Oberon with Gadgets - A Simple
Component Framework

Jiirg Gutknecht, ETH Ziirich
Michael Franz, UC Irvine

Abstract

We present a simple component framework that, ”in a nutshell”, ad-
dresses many of the archetypal aspects of component-oriented software
environments, with a particular emphasis on homogeneity and unified con-
cepts. Some of the topics focussed upon are a fully hierarchic notion of
compound objects, persistent object representation, interactive and de-
scriptive tools for object composition and self-contained and mobile ob-
jects. Methodological highlights are (a) a novel kind of generic object
interfaces in combination with a message protocol that strictly obeys the
principle of parental control, (b) a multi-purpose concept of indexed object
libraries and (c) an alternative approach (compared to the Java virtual
machine) to portable code, accompanied by dynamic compilation. Our
framework is based on and integrated into Oberon, a language and system
in the heritage of Pascal and Modula that runs both natively on Intel-
based PCs or on top of a commercial operating system. Of the many
projects having made use of our framework so far, three applications of a
pronounced interdisciplinary character shall be mentioned briefly.

Keywords: Object Composition, Object-Oriented Systems, End-User Ob-
jects, Persistent Objects, Portable Code, Just-in-time Compilation, Mobile
Objects, Oberon, Gadgets.

1 From Object Oriented Languages to a Com-
ponent Culture

Perhaps the most important conceptual cornerstone of today’s hardware industry
is its pervasive component culture. Devices are typically composed of functional
components of all kinds and granularities that have been developed and fabri-
cated by highly specialized teams, possibly elsewhere. Interestingly, no similar
culture has been able to establish itself in the software industry, probably for
lack of (a) a well-defined and globally accepted notion of interface and (b) a
corresponding ”market”.

In [1] Brad Cox considers a more advanced component culture as paramount
for future stages of software development and use. From this perspective, we

have developed an experimental component-oriented framework that, ”in a nut-
shell” | deals with many of the archetypal aspects of component-orientation. Our
framework integrates smoothly with the original Oberon language and system
as described in [2, 3, 4] but goes beyond the ordinary object-oriented level in
three respects: (a) Persistent representation of individual objects in their current
state outside of the runtime environment, (b) construction and composition of
individual objects and (c) object mobility.

To put it differently: While the underlying object-oriented language provides
both a compositional framework for object classes (allowing the derivation of
specialized classes) and a production factory for generic object instances, our
component-oriented framework in addition supports the construction, mainte-
nance, organization and reuse of individual, prefabricated components. The
following example may illustrate our point.

Figure 1: Sample Oberon Display Space with Multimedia Panel, Text Document
Views, Gadgets Tool and Columbus Inspector on a Desktop

Figure 1 shows a snapshot of the Oberon display screen. The multimedia panel
in the upper left quarter is a persistent composition of a number of components:
A main panel, a movie sub-panel, two captions, two sliders and two textfields.
The movie sub-panel is itself a composition of a scaling panel (auto-scaling its
components), a video pad, two push-buttons and a textfield. It is important
in this connection to point out again the conceptual difference between generic

objects like an empty panel, a caption, a slider, a text field etc. that can be ob-
tained directly from the system’s class library by instantiation and prefabricated
objects like the movie sub-panel and the multimedia panel itself.

The example reveals the two-dimensional structure of the “space of soft-
ware construction” in a component culture whose axes represent development of
generic components and object construction and composition respectively. From
a methodical view the two axes are orthogonal. Developing generic components
is class-centered. It essentially amounts to object-oriented programming within
a given framework of classes, i.e. to deriving subclasses from existing classes.
In contrast, object composition is instance-centered and primarily a static mat-
ter of design specification. For example, a generic scaling panel is defined by a
subclass ScalingPanel that has been derived from class Panel by adding some
programmed auto-scaling functionality, while the specific movie sub-panel is an
individual composition of a generic scaling panel, a video pad, two buttons and
a text field.

2 A “Light-Weight” Component Framework

Different software component systems are available today. Among the most
prominent ones are Microsoft’s COM/OLE/ACTIVE-X [8] and Sun’s JavaBeans
[9]. In addition, technologies like OpenDoc [10] and OMG’s CORBA [11] ad-
dress related aspects like compound documents and standardized client-/server-
communication respectively.

