for the Atmel AT6000
Field Programmable Gate Array architecture (formerly Concurrent Logic, hence the CL
abbreviation). The functionality of the software supports the fast design of circuits on the
computer screen, downloading of the circuit onto the hardware of a CL-Board for Ceres-3, and
testing. Parts of designs can be copied into other designs, thereby allowing the construction of
libraries of tested components. Before reading this manual, the user should be acquainted
with the AT6000 architecture.

Necessary Modules and Files

The editor package consists of the following modules:

CLGAs Data structures representing designs, loading and storing of designs
ClLLoader Loader for the CL-Board for Ceres-3

CLi.Scn.Fnt Patterns for the editor

CLFramesD Display procedures used by the editor

CLFrames Editing operations

cL Command module and programming interface for the CL-Board
CLMenu.Text Text displayed in the menu frame

CLTool Tool text with explanations

Latch.Cli Example design

CLTool contains the most often used commands with short explanations. CLMenu.Text can be altered by
the user to suit his or her needs. If it is not present, a default menu is used.

Opening, Storing, and Loading Designs

The command CLOpen Name.Cli loads a design from disk and opens a viewer with a graphical
representation of the design. File names of designs should end on Cli (convention). Like with other
Oberon commands, an arrow (1) indicates the last text selection to be the argument of a command
(CLOpen 1).

If a design gets changed, an exclamation mark in the menu frame of the corresponding viewer indicates
this fact. This way, all viewers showing modified designs are clearly marked.

Command CLStore in the menu frame stores a design to a file using the name shown in the menu frame.
A backup of the old design is kept on disk under the name Name.Cli.Bak.

Hint: To rename a design, one can simply edit the name in the menu frame with the mouse (delete the
name in the menu frame using the mouse and type the new name on the keyboard). After storing the
design, it is available under the changed name.

CLLoad, another command in the menu frame, downloads the displayed design to the CL-Board of a
Ceres-3 and notifies the user through a message in the Log viewer (loading done/not done). If the design
contains errors, a message with the coordinates of the erroneous cell is printed (—> CLLocate).

19

Editing: General Remarks

The editor is used consistently with the mouse. Mouse button assignments and their functions were kept
compatible with the normal Oberon text operations as closely as possible. The command CLCells in the
menu frame toggles between two display modes. Either all cells are shown — even the ones not used — or
only those cells which actually have a content or get used for routing a bus. Furthermore, only those local
and express buses are shown which get used by a cell or are connected together via a repeater.

Cancelling and Undo

By pressing all three buttons at the same time, a started operation can be canceled. The command CLUndo
in the menu frame can be used to undo the last editing operation. Undo is involutory, i.e. invoking it a
second time redoes the operation.

Usage of Mouse Buttons

The left button is used to edit cells, pads, and repeaters. In most cases, a menu will appear from which a
certain item can be chosen. By leaving the menu with the mouse and releasing the button, the operation
is canceled and no changes take place.

The middle button is used to shift the view of a design or to move or copy a cell selection.

The right button is used to select a cell stretch, a pad, or a repeater.

Editing Cells

Cells are edited with the left mouse button. Depending on the location where the button is pressed,
different actions take place: Either the inputs or outputs of a cell are edited or the cell's content itself.
Figure 1 below shows the sensitive areas of a cell. By pressing the left button in the respective area, the
involved states get changed:

A/B inputs: The input is turned on or off (toggled). Depending on the selection of inputs the picture inside
the cell changes as not selecting an input results in a "1" being supplied at that input. The inputs can be
toggled on all four sides of the cell. Near the A output (fat terminal L) lies the B input and near the B
output (thin terminal L) the A input. The lower outputs and the upper inputs correspond graphically
with the patterns inside the cell. If other directions are chosen, one has to imagine the signal flow since
the pattern is not rotated accordingly.

L-bus input/output: If the cell reads a local bus (Read, Mux) (middle right and middle left cell in fig. 1) the
arrow is drawn from the L-bus to the cell. It is only possible to select one connection from the bus to the
cell. If the cell writes the bus (Write, TS) (middle cell in fig. 1) the arrow is drawn from the cell to the
L-bus and it is possible to have two connections simultaneously. If the cell implements one of the two
corner turns (lower left and upper left cell in fig. 1) two connections can be set, but no arrow is drawn
because the bus is bi-directional.

It is possible to have the cell perform a corner turn without choosing the cell's content. This can be
seen in the lower left cell in fig. 1. The corresponding directions at the cell are chosen without first giving
the cell a content. Note: If two connections are made, these must be perpendicular to each other, e.g.
north/west or south/west but not north/south.

Labels for A and B outputs: The last text selection can be copied to the lower A or B output by additionally
pressing the middle button (left/middle interclick). This is analogous to Set Caret/Copy with normal
texts. With left/right interclick the label at that position is cleared. If a label exists in a design already, an
error message is printed to the Log. Labels may end with a single quote (') to indicate signals with
negative logic. CLLabelA, CLLabelB, CL DeleteA, CL DeleteB are used to label cell stretches (see below).

20

A/B input on all four sides

-
-

.. B
sensitive areas { i

for inputsfoutputs B — —
A s AE] E —|n E
Sensitive areds Tl I TR L-bus on all four sides
for labelling I = IC ﬂB —
+
i b L -
A [~ L [E | E
L T Labels for A/E output:
1l i 1 i
= F— iensitive area for
L% cell menu
— — —
- - | E —
T 1 T T T
I I I I
Fig. 1

Cell menu: When pressing the left button, a popup menu appears on the screen (figure 2). If a cell has a
content already, it will be highlighted with a frame (see figure 2). The first four items in the lower row
constitute the State and the upper row constitutes the Routing mode of a cell. The two Muxes on the
lower right are shortcuts for state Xor/Reg and routing Mux. If the left button is released outside the
menu, no selection takes place.

