
Hades
—

Fast Hardware Synthesis Tools and a
Reconfigurable Coprocessor

Diss. ETH No. 12276

Hades
—

Fast Hardware Synthesis Tools and a
Reconfigurable Coprocessor

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OFTECHNOLOGY ZURICH

(ETH ZÜRICH)

for the degree of
Doctor of Technical Sciences

presented by
Stefan Hans-Melchior Ludwig

Dipl. Informatik-Ing. ETH
born May 21, 1966

citizen of Schiers, Graub¨unden

accepted on the recommendation of
Prof. Dr. N. Wirth, examiner

Prof. Dr. H. Eberle, co-examiner

1997

c
 Stefan H.-M. Ludwig, 1997

Für Irene, Vanessa und Cyril.
Für meine Eltern.

Acknowledgments

I would like to express my appreciation and gratitude to my advisor Prof. Niklaus Wirth. His
striving for simplicity and understandability are unparalleled. If Hades is fast, it is because
of the constant “fear” of spending a cycle too much here or a byte too much there. He is a
fabulous teacher and it was a pleasure to work under his supervision.

I thank Prof. Hans Eberle for being my co-examiner. His knowledge in hardware design was
very welcomed during the development of the Hades hardware and his constant skepticism of
the feasibility of reconfigurable coprocessors was a driving force behind this work.

Many thanks go to my colleague, collaborator and office mate for the past four years, Stephan
Gehring, for his excellent Trianus framework, for the discussions and feedback, for the criti-
cism and for his willingness to enhance or alter Trianus almost instantly. It was fun to work
with you!

Thanks to Immo Noack for many things, especially for being who you are.

Thanks and acknowledgments go to

• all of my colleagues at the Institute for Computer Systems for a stimulating and enjoy-
able working environment. Remember, there is only one true “Ludwig-of-the-day”.

• Erwin Oertli for tips regarding the details of the Hades board and many other things.

• Marco Sanvido for the provision of a timing analyzer.

• Beat Heeb for helping with the Ceres-2 and Cuno Pfister for having produced CALLAS,
a good tool to measure my own work against.

• Wolfgang Weck and Clemens Szyperski for discussions on various issues.

• Tom Kean for the chip and much more.

• Bill Wilkie for answering my endless questions and for never stopping to appreciate my
corrections to the data sheet.

• the remaining people at Xilinx Development Corp., Scotland, for their openness and
generosity.

• Virtual Computer Corporation for distributing Hades with their board.

• Dr. Roger Woods and Jean-Paul Heron of the DSP Laboratory, Queen’s University of
Belfast, for their willingness to work with Hades and for their humor.

• Patrick Müller and Reto Zimmermann for betting a term project on Hades, and for
succeeding.

• Chuck Thacker, Dave Conroy and Mark Shand of the Digital Systems Research Center
for discussions about FPGAs and high-performance memory systems.

• Monty Brekke and Steve Atkins for the Verilog code and Martin Radetzki for the VHDL
code.

v

vi

• Peter Alfke for background information on the XC4000 and the FPGA market.

• David Hofmann for the logic minimizer.

• my proofreaders Stephan Gehring, Taylor Hutt, Cheryl Lins and Nels Vander Zanden. I
owe you a dinner in Silicon Valley.

This work would have been impossible without the love and support of my beloved wife,
Irene. Thank you for everything during the past nine years. I love you!

Contents

Acknowledgments v

Kurzfassung xiii

Abstract xiv

1 Introduction 1
1.1 Coprocessors . 2
1.2 User-Configurable Hardware . 3
1.3 Reconfigurable Coprocessors . 3
1.4 Hardware Synthesis . 5
1.5 Contributions . 5
1.6 Overview of Thesis . 7

2 Field-Programmable Gate Arrays 8
2.1 Background 8
2.2 General Structure . 9
2.3 The Xilinx XC6200 . .. 10
2.4 Other Architectures . 15
2.5 Evaluation . 17

3 Foundations: Lola and Trianus 21
3.1 Hardware Description Languages 21
3.2 The Hardware Description Language Lola 21
3.3 Trianus . 25
3.4 Discussion . 39

4 Hades Hardware 40
4.1 Motivation . 41
4.2 Design Alternatives . .. 41
4.3 Overview of the Hades Reconfigurable Coprocessor 43
4.4 Choice of Host Workstation . 43
4.5 Architecture of the Hades Board . 46
4.6 Constructing the Board . 52
4.7 System Software . 54
4.8 Discussion . 54