In the following sections we present an alternative “light-weight” component
framework. We shall orientate our presentation according to four topics that we
consider as (a) essential to the field of component-software in general, (b) build-
ing the conceptual base of and ” connecting glue” in our framework and (c) being
solved somehow originally in our system. These topics are (1.) message proto-
cols in compound objects, (2.) object data bases, i. e. persistent representation
of object collections, (3.) object composing tools and (4.) self-containedness and
mobility.

3 Message Protocols in Compound Objects

The concept of compound object is fundamental in every component archi-
tecture. In favor of a concrete terminology, we restrict ourselves to compound
objects of container types that are particularly popular as units in graphical
user interfaces. Taking up Figure 1 again, we recognize an entire hierarchy of
nested containers and a terminating atomic object: desktop — media panel —
movie sub-panel — push-button. Figure 2 shows an excerpt of this hierarchy
in terms of a data structure. We emphasize that our rigorous hierarchic view
pays in terms of a highly uniform object model, where coarse-grained objects
like desktops, medium-grained objects like panel and fine-grained objects like
push-button are completely unified.

; t| Timestamp
Message
S

Display Space
Desktop
t
] |
Camera Camera Media
Button View View Panel

Path 1 Path 2 ‘
‘ ‘ - View 1 View 2
M Text Movie Text
Doc ¢ Panel Slider Field

1 | |

Button Panel Video Text Maodel

Pad Field Button

List Button

Figure 2: Data Structure of the Sample Display Space

The Principle of Parental Control

The role of containers is characterized in our framework by the single postu-
late of parental control, imposing on containers both full authorization and full
responsibility for the management of their contents. This postulate has far-
reaching consequences. First of all, it basically rules out any message traffic to
content objects that by-passes their container. In other words, parental control
indispensibly implies readiness of containers for message dispatching and request
brokering in-the-small.

The term message traffic needs clarification. As in every object-oriented en-
vironment, messages are used in our framework to specify and answer requests.
However, static object interfaces as they are commonly provided by object-
oriented languages are incompatible with the principle of parental control, at
least in combination with generic containers that are prepared to include con-
tents of potentially unknown (future) types and, correspondingly, to dispatch
potentially unknown messages.

For this reason we make use of a novel kind of generic object interface that
relies on a built-in interpreter which is able to interpret and dispatch arbitrary
arriving messages appropriately. Technically, if Message is the base type of
messages accepted by instances of some given object type, and MessageA and
MessageB are subtypes of Message, then the structure of the dispatcher is this:

PROCEDURE Dispatch (me: Object; VAR M: Message);
BEGIN

(* common preprocessing *)

IF M IS MessageA THEN (* handle message of subtype MessageA *)
ELSIF M IS MessageB THEN (* handle message of subtype MessageB *)
ELSE (*# default handling *)

END

END Dispatch;

Note in particular that the dispatcher (a) is able to perform some common
(pre)processing, (b) makes use of Oberon’s safe runtime type test IS for message
discrimination, (c) calls some default handler to handle common cases and (d)
is extensible with respect to message subtypes without any need to change its
interface.

For the sake of uniformity, we use generic interfaces for atomic (i.e. non-
container objects) as well. With that, message processing in the display space
manifests itself in a hierarchic traversal of the structure, directed by dispatchers
of the above kind. The ordinary case is target-oriented dispatching, where the
target-object is specified as part of the message. Typical examples of target-
oriented messages are requests to get, set and enumerate attributes (”proper-
ties”) of a certain object. However, interesting strategic variations of message
dispatching exist. For example, universal notifications without a specific tar-
get are typically broadcast within the display space or within any one of its
sub-spaces. Other options concern incremental processing (incremental contri-
butions to message handling by individual dispatchers) and context dependent
behavior (behavior depending on the path the message arrives from). Applica-
tions will be given in the subsequent sections.