By interclicking the middle button during the menu selection, the cell can be initialized (no routing, no
state, no input, no output).

The content of the cell is drawn depending on which routing and state is chosen and which inputs are
active. E.g. the Xor and the Nand in the middle cell of figure 1 becomes a Not if input B is not active (A
XOR1 = ~A).

' ' y - = ' '
= L = "| L "

1 } 1
! e e [lo os]bEat |6 [Saicte|la |6 {|a o |

1l
T ¥ L

|°||LB |°||LB

s L et il e o

* E *

_|
n
::P. BI'_—‘P._|LEI._—{P. Bl'_—‘ﬁ EI._ *H
T T T T T T - = T

carher cakher
T turn turn]_

“ |L|E A E Pl E * E " E * E
Ll le | A= o le {|la |s || TB
L

Editing Pads

The pads, too, can be edited with the left mouse button. A menu appears if the button is pressed inside a
pad (figure 3). The function for the tri-state gate can then be chosen. The current state of the pad is
highlighted with a frame. If the left button is released outside the menu, no selection takes place.

2

By interclicking the middle button during the menu selection, the pad can be initialized (0, no output).

1. item (left in menu in fig. 3): The pad acts as input only. "0" is drawn inside the pad box (output off). This
is the most secure setup of a pad since no signals can leave the chip.

2. item: The pad is controlled by the L-bus running perpendicular to the pad’s side (the vertical L-bus to the
right (east) of the output cell in the figure). This state is indicated with a bar "|" which is perpendicular to
the pad's side.

"o

3. item: The pad is controlled by the L-bus running parallel to the pad'’s side. A dash "-" parallel to the pad's
side is shown in this state which is the normal case for data pads (D.0..D.7) on the left side of the chip on
the CL-Board.

4. item (right): The signal of the output cell drives the pad always which is indicated by a "". Care must be
taken with this state: Only the address lines (a.0..a.14) on the top of the chip should have this state. For
all other pads this state should not be selected, as external logic or the chip itself could be destroyed.

Labels can be set at pads, too. The proceeding is analogous to the one with cells. The sensitive area for
pads is at the input or output. Labels are drawn to the right of or below a pad (cf. figure 3: sig).

1 l l 1 1 l l 1 1 l l 1 1 - = l
s L g i s L 5 L = P T P
| b b H- ; 3 ' N -
L |E 3 " 1 . \Pu><"1 _ L |E . * 1 3 * 1 _ * E
; 1 "’[;—_j WJL 15] oo
H- — H—* — — — —
E |t * E —A (n E s BE E —A|m |L|E —A|n E —A|n E
L i 11 1 —] 1 | — J t 1 L T —II_I=)
TIRF | é'lellﬂ e
[| 0.~ Jsig [e -

Sensitive arzas for labelling

Fig. 3

Editing Repeaters

The state of repeaters can be chosen with a menu (figure 4). All possible connections between local and
express buses are presented in the menu. The current state is highlighted with a frame. If the left button
is released outside the menu, no selection takes place.

By interclicking the middle button during the menu selection, the repeater can be initialized (no
connections).

The four last columns in the menu in fig. 4 (from left to right) call for an explanation:

1: L-bus and E-bus are crossed over (E=>L L—>E)
2: L-bus writes to L- and E-bus or vice versa (L—>E and L—>L or E—>E and E->L)
3: L-bus writes to L-bus in same direction and E-bus in the other or vice versa
(L—>L and E<—L or E—>E and L<—E)
4: L-bus writes to E-bus in same and other direction or vice versa
(L—>E and E<-L or E—>L and L<—E)

22

- — —
L B my T | gt MR
] 02
— — -
= e B - [= |sd] M [n=|sdp
E — . 2 3 L
| - = | | | |
= - =—=|= T
j |.°. E ,.|1 —
— s ===
— |—=I= = | || —
A | B . o v v v
T“ T E_ T T T T
—— = 1 L 1 |
—+ — — —
=4 & -+
;\:;.J-L é . o]

Fig. 4

Selection

With the right mouse button, multiple cells and single pads and repeaters can be selected. Certain
commands require cells, pads, or repeaters as arguments and these are specified by the last selection.

Single cells, pads, and repeaters can be selected by simply pressing the right button inside the menu area. If
multiple cells should be selected, the mouse should be brought to the lower left cell, the right button
should be depressed and held down, and the mouse should then be dragged to the upper right cell one
wishes to select. This way, a rectangular area can be selected even over repeater boundaries.

1 1
L+ n

Shifting the View, Moving and Copying Cells

When the mouse is moved with the middle button held down, the visible portion of the design can be
shifted. The location where the button is pressed down appears at the location where the button is
released again.

If the middle and right buttons are depressed (middle/right interclick) the most recently selected cells are
copied to the location where the buttons are released. Care should be taken in releasing the buttons only
over a cell. If a rectangular area should be copied, the target cell must be the lower left cell. If the area
cannot be copied as a whole, the operation is canceled.

23

If the middle and left buttons are depressed (middle/left interclick) the most recently selected cells are
moved to the location where the buttons are released, i.e. they are deleted at the old location. Labels at
outputs are moved as well.