5 Hades Software 55
5.1 Problem Statement and Motivation . 56
5.2 Programming Methodology . .. 60
5.3 Overview . 61
5.4 Mapper . 61
5.5 Placer and Floor Planner 71
5.6 Router . 85

vii

viii

5.7 Bitstream Generator and Loader . 95
5.8 Runtime System . 98
5.9 Support Modules and Genericity in Oberon 100
5.10 Quantitative Issues . .. 101
5.11 Experiences with Our Programming Methodology and Oberon 103
5.12 Discussion . 104

6 Application and Evaluation 106
6.1 Applications Running in Hardware . .. 106
6.2 Pattern Matching Application . 106
6.3 Comparison to XACT step Series 6000. 126
6.4 Hades in the World . 131
6.5 Possible Future Applications . 132
6.6 Discussion . 133

7 Related Work 134
7.1 Custom Computers . 134
7.2 Reconfigurable Coprocessors . 135
7.3 Reconfigurable Processors . 136
7.4 High-Level Hardware Description . 137
7.5 The Need for Better Tools . 138

8 Summary, Conclusions and Outlook 139
8.1 What has been Accomplished? . 139
8.2 Hades Hardware . 139
8.3 Hades Software . 139
8.4 Lola and Trianus . 140
8.5 Conclusions . 140
8.6 Outlook . 141

A Syntax of Lola 143

B Schema of Hades Coprocessor Board 145

C Photograph of Hades Coprocessor Board 147

D Components for a Hades Board 148

E Hades RC Board Decoder 150

F Wotan Microprocessor 154
F.1 Architecture and Principle of Operation . 154
F.2 Lola Code . 156
F.3 Layout Synthesis 164

G Resources on the Web 167

Bibliography 168

Curriculum Vitae 176

List of Figures

1.1 CPU and Coprocessor . 2
1.2 Typical Reconfigurable Coprocessor . 4
1.3 Hardware Synthesis Flow . 6

2.1 General FPGA Structure . 9
2.2 Pass Gate . 10
2.3 Configuration Store . 10
2.4 XC6200 Function Unit. 11
2.5 Mux Implementation of the AND and XOR Functions 12
2.6 XC6200 Neighbor Routing . .. 13
2.7 XC6200 Length-4 FastLANEs. 14
2.8 XC6200 Logic Symbol. 14
2.9 CAL Function Unit . 15
2.10 AT6000 Function Unit . 16
2.11 AT6000 Routing Network 17
2.12 XC4000EX Function Unit (Simplified). 18
2.13 XC4000EX Routing (Simplified) 18

3.1 Different Views in Trianus . 28
3.2 Lola and Trianus Part in Design Flow from Fig. 1.3 29
3.3 Trianus Types and Lola Constructs . 33
3.4 Data Structure forAddElem Type . 34
3.5 XC6200 Layout ofAddElem . 37
3.6 OBDD for Carry-Out ofAddElem . 38
3.7 Schema Showing anAddElem . 39

4.1 Hades Hardware Part within the Design Flow of Fig. 1.3 40
4.2 FPGA Attached to the CPU (Two Alternatives) 42
4.3 FPGA with Local Memory on Extension Card 44
4.4 Hades Reconfigurable Coprocessor . 45
4.5 Interface Timing . 50

5.1 Hades Software Part within the Design Flow of Fig. 1.3 55
5.2 Routing Channel . 58
5.3 Wave Expansion (1, 2, 3, 4) with Resulting Route 59
5.4 XC6200 Cell Configurations (without Registers) 63
5.5 Mapping of NOT-Gate . 64
5.6 Mapping of AND-Gate . 66
5.7 Mapping of Latch . 66
5.8 Mapping of Register . 68
5.9 Buried Inputs and Outputs . .. 70
5.10 Tree Example . 77
5.11 Array of Trees Example . 78
5.12 Selector Example . 79

ix

x

5.13 Multiplexer Example .. 80
5.14 Shift Register Example . 81
5.15 Parallel to Serial Converter . 82
5.16 Counter Example 82
5.17 Adder Example . 83
5.18 Routing Resource Conflicts . 89
5.19 Growing of Bounding Box . .. 91
5.20 Spreading of the Wave . 93
5.21 Resulting Route 93
5.22 XC6200 Function Unit. 96
5.23 Inversions on Inputs . .. 96