Camera Views

The MVC scheme [12] is a fundamental design pattern and an integral aspect
of every object architecture that provides a conceptually clean separation of
the concerns of modelling, viewing and controlling of objects. In our case, a
very general interpretation of MVC is applied. A simple case is one or more
visual objects (with a representation in the display space) serving as view of
some abstract object. Examples of this kind are (a) checkbox view of a Boolean
object, (b) slider view or textfield view (or both) of a Integer object and (c)
color palette view of a color vector (red, green, blue).

A more intricate case is given by views of views, in the following called camera
views. Camera views are useful for a number of purposes. They provide a
conceptual frame for multiple views on one and the same visual document on one
ore several display screens. For example, Figure 1 depicts a double view on some
text document with integrated visual objects. An interesting variant of camera
views are functional views that are combined with some specific functionality.
For example, in addition to ordinary user views, special developer views can be
offered for the support of interactive editing and construction of a visual object
or GUI in situ.

Camera views are implemented as a special kind of visual objects that are
able to display visual models. As a desirable consequence, common parts of the
data structure representing the display space are automatically shared by camera
views and unnecessary duplication is avoided as shown in Figure 2. Obviously,
this adds both complexity and flexibility to message processing in the display
space. Messages may now arrive at objects along different paths and therefore
need to be time-stamped for detection of multiple arrivals. On the other hand,
context semsitive processing is now possible and can be used beneficially, for
example, to implement the above mentioned developer views.

The following simplified examples of message processing in compound objects
in general and in the display space in particular may promote a better under-
standing of the concepts discussed in this section and of their combination.

Update Notifications

Update notifications are sent by models or controllers (in the case of smart
bundling) to notify potential views of a state change. They are always addressed
to the display space as a whole with an implicit broadcast request. Affected views
then typically reestablish consistency with their model after querying its actual
state. Message broadcast is simpler and more generic than alternative methods
such as callback lists but claims an efficiency penalty that, however, has proved
to be not noticeable in practice. Optimizations could easily be implemented,
for example by adding knowledge to critical containers. We emphasize that
generic message interfaces are absolutely essential for this broadcast method to
be applicable within a strongly typed framework.

Display Requests

This type of message is used to request a visual target object in the display space
to display itself. For example, such a request would be issued by a reorganized
container for every of its content objects or by the recipient of an update message
to adjust its own display. Display requests are again addressed to the display
space as a whole. They require incremental processing while traversing the con-
tainer hierarchy in two respects: Successive accumulation of relative coordinates
and successive calculation of an overlap mask. If camera views are involved,
multiple paths may lead to the target object, so that it must be prepared for
multiple arrivals of a message. All arrivals are handled in the same manner,
albeit with different absolute coordinates and overlap masks.

Copy Requests

Copying or cloning is an elementary operation on objects. Nevertheless, in the
case of compound objects, it is quite intricate. Obviously, a generic copy opera-
tion on objects is equivalent with an algorithm to copy any arbitrary and truly
heterogeneous data structure. Moreover, different possible variants of copies
exist. For example, a deep copy of a compound object consists of a real copy

of both the original container and its contents, while a shallow copy typically
would just include new views on the original contents.

Our implementation of the copy operation is again based on message broad-
cast. This time, multiple arrivals at an object must be handled with more care.
The following is a rough sketch of copy message handling by a container:

IF first arrival of message THEN
create copy of container;
IF deep copy request THEN
pass on message to contents;
link copy of contents to copy of container
ELSE (* shallow copy request *)
link contents to copy of container
END
END;
RETURN copy of container

Note as a fine point that recipients in fact have some freedom in the handling
of a copy request. For example, a "heavy-weight” object receiving a deep copy
message could decide to merely return some new view on itself or even to return
itself (leading to copy by reference) instead of a genuine copy.

4 Object Libraries as a Versatile and Unifying
Concept

Object persistence is a trendy expression for a facility that allows individual ob-
jects to be stored on some external device (typically a disk) in their current state.
The essential part of every such facility are two transformation methods called
externalizer and internalizer respectively. Externalizers are used to transform
objects from their internal representation into an invariant, linear form, inter-
nalizers are used for the inverse transformation. The problems of externalizing
and internalizing are similar in their generic nature to the copy problem just
discussed. However, there is one additional aspect to be considered: Invariant
representation of pointer links.