During these operations (moving or copying), repeaters are not moved or copied along. It is possible,
though, to move or copy cells into another viewer. This way, designs from one viewer can be copied into
another. Attention: CL Undo has to be invoked in each viewer where a modification has occurred.

List of Mouse Button Combinations

left button menu for cell/pad/repeater
(release outside menu to cancel)
toggle A/B inputs
toggle L-bus input/output
middle (interclick) initialize cell/pad/repeater if inside menu
copy text selection to label

right (interclick) delete label

middle button shift view

left (interclick) move cell selection (incl. labels)
right (interclick) ~ copy cell selection

right button select

all three buttons ~ cancel started operation

24

List of Commands

Commands in the menu frame

CLLocate cf. Locate below

CLArray cf. Array below

CLCells show all cells / only used cells

CLLoad download design to the CL-Board

CLUndo undo/redo the last operation

CLStore store design to file using name in the menu frame

Commands in CL.Tool

Many commands in CLTool take the marked ("x") viewer as an argument. If no viewer is marked and the
command is not in the menu frame, the viewer containing the most recent selection is used. With this,
the star does not have to be setup every time when a selection exists already. Viewer written in italics
indicates if a command expects this kind of viewer.

CL Open Name.Cli open a viewer displaying the design stored in file Name.Cli

CLOpen the last text selection is taken as argument

CLPrint Pluto col [comment] Viewer is printed on server Pluto, starting with column co/ (0 <= col <=
15), adding an optional comment.

Commands Locate and Array are used to find (arrays of) cells by means of their names and coordinates.

CLLocate name name is searched for as a label in Viewer and the corresponding cell or pad is selected

CLlocate xy the cell or pad at xy in Viewer is selected

CLlocate 1 the last text selection is taken as argument

CLLocate in the menu frame is the same as CLLocate +

CLArray prefix labels starting with prefix are searched for in Viewer and the corresponding cells are
selected (used for locating arrays)

CLArray v the last text selection is taken as argument

CLArray in the menu frame is the same as CLArray

SetClock and SetReset are used to set the value of the clock/reset signals in the selected column(s). It is
important that the top-most (31.) row is selected for setting the clock, and the bottom-most (0.) row for
setting the reset signal of a column. The command is applied to all selected columns. Note: The reset
signal is active low ("0"). SetPassGate is used to turn the pass-gate of an east or south repeater on or off (to
the right of or below a cell).

CLSetClock Aout set Clock of column(s) to A-Output of the top-most cell in the column(s)
CLSetClock Global set Clock of column(s) to global clock signal (Ceres-Clock)

CLSetClock Express set Clock of column(s) to express bus south of top-most row

CLSetClock Off turn Clock of column(s) off

CLSetClock + the last text selection is taken as argument

CLSetReset Aout set Reset of column(s) to A-Output of the bottom-most cell in the column(s)
CLSetReset Global set Reset of column(s) to global reset signal
CLSetReset Express set Reset of column(s) to express bus north of bottom-most row

25
CLSetReset Off turn Reset of column(s) off
CLSetReset 1 the last text selection is taken as argument

CLSetPassGate On turn pass-gate of selected east or south repeater on
CLSetPassGate Off turn pass-gate of selected east or south repeater off
CLSetPassGate + the last text selection is taken as argument

CL Reset all flip-flops in the chip are reset (global reset)

Information about a design is written to the Log with:

CLInspect detailed information about the selection (cell/pad/repeater)
CL Clocks clock assignments for all columns in Viewer

CL Resets reset assignments for all columns in Viewer

CLLabels used labels in Viewer

CL Statistics number of used cells and buses in Viewer

The commands below allow for automatic labelling of cell stretches. The following must hold for all label
commands: (dx# 0) and (dy = 0) or (dy # 0) and (dx=0)

CLLabelA "label” dx dy [beg] label A-output of selected cells
CLLabelB "label” dx dy [beg] label B-output of selected cells

CL DeleteA dx dy delete label at A-output of selected cells
CL DeleteB dx dy delete label at B-output of selected cells
CLLabel/DeleteA/B 1 the last text selection is taken as argument

The label must be in quotes and contain a "%" character which is substituted by continuous numbers. A
negative dx or dy is used to decrement instead of incrementing the label values, but the cell indices are
always incremented by ABS(dx) and ABS(dy). The label values are always between 0 and 9. Values larger
than 9 must be entered as shown in the next to the last example:

CL1abelA "x.x"0 2 will label the A-output of every second vertical cell with x.0, x.1, x.2, ...
CLLabelB "M.x.5"01 3 will label the B-output of every vertical cell with M.3.5, M\.4.5, M\.5.5, ...
CLLabelA y.x"0-19 will label the A-output of every vertical cell withy.9,y.8,y.7, ...

CLiabelB "z.1x"3 0 will label the B-output of every third horizontal cell with z.10,2.11, 2.12, ...
CLDeleteA 0 2 deletes labels at A-outputs of every second vertical cell

Commands Put and Get are used to read and write the 4 ports of the CL-Board. Procedures Putint and
Getint are the programming interface to the board.