6.1 Pattern Matcher . 108
6.2 Mapper Circuit without Placement Hints 110
6.3 Mapper Circuit with Placement Hints. 111
6.4 Comparator Schema . 111
6.5 Comparator Circuit without Placement Hints 112
6.6 Comparator Circuit With Initial and Final Routing 113
6.7 Data and Pattern Registers . 114
6.8 Pattern Matcher without Placement Hints 117
6.9 Pattern Matcher with Placement Hints. 118
6.10 Large Pattern Matcher with Placement Hints 119
6.11 Constant Propagation . 125
6.12 Conventional and Fused Comparators . 126

B.1 Schema of Hades RC Board . 146

C.1 Photograph of Hades RC Board . 147

F.1 Floorplan of Wotan Microprocessor . 154
F.2 Register Slice . 155
F.3 Data Flow . 155
F.4 Control Unit Slice . 156
F.5 State Machine . 156
F.6 ALU Slice Signals . 157
F.7 ALU Slice . 164
F.8 Wotan Microprocessor on XC6216 FPGA 166

List of Tables

2.1 Truth Table for AND and XOR Functions . 12
2.2 Comparison of Different FPGAs . 19

3.1 Lola Operators . 22
3.2 Lola vs. VHDL vs. Verilog . .. 25
3.3 fct Values and their Meaning . 34

4.1 Memory Map of Hades Board (Address is Relative to a Base) 48
4.2 Worst Case Access Time to Local SRAM 52

5.1 Binary Operators (Left) and Their Mapping (Right) 64
5.2 Hades Software Size . 101
5.3 Total Size of Trianus/Hades System . 102
5.4 Oberon Compiler Size . 102
5.5 Comparison to CALLAS . 103
5.6 Memory Consumption for Compiling PatternMatch 16 x 12. 103

6.1 Mapping of 8-Bit to 5-Bit Characters . 109
6.2 Searching “MODU” (Throughput in KB/s) 124
6.3 Pattern Matcher without Hints: 2 Patterns of 4 Characters Each 127
6.4 Pattern Matcher with Hints: 2 Patterns of 4 Characters Each 129
6.5 Pattern Matcher with Hints: 16 Patterns of 12 Characters Each 130

F.1 Wotan Instructions . 157
F.2 Control Unit . 158
F.3 Wotan Place & Route Times . 165

xi

List of Programs

3.1 Ripple-Carry Adder Types in Lola . 23
3.2 Ripple-Carry Adder in Lola . 24
3.3 Ripple-Carry Adder in VHDL . 26
3.4 Ripple-Carry Adder in Verilog . 27
3.5 Definition of Node . .. 31
3.6 Definition of Object . .. 31
3.7 Definition of Instance .. 32
3.8 Definition of Type 32
3.9 Definition of Wire . 33
3.10 Message Broadcast . 36
4.1 Lola Code for FPGA Control PAL . 47
5.1 Overview of Mapping Algorithm . 62
5.2 Mapping of AND-Gate . 65
5.3 Mapping of Latch . 65
5.4 Input Variables and Scopes . .. 69
5.5 Anonymous Expressions . 69
5.6 Buried Inputs and Outputs . .. 69
5.7 Overview of Placement Algorithm . .. 71
5.8 Placement of Arrays I .. 73
5.9 Placement of Arrays II. 74
5.10 Placement of Nodes I .. 75
5.11 Placement of Nodes II. 76
5.12 Textual Layout Information . .. 84
5.13 Router Data Structure . 86
5.14 Overview of Routing Algorithm I . 87
5.15 Overview of Routing Algorithm II . 88
5.16 Marking of Wires Running over Instances 89
5.17 Routing of a Net . 92
5.18 Interface Objects . 99
6.1 Control Flow as Seen From Software . 108
6.2 Mapping of 8-Bit to 5-Bit Characters . 110
6.3 Comparing Two 5-Bit Characters . 112
6.4 Loadable and Buried Registers . 114
6.5 Complete Pattern Matcher I . 115
6.6 Complete Pattern Matcher II . 116
6.7 PatternMatch Software Interface I . 121
6.8 PatternMatch Software Interface II . 122
6.9 PatternMatch Application . 123