Our approach to invariant pointer links is based on an institution of indexed
sets of objects called object libraries. The idea is to implement object lineariza-
tion by (recursively) registering components in some object library, thereby re-
placing pointers with reference indices. With that, externalization and internal-
ization become ”distributed” two-pass processes that again rely on broadcasting
messages within the desired object:

The Externalizing Algorithm

Externalize(object X) =
{ Create(library L); Register(X, L); Externalize(L) }

Register (object X, library L) = {
WITH X DO
* FOR ALL components x of X DO Register(x, L) END
END;
IF X is unregistered THEN
assign index and register X in L
END }

Externalize (library L) = {
WITH L DO
FOR index i := O to max DO
WITH object X[il DO store generator of X[il;
* replace pointer links with index references
and externalize descriptor of X[i]
END
END
END }

Obviously, acyclicity of the relation of containment is a precondition for this
algorithm. Further note that the statements marked “*” must be implemented
as object methods because they are type-specific.

The Internalizing Algorithm

Internalize (library L) = {
WITH L DO
FOR index i := 0 to max DO
load generator of X[i]; generate descriptor of X[il
END;
FOR index i := 0 to max DO
* internalize descriptor of X[i]
and replace index references with pointer links
END
END }

Note that internalizing a library is a potentially recursive process, because indices
in internalized object descriptors may refer to foreign libraries. And, again, the
statement marked “*” must be implemented as an object method.

Object libraries are a surprisingly versatile and thereby unifying concept. The
spectrum of their application is much wider than one would perhaps expect.
Beyond supporting externalization and internalization of individual objects they
are simple object data bases that serve the purpose of organizing any local or
distributed space of objects. Some typical manifestations are: (a) Collection of
logically connected reusable components, (b) collection of public objects shared
by a set of documents and (c) set of objects private to some document.

Objects Flowing in Text

Another unifying application of the concept of object libraries are generalized
texts. A simple reinterpretation of ordinary (multifont) texts as sequences of
references to character patterns (where the reference numbers are Ascii-codes)
leads the way to a far-reaching generalization. By allowing references to arbi-
trary object libraries instead of just to fonts, we immediately get to texts with
integrated objects of any kind, including pictures, links, formatting controls,
entire functional panels and other units that are similar to Java ”applets”. Ad-
ditional flexibility is provided by the possibility to embed both private objects
(collected in the so-called private library of the text) as well as public objects
(belonging to some public library).

Such a high degree of integration of text with objects has proved to be incredibly
useful mainly in the area of documentation. Thanks to it, functional units of
any complexity and granularity that have been developed anywhere can simply
be copied to and integrated with their textual documentation. An illustrative
example is the chapter of the electronic Oberon book shown in Figure 1.

5 Object Composition Tools

In principle, two different kinds of methods for object construction and compo-
sition exist: Interactive and descriptive. Interactive methods are based on direct
editing in contrast with descriptive methods that typically rely on some formal
language and a corresponding interpreter. In most cases, the two methods are
interchangeable. However, while the interactive method is more suitable for the
construction of visual GUI-objects, the descriptive method is preferable for the
construction of regular layouts and indispensible for program-generated objects
(such as ”property-sheets” etc.) and for non-visual (model) objects.

The following table summarizes:

Kind of object Suitable construction method
Visual GUI interactive
Regular layout descriptive
Program generated descriptive
Non-visual model descriptive

Independent of the construction method, components can be acquired alterna-
tively from (a) generators for atomic objects, (b) generators for container objects
and (c) prefabricated object libraries.

Interactive Construction

Our framework supports interactive construction on different levels. On the tool
level, the Gadgets toolkit [5, 6, 7] and the Columbus inspector tool shown in
Figure 1 offer functionality for

e generating new instances of an existing type

e calling prefabricated instances from an object library
e aligning components in containers

o establishing model-view links

e inspecting state, attributes and properties of objects

¢ binding Oberon commands to GUI objects

On the view level, the earlier mentioned developer views enable editing of vi-
sual objects. On the object level, support for in-place editing is provided by
built-in local editors. Mouse event messages are tagged with a pair of absolute
mouse coordinates and undergo a location-oriented dispatching in the display
space. Because mouse events should be handled differently in user and developer
contexts, most mouse event handlers make beneficial use of context-dependent
message processing.