CLPut [port]val write val to CL-port port (0 default) (0 <=val<=255, 0<=port<=3)

CLPut + the last text selection is taken as argument

CLGet [port] read a byte from CL-port port (0 default) and write it to the Log (0 <=port<=3)
CLGet 1 the last text selection is taken as argument

CLPutint(port, val: INTEGER); Write val to CL-port port (0 <=val<=255, 0<=port<=3)

CLGetInt(port: INTEGER): INTEGER; Read a byte from CL-port port (0 <=port <=3)

26

CLChecker User Manual

Stephan W. Gehring

Abstract

The CLChecker program tests a layout implemented with the aid of the CL-Editor for
conformance with a specification in the form of a Lola program. As a base for comparing the
two representations of a digital circuit, the checker uses a data structure based on a set of
binary trees generated by the Lola compiler. To simplify the conformance check, the internal
representation of the layout is first transformed into an equivalent data structure. Then the
two sets of trees are matched to detect inconsistencies. Inconsistencies found are displayed
textually and also marked in the layout to facilitate error locating.

How it works

A digital circuit is characterized by its inputs, outputs, and a set of Boolean functions combining the
inputs. Each circuit output is associated with the result of such a function. It can be represented as a
binary tree with nodes consisting of Boolean constants, operators, variables, or units composed of several
operators (e.g. multiplexors, registers). Variables, in this context, designate signals associated with a
name, such as an input or an output. Each output forms the root of such a binary tree. A complete circuit
can thus be represented as a set of trees, one for each output. Inner tree nodes consist of operators with
edges pointing towards the node's inputs, while leaf nodes consist of Boolean constants and input
variables.

The following example illustrates the equivalence between a Boolean function represented as a set of
interconnected gates, a binary tree, and a Lola statement.

Schematic Tree Formula
u —
v —
1>
y

z

7 Z = UXV + X%y

As shown above, statements of a Lola program can be represented by trees as well: trees serve as a
common representation for layouts and Lola programs and hence provide the base for comparison.

By transforming both a layout and a corresponding Lola program into a set of trees the two
representations can be matched. Under the assumption that the Lola program describes the circuit
correctly, i.e. it depicts a circuit specification, inconsistencies between corresponding pairs of trees are
interpreted as errors in the layout, the circuit implementation. Two trees correspond if the names of their
root variables match.

27

Transformation of Lola programs into a set of trees is done by the Lola compiler already, so the compiler's
output can be directly used for comparison. The layout entered with the CL—Editor, however, is stored in
an internal format and must be transformed into an equivalent set of binary trees before matching. This
is done by a circuit extractor, which recursively traverses signals in the layout starting at each output signal
and terminating at input signals or Boolean constants. After processing a gate's inputs, a node equivalent
to the gate's operation is generated and linked accordingly. The resulting tree is then checked for
combinational loops (other than SR flip—flops and latches implemented with multiplexors). After a
simplification step the tree is ready to be checked for consistency with the Lola specification.

Example

The following example of a two—bit binary counter illustrates the steps necessary to implement and verify
the correctness of circuits entered with the CL-Editor. The schematic below contains two counter
elements whose outputs (cnt.z.0, cnt.z.1) are fed to a bus D through tri—state gates.

D.O DA
| A\ | AN
RD’
ntz.0 cntzA
. D D :l)cnt.c.O D D :l)cnt.cﬂ
clock

Step 1: The Lola description

In a first step, a Lola program, which will serve as a reference ("specification”) for the checker, is
developed. It consists of a single module with a parameterized type Counter which defines an N-bit
binary counter. The module body instantiates a 2—bit counter and assigns its outputs to the bus. Note
that the circuit is synchronous and the register clock hence implicit.

MODULE Example;

TYPE Counter (N); (% N=bit binary counter %)

IN incr : BIT; (% increment control signal %)
OUT z : [N] BIT; (» output bits %)

VAR ¢ : [N] BIT; (¥ carry bits %)

BEGIN

z[0] := REG (z[0] - incr);
c[0] = z[0] % incr;
FORi:=1.N-1DO
z[i] = REG (z[i] - c[i-1]);
c[i] = z[i] % c[i-1]
END;
END Counter;

CONST N = 2;
IN RD': BIT; (¢ bus read control %)
INOUT D : [N]TS; (» output bus %)
VAR cnt : Counter (N); (x counter x)
BEGIN
cnt (N, 1); (% build counter x)
FORi:=0.N-1DO
D[i] := ~RD' | cnt.z[i] (% assign counter output signals to bus D %)
END

END Example.

28

The program can now be compiled with the Lola compiler (LSC.Compile). The compiler generates a set of
trees which are displayed as a list of Boolean expressions (LSD.Show):

Example

cnt.c0 = cntz0 (% carries %)

cnt.c1 = (cntz.1xcnt.c.0) (% % = and operator %)

cntz.0 = (1 *(~cntz.0)) (% 7 = register, ~ = negation %)
cntz.1 = (1 (cntz1-cnt.c0)) (% — = XOR %)

D.0 = (((~RD")|cntz.0).) (% | = tri-state gate x)

DA = (((~RD)[cntz1).)
RD' =

Step 2: Design Entry

With the Lola compiler output at hand, the design can now be entered with the CL-Editor. The figure
below (left) displays the layout of the two counter elements, the higher order bit on top of the lower
order bit. For each variable listed in the Lola compiler output a corresponding label must be placed in the
layout.

Step 3: Consistency Check
After specifying the circuit with a Lola program and entering it with the CL-Editor, the two circuit
representations are ready to be checked for consistency.