xii

Kurzfassung

Das Aufkommen von benutzerprogrammierbarer Hardware entfachte ein Interesse an kon-
figurierbaren Koprozessoren, welche zur Beschleunigung von zeitkritischen Softwareteilen
benutzt werden k¨onnen, indem diese in Hardware gegossen werden. Applikationen, welche
auf konfigurierbaren Koprozessoren ausgef¨uhrt werden, werden mittels Hardwarebeschrei-
bungssprachen oder schematischen Eingabesystemen beschrieben. Diese Beschreibungen wer-
den in Logikgatter ¨ubersetzt, f¨ur welche ein Layout (Auslegeplan) gefunden werden muss.
Logik- und Layoutsynthese sind zeitintensive Vorg¨ange, für welche heutige Hardwaresyn-
thesewerkzeuge bis zu vier Gr¨ossenordnungen mehr Zeit ben¨otigen, als Compiler zur̈Uber-
setzung von Softwarebeschreibungen. Heutige Synthesewerkzeuge benutzen stochastische
Algorithmen, um ihre Resultate zu erzielen und das Wissen des Benutzers ¨uber ein Design
kann nur schwer in den Entwicklungszyklus eingebracht werden.

In dieser Dissertation wurde ein komplettes Hardwarebeschreibungssystem entwickelt. Es
besteht aus einem konfigurierbaren Koprozessor und entsprechender Layoutsynthesesoftware.

Der konfigurierbare Koprozessor von Hades besteht aus einem einzelnen XC6216 FPGA
und lokalem Speicher in der Form von statischem RAM. Der Koprozessor ist mittels einer
Speicherkartenschnittstelle mit einer Arbeitsstation verbunden.

Die Hades-Software besteht aus einem Layoutsynthese-Backend f¨ur die XC6200 Archi-
tektur. Als Frontend zu unserer Software dient Trianus, ein Ger¨ust zur Entwicklung von FPGA
Designs. Die Hardwarebeschreibungssprache Lola dient zur Beschreibung der Algorithmen.

Die Hades Software besteht aus

• einem Technologie-Mapper,

• einem deterministischen und konstruktiven Plazieralgorithmus, der sich auf Plaziervor-
gaben des Benutzers verl¨asst, um dichte Layouts zu erzielen,

• einem Labyrinth-basierten Router, der durch den Benutzer in verschiedener Weise be-
einflusst werden kann,

• einem Generator von Konfigurationsinformation, und

• einem Schnittstellengenerator, welcher zu einer Hardwareapplikation automatisch eine
Softwareschnittstelle generiert.

Das resultierende System hat auf heutigen Rechnern sehr schnelleÜbersetzungszeiten im
Bereich von Sekunden. Die Hades Software ist mindestens eine Gr¨ossenordnung schneller
als die vom Hersteller erh¨altlichen Werkzeuge f¨ur dieselbe FPGA Architektur. Die schnellen
Übersetzungszeiten er¨offnen eine neue Art der interaktiven Entwicklung von Hardware und
erlauben es, auf wirksame Weise das Wissen des Entwicklers in den Entwicklungszyklus
einzubringen.

xiii

Abstract

The advent of Field-Programmable Gate Arrays has spurred an interest in building recon-
figurable coprocessors, which are used to accelerate the time-intensive parts of software by
casting them into programmable hardware. Applications running on reconfigurable coproces-
sors are developed using hardware description languages or schematic capture systems. These
descriptions are translated into logic gates, for which a layout has to be found. Logic and
layout synthesis is a time-consuming process and turnaround times of traditional hardware
synthesis tools are up to four orders of magnitude longer than those of software compilers.
Current synthesis tools rely on stochastic algorithms to achieve their results and the user’s
knowledge about a design can enter the design cycle only with difficulty.

In the course of this thesis, a complete hardware description system has been developed. It
consists of a reconfigurable coprocessor based on the Xilinx XC6200 FPGA architecture and
corresponding layout synthesis tools.

The Hades reconfigurable coprocessor consists of a single XC6216 FPGA and local mem-
ory in the form of static RAM. The coprocessor is attached via a memory-mapped interface to
a workstation.

The Hades software is composed of a layout synthesis back-end for the XC6200 archi-
tecture. The front-end to our tools is Trianus, a framework for FPGA design. The hardware
description language Lola is used to describe the algorithms. The Hades software is composed
of

• a technology mapper,

• a deterministic and constructive placement algorithm, which relies on placement hints
given by the user to achieve dense layouts,

• a maze-running router, which can be influenced by the user in various ways,

• a configuration bitstream generator, and

• an interface generator, which generates a software interface to a hardware application
automatically.