Descriptive Construction

Descriptive construction requires a formal description language as a basis. Be-
cause layout specification is functional, we decided in favor of a functional lan-
guage with a LISP-like syntax.

We basically distinguish two modes of processing of a functional object de-
scription: (a) compilation and (b) direct interpretation. Separate descriptions
are compiled into an object library, while descriptions that are embedded in
some document context (e. g. in a HTML page) are typically interpreted and
translated directly into an inline object. Figure 3 visualizes the compiling mode.
Note that generic objects are retrieve by the compiling composer from the class
library by cloning, while prefabricated objects are imported from any object
library either by cloning or by reference.

The subsequent commented example of a functional description of the multi-
media panel in Figure 1 may suffice to give an impression of the use of descriptive
construction in our framework.

(LIB GUI
(FRAME MediaPanel (0OBJ Panels.NewPanel)

(Volume (OBJ BasicGadgets.NewInteger (Value 100)))

(Brightness (0OBJ BasicGadgets.NewInteger (Value 200)))

(GRID 2:50 1:* @ 1:25% 1:50% 1:25%)

(PAD 2 @ 2)

(FRAME (POS 1 @ 1) (DBJ TextFields.NewCaption)
(Value "Brightness"))

(FRAME (P0OS 1 @ 2) (OBJ BasicGadgets.NewSlider)
(Max 255)
(Model Brightness)
(Cmd "Movie.SetBright #Value Movie"))

(FRAME (P0OS 1 @ 3) (OBJ TextFields.NewTextField)

10

Object

Object
Library

Description

Composing
Compiler

call by cloning call by reference
Class Object
Library Library

generic objects prefabricated objects

Figure 3: Construction of Objects by Compilation of a Functional Description

(Model Brightness)
(Cmd "Movie.SetBright #Value Movie"))

(FRAME (POS 2 @ 1) (DOBJ TextFields.NewCaption)
(Value "Volume"))

(FRAME (P0OS 2 @ 2) (OBJ BasicGadgets.NewSlider)
(Max 255)
(Model Volume)
(Cmd "Movie.SetVol #Value Movie"))

(FRAME (POS 2 @ 3) (OBJ TextFields.NewTextField)
(Model Volume)
(Cmd "Movie.SetVol #Value Movie"))

(FRAME (P0OS 3 @ 1:3) (OBJ MoviePanel.Movie)
(SIZE 296 @ 246))))

Comments

(a)

(b)

A (compound, visual) object is generally specified as a nested hierarchy of
frames, where each frame may optionally use the OBJ-clause to define a
carrier-object.

The compilation of the above declaration results in an object library file
called GUI containing an instance of the constructed object called Medi-
aPanel.

Frames may optionally declare local objects that are typically used as
models. In the example, two such model objects are declared, one for
volume control and one for brightness control.

11

(d) Within the OBJ construct, the first identifier specifies either a generator
procedure Module. Procedure (representing the class of the desired object)
or a prefabricated object Library.Object that is imported by reference or
copy from an object library.

(e) Visual objects typically specify a grid of type rows @ columns. In our case
the grid consists of three rows and three columns respectively. The heights
of the first two rows are 50, while the height of the third row is generic, i.
e. determined by the contents. Column widths are indicated in percents,
where the total width is generic again. The first two rows from the bottom
represent, brightness and volume control respectively. Each row consists of
a caption, a slider and a text field, where the slider and the text field are
coupled by a local model. The third row has a column-span of three and
displays a prefabricated object called MoviePanel that is imported from a
library called Movies.

We should note that the functional object description tool just discussed is only
the leaf-end of a much more general experimental system called Powerdoc that
allows the descriptive construction of arbitrarily general documents that may
include any kind of passive or active objects (”applets”) and data streams.