— il PR !B —
— 0/4 al % — 04
L SR
g entz1 chtc
__]
- s U
0.1
— 043 - — 043
|_—'| " E
_ "
— il PR !B —
— 042 r "% — 04¢
=} | i |- etz cakcd
I N -
— ;_ i | 15
oo
L — 071 = — 01
|_—-I # B |__" # B
Faulty firstimplementation: Corrected implementation:
connection between lower and carry (cnt.c.0) is fed to the
upper counter elements missing upper counter element

(circle)

Assume that the (faulty) layout on the left has been entered in a first attempt. To check the
implementation of variable cnt.z.0 we mark ("x") the viewer that displays the layout and execute the
command

CLChecker.Check cnt.z.0

29

From the entered circuit, the checker first extracts the binary tree for variable cnt.z.0 and then matches
the tree against the corresponding tree generated by the Lola compiler. The trees match and the checker
issues the message

cntz.0 —> matches

Next we check variable cnt.z.1:

CLChecker.Check cnt.z1

cntz1 —> error
spec: cntz1 = (1 t(cntz.1-cnt.c.0))
impl: cntz1 = (1 2(~cntz.1))
cntz1 = (1 2(~cntz1 <— XOR expected at 0 4 AOut

As seen from the resulting error message, the checker detects an inconsistency between cnt.z.1 as defined
by the Lola program (spec:) and its actual implementation in the layout (impl:) which are both displayed
in the error message. The checker then indicates the cause for the mismatch and also selects the
mismatch location in the layout to aid the user in locating the error more quickly.

Before checking for consistency, the checker extracts the binary tree for output variable cnt.z.1. It follows
the signals in the layout recursively beginning at the output and terminating at Boolean constants and
input variables. During this process, the checker passes the register and the XOR gate in cell 0/4 and
generates the appropriate nodes in the tree. The inputs to the XOR node are cnt.z.1 from cell 0/4 and the
Boolean constant "1 from cell 0/3, hence cnt.z.1 = REG (cnt.z.1 — '1). When the expression is simplified,
(cnt.z.1 = ") is reduced to ~cnt.z.1. When the trees are matched, the Lola specification indicates an XOR
gate which has no counterpart in the layout since it merely contains a negation at that node in the tree.
Therefore, the error message

cntz1=(1 2(~cntz1 <— XOR expected at 0 4 AOut

is issued. The error in the layout is the result of not feeding the carry output of the lower counter element
to the upper one. After connecting cnt.c.0 to the upper counter element (figure above right) cnt.z.1 can
be checked anew and is now found to be correct:

CLChecker.Check cnt.z1
cntz1 —> matches

The command CLChecker.CheckAll checks all variables defined in the Lola program:

CLChecker.CheckAll
cnt.c.0 —> matches
cnt.c1 —> matches
cntz.0 —> matches
cntz1 —> matches
D.0 —> matches

D.1 —> matches

all variables match

Representation of Lola Constructs

The following table explains the possible representations of Lola constructs in the CL-Editor. Between
two constructs, any even number of inverters is allowed. Gates and attached inverters (e.g. NAND gates)
need not lie in the same cell in the layout. Note that the AT6002 FPGA does not feature an OR gate. Since
the checker supports the laws of DeMorgan, a specified OR gate can be substituted by a NAND gate with
inverted inputs in the layout.

30

Function | Lola Representation | CL—Editor Representation
Constants 0, "1 0,1
Variables counter.out counter.out (Label)
+>Q 1 1
X
X X
Not ~ X
y
X
And X%y
y
X
Xor X—-y
y -0
X O
Or Xty
y 11 y o
SESHE
| \
Multiplexer MUX (s:x,y) S ~S
¥ — -
Register REG (x)
DL D
X 1 X 0
\ \
Register REG (en, x) en ~en
. Lt B
x 11 %7 x40 %
\ \
Latch LATCH (en, x) en ~en
S' T —
L_}
SR Flip—flop SR (s', 1) o
el e2
X l> Yy l>
Tri—state bus :=el1|x;bus:=e2]y bus

Features and Restrictions

Inverters
DeMorgan
Commutativity
Associativity

successive pairs of inverters are ignored
the laws of DeMorgan are applied: a ¥ b = ~(~a + ~b), a + b = ~(~a % ~b)
commutativity is supported:ax b=bxa,a+b=b+a,a-b=b-a
In favor of a simple and efficient implementation of the CLChecker, associativity of
Boolean operators is not fully supported. Only a subset of equivalent expressions is
therefore considered equal, such as

(ax (bxc) ((a%b)xc)

(x=y)-2) x=(y-2)

31

(a+(b+(c+d)) (((a+b)+c)+d)
but not
((a%b)x(cxd) ((axc) % (bxd).

A simple workaround for problems related to associativity is to parenthesize
expressions in the Lola program according to the actual implementation.
MUX selectors inverted multiplexor selectors are allowed: MUX (s: a, b) = MUX (~s: b, a)
OR/AND with MUX OR and AND gates can be implemented with MUX:
a+b=MUX(a:b,")
axb=MUX(a:'0,b)

Hints

1. Write the Lola program before implementing the circuit with the CL-Editor. For one, the Lola
program makes regularities in the circuit more clearly visible. Often, these regularities can later be
exploited when laying out the circuit with the editor. Second, the names of the variables and hence
labels in the layout are found in the Lola compiler output displayed in the log viewer.

2. Use a reasonable number of variables. Searching for implementation errors in variables which
implement complex functions can be very cumbersome. It can therefore be advisable to break
complex expressions into simpler ones by inserting variables.

3. Check variables with simple functions before checking variables with complex functions. Variables
which implement complex functions often share subexpressions with variables implementing
simpler functions. After verifying the correct implementation of simpler variables, verifying complex
ones can be tackled more easily.