6 From Persistent Objects to Mobile Objects

In the previous discussion, we have developed our component architecture to a
state that includes a mechanism for an external, linear representation of gen-
eral objects. So far, we have used this facility for object persistence on sec-
ondary store only. However, there is a second potential application: Mobility.
In this case, the linear representation must obviously be accompanied by (a)
self-containedness and (b) portability. These notions are the topics of this and
the next section.

The essential request to self-contained objects is their completeness in terms
of resources used. Thanks to our highly unified architecture, only two types of
resources exist: Object libraries and program modules (units of the class library).

Unfortunately, it is impossible for any central authority to find out the entirety
of resources used by some general object. The reason is that resources are
frequently specified implicitly by an inconsipcuous name string. For example,
command names Module. Procedure typically hide in attribute strings of push-
buttons and object names Library. Object may well occur within any scrolling
list.

Our solution to the resource detection problem consists of two new ingredi-
ents: (a) a resource query message used to collect resources and (b) a resource
management object acting as a shrink-wrapper for self-contained objects. If X
is any self-contained object and M is a resource management object, the shrink-
wrapped composition MX is then externalized like this:

Externalize self-contained object MX = {

12

Send resource query message Q to X asking X to report its resources;
Externalize M;
Externalize X }

In the case of containers, the broadcast strategy is again used beneficially for
the dispatch of resource query messages:

Receive resource query message Q = {
pass on Q to contents
report own resources to resource manager }

In combination with mobility, there are some significant areas of problems be-
hind the apparent simplicity of this algorithm. Among them are (a) scoping of
resource names and (b) protection of the target system from malicious or erro-
neous program code. We now briefly touch problem (a), while we postpone a
short remark on problem (b) to the next section.

Mobile objects are developed in general without any global coordination. As a
consequence, they define their own scope of resources that, in case of a migration,
needs to be mapped to a separate space on the target system. However, it is
reasonable to distinguish some global set of kernel resources that are assumed
to be identically available on every target system. Obviously, kernel resources
need not be transported with every individual object but need to be checked for
consistency, perhaps with the help of fingerprints [13].

We emphasize that our approach to mobile objects is generic in the sense that
any persistent object can be made mobile in principle. The spectrum of potential
mobile objects therefore covers an impressive range: From simple buttons and
checkboxes to control panels and documents and finally to desktops representing
an entire Oberon system.

7 An Effective Approach to Portable Code

The final aspect of mobile objects that merits consideration is cross-platform
portability of their implementation code. As mobile objects are expected to
long outlive their creation environments and all currently existing hardware ar-
chitectures, the choice of a software distribution format should be guided less
by the present-day prevalence of specific processor families but rather by more
fundamental considerations. While it might be a smart tactical decision at this
moment to distribute mobile objects in the form of i80386 binary code that can
be executed directly on the vast majority of computers currently deployed (and
interpreted on most of the others), this would be a bad choice in the long run.
A future-oriented software distribution format needs to meet three primary re-
quirements: It must be (a) well suited for a fast translation into native code
of today’s and future microprocessors, it must (b) not obstruct advanced code
optimizations required for tomorrow’s super-scalar processors and, considering
the anticipated importance of low-bandwidth wireless connectivity in the near
future, it should be (¢) highly compact.

13

Our concept of portable code incorporates a distribution format called Slim
Binaries [14] that satisfies all of the above requirements. In contrast to ap-
proaches like p-code and Java byte-code [15] that are based on an underlying
virtual machine, the slim binary format is an adaptively-compressed representa-
tion of syntazx trees. In a slim-binary encoding, every symbol describes a sub-tree
of an abstract syntax tree in terms of the sub-trees preceding it. Roughly spo-
ken, the encoding process proceeds by successively externalizing sub-trees and
simultaneously steadily extending the ”vocabulary” that is used in the encoding
of subsequent program sections.

This format has the obvious disadvantage that it cannot be decoded by simple
pointwise interpretation. The semantics of any particular symbol in a slim-
binary-encoded data stream is revealed only after all the symbols preceding it
have been processed. Random access to individual instructions as it is typically
required for interpreted execution is impossible.

However, in return for giving up the possibility of pointwise interpretation
(whose value is limited due to low efficiency anyway), we gain several important
benefits. First of all, our software distribution format is exceptionally compact.
For example, it is more than twice as dense as Java byte-code and it performs
significantly better than standard data compression algorithms such as LZW
applied to either source code or object code (for any architecture). This is an
advantage that cannot be estimated high enough. In fact, experience has shown
that on-the-fly code generation can be provided at almost zero cost if a highly
compact program representation is chosen, since the additional computational
effort can be compensated almost completely by a reduction of I/O overhead
[16].

Second, the tree-based structure of our distribution format constitutes a con-
siderable advantage if the eventual target machine has an architecture that re-
quires advanced optimizations. Many modern code-optimization techniques rely
on structural information that is readily available on the level of syntax-trees
but is more difficult to extract on the level of byte-codes.

Third, unlike most other representations, slim-binary encoding preserves type
and scope information. It thus supports detection of violations by malicious or
faulty code that potentially compromises the integrity of the host system. For
example, it is easy to catch any kind of access to private variables of public
objects that may have been allowed by a rogue compiler. In the case of byte
code, a corresponding analysis is more difficult.

Fourth, we can make use of our slim-binaries technology to optimize code
across module boundaries. Such global optimizations as, for example, procedure
inlining and inter-procedural register allocation, pay particularly well in a soft-
ware component environment that is made of a large number of relatively small
and separate parts of code.

When a piece of slim binary code is initially loaded into the system, it is trans-
lated into native code in a single burst, trading code efficiency for compilation
speed. After its creation, the piece of code is immediately subject to (a) execu-
tion and (b) optimization in the background. After completion of the optimiza-

14

tion step, the previous generation of code is simply exchanged for the new one.
Obviously, in conjunction with run-time profiling, this procedure can be iterated
continually to produce ever better generations of code.

Applications

Our framework has been used in numerous projects. Three substantial interdis-
ciplinary applications are a Computer Aided Control System Design (CACSD)
environment [17], a generic robot controller architecture [18] and a real-time
audio- /video-stream service in a local switch-based network. Noteworthy tech-
nical highlights in the CACSD environment are matrix- and plot-gadgets that
are coupled (behind the scenes) with a Matlab engine and powerful tree-node
objects that abstract control system design actions in an action-tree. In the
robot controller project object libraries are beneficially used for a persistent but
decoupled representation of I/0O-objects, i. e. sensors, actuators etc.. Another
interesting facility are remote views, i.e. views that, on the development system
(connected to the robot via Internet), display state models of the robot. Finally,
in the stream-server project, a new kind of visual objects displaying remotely
supplied contents (video streams, not passing the client’s memory) has been
integrated smoothly into Gadgets.

Conclusion and Outlook

Building on the original version of the Oberon language and system, we have
developed a component framework that, strictly speaking, splits into three in-
teracting sub-frameworks:

e a framework of user interface components that can be configured interac-
tively or descriptively

e a framework for externalizing and internalizing object structures

e a framework for shrink-wrapping object structures in a self-contained way

The sub-frameworks are connected by two universal and unifying facilities, (a)
a ”software bus” in the form of a generic message protocol obeying the principle
of parental control and (b) an object data base in the form of a hierarchy of
indexed object libraries.

In contrast to COM and Corba, emphasis was put in our system on homo-
geneity rather than on platform independence. In fact, Oberon components are
not viable in any environment apart from Oberon, with the important exception
of a HTML context with an Oberon plug-in. On the other hand, the range of
Oberon components covers the whole bandwidth from simple character glyphs
to entire documents and desktops.

Our architecture further distinguishes itself by a clear decoupling of object
composition from component development. While generic components (atomic

15

ones and containers) are represented by Oberon classes and programmed in
Oberon (essentially by implementing the message protocol of parental control),
compound objects are created interactively under usage of built-in in situ editors
or descriptively in a LISP-like notation. Unlike, for example, Microsoft’s Visual
Basic and Developer Studio wizards, Borland’s Delphi and Sun’s JavaBeans, the
Oberon composer tools do not map compound objects to classes and constructors
but directly create data structures of DAG-type that are able to externalize
to identifyable instances of some object library. Each compound object can
therefore be called and used alternatively by reference or by cloning,.