List of Commands

CLChecker.Check (name | "+") checks the implementation of the given variable based on its specification
in the output of the Lola compiler. The parameter designates the name of the variable
to check. The marked ("%") viewer designates the CL—Editor viewer which contains
the implementation. If no viewer is marked and the command is not in the menu
frame, the viewer containing the most recent selection is used.

CLChecker.CheckAll checks the implementation of all variables listed in the output of the Lola compiler.
The command stops when all variables have been successfully checked or when an
implementation error is detected.

CLChecker.Show (name | "+") displays the function associated with the implementation of a variable as
an expression. As its parameter Show takes the name of the variable to show. The
marked ("x") viewer designates the CL—Editor viewer which contains the
implementation of the variable. The user is notified of combinational loops other
than SR flip—flops and latches.

Necessary Modules
The checker consists of the following files which are available on the Pluto server:

CLChecker matching algorithm
ClExtractor tree extraction from CL-Editor layouts
Cllola tree construction operations

32

An Extension—Board with an FPGA for Experimental Circuit Design

H. Eberle, N. Wirth

Abstract

We describe the design of an extension board for the workstation Ceres-3 containing a
Concurrent Logic CLi6002 FPGA (now Atmel AT6002). The board is used in a laboratory for an
introductory digital design course equipped with Ceres—3 workstations. An analogous board
was designed for PCs.

Introduction

Introductory design courses in digital circuit design typically use laboratories based on modules
containing basic TTL—components which can be plugged or wired together to represent the desired
circuits. Their drawback is a fairly large inventory of modules, if the subject of designing is to be at the
center of attention, i.e. if non-trivial exercises are to be performed. The advent of field—programmable
gate arrays opens a new opportunity, at the same time making reasonably large designs possible and also
drastically reducing the amount of necessary hardware and thereby the cost of the entire laboratory. For
each workstation, a single extension board containing an FPGA suffices. Such a board is subsequently
described; it uses a Concurrent Logic FPGA CLi6002 with 1024 programmable cells. (The chip is now
available as Atmel AT6002.) The FPGA is configured with the aid of a graphical editor described in the
companion paper.

The extension board contains the following components:

1. The CLi6002 field—programmable gate array.
2. Interface circuits between the FPGA and the Ceres—3 system bus.
3. "Peripherals” to the FPGA, namely
1. A 32K x 8 static memory (SRAM).
2. Adriver for an RS-232C line.
3. Adriver for an RS—485 network.
4. A clock generator (typically 3.6864 MHz for line interface circuits).

The presence of "peripherals” is useful for the design of more complex exercises, such as serial line
interfaces (UARTs), FIFO—memories, and even simple microprocessors, just to name a few.

Designer’s view of the FPGA

The CLi6002 FPGA consists of a 32x32 matrix of cells and 170 cells connecting the cells at the periphery
to pads (pins). On each of the four sides, there exist 16 1/0 cells, of which we make 15 available. Their
external connections are specified in Fig. 1.

1/0 cells on the left (West) connect to the Ceres system bus. The data channel is 8 bits wide, and 2
address lines are made available. Evidently, the FPGA is to be viewed from the computer like a peripheral
device with 4 possible address values.

DO - D7 datalines input/output
A2, A3 address lines input

RD' read strobe input

WR write strobe input

SEL' chip select input

INT' interrupt output

CWAIT" continuous wait output used to delay processor access cycle

al4 a13 al12 al1 a1l0 a9 a8 a7 a6 a5 a4 a3 a2 al a0

0 1 2 3 4 5 6 7 8 9 10 111 12 13 14
CWAIT | 14 14
SEL 13 13
WR" | 12 12
RD’ 11 11
A2 10 10
A3 9 9
INT 8 8
D7 7 7
Dé6 6 6
D5 5 5
D4 4 4
D3 3 3
D2 2 2
D1 1 1
Do 0 0

0 1 2 3 4 5 6 7 8 9 10 111 12 13 14

DACS Rx0 Tx0 GAL4 Rx1 Tx1 TxXE RxE AD.SCLK AD.CS
DA.SCLK DADIn AD.DOut

I/0 cells on the top (North) and right (East) connect the external SRAM.

do —d7
a0 —al4

OF'
WE'
Cs'

Fig. 1. Pin Assignments

data lines input/output
address lines output
RAM output enable output
RAM write enable output
RAM chip select output

The remaining named 1/0 cells are assigned as follows:

Rx0
Tx0
Rx1
Tx1
RxE'
TxE

RS—232C Receiver data input
RS-232C Transmitter data output
RS—485 Receiver data input
RS—485 Transmitter data output
RS—485 Receiver enable output
RS—485 Transmitter enable output

1/0 cells only used by the circuits described in the section on Additional Circuits:
DA.CS'

DA.SCLK

DA.DIn
AD.CS'

AD.SCLK

DA converter chip select output
DA converter clock output
DA converter data input output
AD converter chip select output
AD converter clock output

AD.DOut AD converter data output input

GAL4

Spare signal input/output

Note that pins labelled as "input” must not be configured with pad tri—state enabled.