The system runs on bare Intel PC platforms. Versions "hosted” by Windows
and Macintosh platforms are also available. In its current state, it includes all
of the above mentioned local facilities, numerous applications and an advanced
navigator that is designed to handle uniformly compound Oberon documents
and HTML hypertexts. Mobile objects and dynamic re-compilation are currently
under development. Plans eventually aim at an “Oberon in a gadget” paradigm.

Several substiantial projects have made intensive use of our component frame-
work. They have demonstrated not only its power and limits but also an ample
potential for further generalizations.

References

[1] Brad J. Cox; “Object Oriented Programming, An Evolutionary Approach”;
Addison Wesley, 1986.

[2] N. Wirth, “The Programming Language Oberon”,
Software — Practice and Experience, 18(7), 671-690.

[3] N. Wirth and J. Gutknecht, “The Oberon System”,
Software — Practice and Experience, 19(9); September 1988.

[4] N. Wirth and J. Gutknecht, “Project Oberon”,
Addison-Wesley, 1992.

[5] J. Gutknecht, “Oberon System 3: Vision of a Future Software Technology”,
Software-Concepts and Tools, 15:26-33; 1994.

[6] Johannes L. Marais; “Towards End-User Objects: The Gadgets User Inter-
face System”,
Advances in Modular Languages, volume 1 of Technology transfer series (Pe-
ter Schulthess, editor), Universitaetsverlag Ulm; September 1994.

[7] A. Fischer and H. Marais, “The Oberon Companion”,
A Guide to Using and Programming Oberon System 3, vdf Hochschulverlag
AG an der ETH Ziirich, 1998.

[8] K. Brockschmidt, “Inside OLE”; Microsoft Press; 1993.

16

[9] J. Feghhi, “Web Developer’s Guide to Java Beans,
Coriolis Group Books, 1997.

[10] The OpenDoc Design Team, “OpenDoc Technical Summary”,
Apple Computer, Inc.; October 1993.

[11] R. Ben-Natan, “CORBA: A Guide to Common Object Request Broker Ar-
chitecture”,
Mc Graw-Hill; 1995.

[12] G.E. Krasner and S.T. Pope, “A Cookbook for using the Model-View-
Controller user interface paradigm in Smalltalk-80”,
Journal of Object-Oriented Programming, 1(3):26-49; August 1988.

[13] R. Crelier, “Extending Module Interfaces without Invalidating Clients”,
Structured Programming, 16:1, 49-62; 1996.

[14] M. Franz and T. Kistler, “Slim Binaries”,
Communications of the ACM, 40:12, 87-94; December 1997.

[15] T. Lindholm, F. Yellin, B. Joy, and K. Walrath, “The Java Virtual Ma-
chine”,
Specification; Addison-Wesley; 1996.

[16] M. Franz, “Code-Generation On-the-Fly: A Key to Portable Software”,
Doctoral Dissertation No. 10497, ETH Zurich, simultaneously published by
Verlag der Fachvereine, Ziirich, ISBN 3-7281-2115-0; 1994.

[17] X. Qiu, W. Schaufelberger, J. Wang, Y. Sun, “Applying O3CACSD to Con-
trol System Design and Rapid Prototyping”,
The Seventeenth American Control Conference (ACC’98), Philadelphia,
USA, June 24-26, 1998.

[18] R. Roshardt, “Modular robot controller aids flexible manufacturing”,
Robotics Newsletter, International Federation of Robotics, No. 16, Dec. 1994.

Acknowledgement

Our thanks go to Niklaus Wirth, without whose initiative and dedication the
original Oberon language and system would not have been built. Among the
numerous contributions to the current state of the presented system, we partic-
ularly acknowledge the work of Hannes Marais whose Gadgets framework and
toolkit has had led the way to go. We also gratefully acknowledge contributions
by Emil Zeller, Ralph Sommerer, Patrick Saladin, Joerg Derungs and Thomas
Kistler in the areas of compound and distributed documents, descriptive object
composition and compiler construction respectively. Our sincere thanks also go
to Pieter Muller, implementor of the native PC Oberon kernel. And, last but not
least, we are most, grateful for many constructive comments by the anonymous
referees.

17