33

CLK
s
WE'
OF

d7
de
ds
d4
d3
d2
d1
do

34

Implementation

The entire board circuit is shown in detail in Fig. 2. The bus—control signals A2, A3, INTO', 10Sel0’,
(decoded signal addressing the extension board), and CWAIT" are directly connected to the FPGA. The bus
clock (25 MHz) is fed directly to the FPGA's global clock input. The bus data lines DO — D7 are connected
to the FPGA via a transceiver (74BCT245). The FPGA control signals CS', RESET', CCLK, CON', and MO —
M2 are derived from bus control signals by circuits implemented through a programmable device (Altera
EP610).

ui
us) ué
o[B2 1, o CLie002 | 6256
I ot 17]80 A0 [5G0 —E250 22| worpo/ss EOl55 —12|RY
ZR=0 16(B1 ATz g =" 79| W1/D1/58 Ell56—13|L]
S oo T5(B2 A2 [g—— S5 ——5g| W2/D2 E2 [Bo——5(D2
Gon 14]83 A3lg g4 == o7|W3/D3 E3l5s 15|23
© ops 13|84 AdlT 45— g WA/D4 Edlsg— 17|04
€ o5z T3(B5 A5 [g—— G233 W5/D5 E5 25— %{D5
— TT(B6 A6 [g——S5 7 57| W6/D6 E6 [e5—9{D6
G . I 176 10 7 3ok xs
AB N1 4 5 51A0 "
1 9 N13 g glA
b22 R N12 |79 7|A2
N10 A4
§1 5
N9 A5
53 7
N8 A6
b14BCLK 11 cLock NP Lk e
b 18 CWAIT 2 AE 25
b10= 10Seld 13| W14 5 24| A3
b20 = 10INTO 20| W13 N5 -5 27|A9
=3 T7] W8 N4 [——53(AT0
agDA? 16 W9 N3 g 2|AN
as L4 W10 N2 A12
15 5 76
W11 N1 A3
T wia NO [0 a4
e
uo] o—, oE
EP610
g3 15 cliRd' 14 28‘
d1 9? qg clivwe 32 v
VA Z cC
= Al
' 4 20 ZE] 34
b :8'\%' 17| CHi.Dec (19 33| €5 S0 |55 < Con.10
8o R] CON' S1 < Con.12
[05el0 G 7 74 58
b10=105el0" 6
a7 S92 23 1 L2 S11 50 < Con8
a8 ORSF 5 13 MO $12 21 < Con.20
ble— —— % s13 [< Con22
514~ < Con.24
Ve — Con1,3,31,33
f Conb.7,.27,29
Vee us
» \;f DS3695
S6 out DP
57 [*2 4 in D+ [0S cons
DM
59 j; § ten D-[L—& cons
u2 S10 é ren
Oscillator %
s 73
CLK E14
Vcc GND
3.68MHz 16‘ u4 ‘15
36 12 13 RD
nce S2 57 TTIRTOUT R1INZZ— Con.4
= TN TIOUTEE = Con2
CSJ_+—4C2+ c1+ TTXD
T, DS1228 _'__22uF
5 3 4
- a- B
425,26,46,67,63 20F | vy ow-
Ve E2emR2mRRiRE e c VDD oo
18,19,40,60,61,82 47uF 3 47uF
ponZIROLeE | GND, VSS &rT T
Vcc GND

Fig. 2. FPGA—Board

35

On the right side, the "peripherals” are an SRAM (HM62256), a differential RS—485 bus driver/receiver
(DS3695), and an RS—232C line driver/receiver (DS1228).

The decoding circuitry is implemented using a PLD; its function is shown in detail in Fig. 3. The flipflops
hold state and loading mode of the FPGA. To start the downloading process, CON' is pulled low and
mode M is 6, signalling sequential loading clocked by CCLK; a clock pulse is generated upon every write
instruction. After loading has been started, the FPGA drives CON' low, and when loading is terminated,
the FPGA releases the signal. Its value can be read on the DO data bus line, allowing to determine
whether or not downloading has been completed successfully.

Bus FPGA
~(~IOWR' % ~10Sel0" % ~A6 % A7)
; ; RESET
~(~IORD" % ~10Sel0" % ~AG % ~A7)
RD'

~(~OWR' % ~10SelQ'" % ~A6 % ~A7)

LO WR
a2 é & CCLK
D™ g

R
d1 L
S
D ok
¢ @ s
do L
S
D ok
¢ L2 conN'
d3 S X\F
D ok
—{c
Q M2
L i
RST' 1 KL MO

~(~IOWR' % ~10Sel0" % A6 % A7)

~(~IORD' % ~10Sel0" % A6 % A7)

Fig. 3. Decoding Circuit

The following program statements, written in Oberon, are used in communicating with the FPGA.

CONST A = OFS000000H:; base address of FPGA
SYSTEM.PUT(A + a, x) output x to FPGA, a=0,4, 8,12
SYSTEM.GET(A + a, x) input x from FPGA a=0,4, 8,12
SYSTEM.PUT(A + 80H, 0) reset (global reset signal)
SYSTEM.PUT(A + OCOH, 7) start downloading process
SYSTEM.PUT(A + 40H, x) download x

SYSTEM.BIT(A + OCOH, 0) downloading completed

SYSTEM.PUT(A + OCOH, 4) set normal mode

36

Additional Circuits

An extended version of the board is used in a laboratory for a more advanced course in digital design. The
additions are:

1. The ispGAL22V10 field—programmable logic device (FPLD).
2. A 256K x 4 dynamic memory (DRAM).

3. An 8-bit AD converter.

4. A 12-bit DA converter.

The ispGAL22V10 FPLD is an in—system programmable version of the industry standard 22Vv10 device. It
is electrically erasable and uses a 4—wire serial programming interface. Fig. 4 shows the FPLD and how it
connects to the Ceres system bus on one side and to a 256K x 4 DRAM on the other side. The circuit
containing the FPLD and surrounding chips has to be viewed as a separate subsystem which can be
operated independently of the FPGA. It has been added to offer an opportunity to gain experience with
another kind of programmable device, namely PLDs, which are widely used in the industry.

As the circuit diagram suggests, the FPLD will primarily be used as a DRAM controller. For this purpose, a
counter serving as a refresh timer is connected to the FPLD. The counter divides the system clock by 256
and generates a 40 ns pulse every 10.24 ps.

The DRAM is addressed by signals generated by an address multiplexer implemented with two
74ALS257s which are controlled by the FPLD. The DRAM's data pins are connected to the Ceres system
bus via a transceiver which it shares with the FPGA (s. Fig. 2).

ALS257 |5 a0
aliyy AT A0S @3
1Bl a3 = all
71y A6 A e
B (Y=L
AL AT a5
] VI N PRGN
b1 <IOSELD 7TEPGT0 |5 SDI 15[TspGAL 725680 12| ay 4/*%36‘6
IORD 14 6 SCLK 1] 22vio |27 4 ae aglé — 4[RO a4
DS SIOWR™ 11 20 MODE 8 26 17| R 7 SA' OF
8 A3 23 19 SDO 22 25 3| &S A
a4 —A» 2 18 DRAMSEL™ 3 24 16| WE' AZlg | j;
223 SBCLK 1,13 9 GWAIT 21 OF A3l
D s SOCWAIT 8 17 4 0 1 A
18 =SRST 10 1| bal ASl3
ble & ’ 5 75| DQ2 A6
b6 IGWR 11 3191087 sl ALS257 1y p6
by Q L4 A5 S a7
0 3 D8, OB 2 KL G ER XD
5 bie OFT—12 71, 2Alg A as
3 21 FPGAS4 6 23 9 Bhias = ate
RFSH R/C 3 0 AleS I
12,y ARz A7 al0
48[alg
, 15 SA' OF
RCTT63co 15, RCTi63co s
3 ! Oha IRE
B0 HO B0 HO
i 3 | 4 13
HB1 H1 HB1 H1
5 2 | 5 12
2082 H2 2082 H2
o83 H3f' | YB3 H3Y]
Veo 7] 7
EP EP
L_10ler i) =8
CL CK LD CL CK LD
1] 2] 9 1] 2] 9
Vee | Vec Vee | Vec
BCLK
b14 &

Fig. 4. FPLD and DRAM

37

The programming port of the FPLD and the DRAM controlled by the FPLD are mapped into the
computer's |/O address space. The decoding circuit used for accessing the FPLD and DRAM uses a
one—time programmable PLD. The details of its function are shown in Fig. 5. In order to be able to share
IOSELO" among the FPGA, FPLD, and DRAM, the address bit A23 is now also included in the decoding
circuit shown in Fig. 3 in that the FPGA is only selected when both IOSELO" and A23 are low.

The programming port of the FPLD and the DRAM are accessed with the following statements:

CONST
FPLD = OF8800000H; address of FPLD's serial programming port
DRAM = OFS8CO0000H:; base address of DRAM
SYSTEM.PUT(FPLD, x) output x to FPLD's serial port
SYSTEM.BIT(FPLD, 0) input bit from FPLD's serial port
SYSTEM PUT(DRAM + a,) write x into DRAM (a=0,4,8 .. (21°-1) x 4)
SYSTEM.GET(DRAM + a, x) read x from DRAM (a= 0,4 8, .. (21°-1) x 4)

BUS FPLD

\)\‘ SDO

do
D Q SDI
C
R E
d1
D Q SCLK
C
R E
d2
D Q MODE
BCLK
C
R E
RST' ‘ ‘
~(~OWR' % ~|OSELO" % A23 % ~A22)
~(~|ORD" % ~|OSELO" % A23 % ~A22)
~(~lOSELO" % A23 % A22)

‘ DRAMSEL'

CWAIT
GWAIT

Fig. 5. Decoding Circuit for FPLD

Further, an AD and a DA converter have been added as additional peripherals to the FPGA. Fig. 6 shows
the details of the corresponding circuits. Both converters are accessed by the FPGA through a 3-wire

38

serial interface. The resolution of the AD converter is 8 bits, while the resolution of the DA converteris 12
bits. The conversion rate for both devices is specified at 40'000 conversions per second. The analog input
to the AD converter and the analog output of the DA converter are both accessible through connector
pins to allow for attaching different kinds of external sensors or devices. The analog input to the AD
converter is amplified by an operational amplifier with a gain of 2. In addition to being available on the
connector, the analog output of the DA converter is connected to an audio amplifier.

T |
10K
3 vee M Ref+ sclk FPGAS12
o1 1+ cC
con.32 " 3| Ref- DOUE—— FPGASI3
2| Aln csP——— FPGASI4
0AUFT
Jok 10K
Vcc
470
% LM336
MAX538 % 225
FPGAST 2 scik Reffo— 047uF [TDA7052
FPGA.SO A ([;Sc) ¢ Con34 Con.36 Vo Out—% Con.40
4 4K7 500K Vp Gnd
1 3,6
+
100nF =
v
470UF
FPGAEQD — <2 Con10 vec —< Con.1,3,3133
FPGAE] —< Con.12 —< Con57...27.29,3537:39
FPGAE2 — < Con14 %

FPGAE3 — < Con.16
FPCGAE4 — < Con.18
FPGA.E5 — < Con.20
FPCGAE6 — < Con.22
FPCGAE7 — < Con.24
FPGAES — < Con.26
FPCGAE9 — < Con.28
FPGA.E10 — < Con.30

Fig. 6. AD and DA converter