The resulting system achieves very fast turnaround times for layout synthesis on the order of
seconds on contemporary hardware. The Hades software is at least an order of magnitude
faster than commercially available tools for the same FPGA architecture. The fast turnaround
times open up a new way for interactively designing hardware and effectively bring the de-
signer’s knowledge into the design cycle.

xiv

1 Introduction

Hades — Greek god, brother of
Zeus, lord of the underworld, ruler
of the dead, god of wealth.

Ever since the conception of the first mechanical calculator (Abacus) several thousand years
ago, mankind has striven to speed up the brain straining task of calculating with numbers.
Since the introduction of the digital computer in the late 1930s and early 1940s, the speed at
which computations can be executed has increased by six orders of magnitude (103 additions/s
in 1946 vs. 109 in 1996). Likewise, power consumption and cost have decreased dramatically.

Gordon Moore’s “law” was stated in 1962 and is still valid today. It is not a law, but a
prediction saying that the number of transistors on a chip doubles every 18 months. Corollaries
to this prediction are that the speed of a circuit doubles every 18 months or that the same
performance can be bought for half the price after 18 months. As an example, the Intel 8080
microprocessor introduced in 1975 consisted of 4,500 transistors. The Pentium Pro introduced
by the same vendor in 1995 contains 5.5 million transistors.

As a consequence of this development, we are able to buy a computer today (early 1997)
clocked at 200 MHz with a 32-bit wide data path, executing half a billion instructions per
second, with 32 MB of main memory and 2 GB of disk space for $3,000 and put it on our
desktop. The same machine would have been termed a supercomputer only two decades ago.

This dramatic increase in computational power can be attributed to several factors:

• First and foremost, technological advances in circuit manufacturing pushed clock speed
and circuit density to levels not imaginable in the beginning of digital computing. Chips
with a feature size of 0.35µm running at 500 MHz are common nowadays and the next
shrink down to 0.25µm is within sight.

• Improvements in the architecture of processors, such as multiple execution units and
pipelining helped to lower the ratio of clock cycles per instruction.

• The availability of fast and cheap memory allowed to incorporate cache memory on
processors (first and second level caches), larger main memory and caches on disk con-
trollers. The availability of larger main memory allowed a space for time tradeoff,
resulting in faster execution of algorithms.

• Improvements in algorithms and data structures reduced the runtime of operations.

Still, this level of performance is barely sufficient for modern applications such as image
and sound processing (compression/decompression), three-dimensional graphics rendering,
speech recognition and so forth. As computers become faster, new application domains are
tackled requiring more computational power and programmers pay less attention to the effi-
cient implementation of algorithms. Therefore, new ways for speeding up algorithms are still
a strong driving force in hardware and software research.

1

1. Introduction 2

1.1 Coprocessors

In a computer system, there is normally one central processing unit (CPU) which can be pro-
grammed to execute a task. Computationally intensive tasks are usually accelerated through
algorithmic and programming techniques, such as caching, loop unrolling and implementation
in assembly language. Often though, these techniques do not achieve the required speedup.
If a large enough user base is interested in solving such a task quickly and there is enough
economic interest to justify the investment,special purpose hardwareis built. This hardware
solution of a task can consist of a board full of chips or of a single chip. The latter is called
an Application Specific Integrated Circuit (ASIC). The production of ASICs is expensive and
time consuming, but the resulting chips solve the task much more quickly than a general pur-
pose CPU.

A coprocessoris an ASIC, which aids the CPU by speeding up a task and usually requires
the presence of the former in a system to function properly. Figure 1.1 shows a schematic
view of such a system. The coprocessor is either closely coupled to the CPU with a dedicated
interface or it resides on an extension card attached to the system bus.

CPUCopro−

cessor

Memory

Input

Output

System Bus

Dedicated

Interface

(Fast)

Other

Coprocessor

Figure 1.1: CPU and Coprocessor

Well-known examples of early coprocessors are Floating-Point Units (FPU), such as the
Intel 8087 and the Motorola 68881. In the past years, as chip area became larger and cheaper,
FPUs were integrated into the CPUs resulting in even better performance.

Coprocessors more common today are digital signal processors (DSPs), video decoder
chips (for MPEG-encoded video streams) and so-called “multimedia” processors (TriMedia
[Phi95], MPact [Chr95]) processinglong data streams, such as continuous video or audio
data. However, as with FPUs, a coming trend in recent months was the introduction ofsingle
instruction multiple data instruction setsin general purpose CPUs (also called “multimedia”
instructions). Examples are Intel’s MMX for the Pentium, Sun’s VIS for the SPARC and
Digital Equipment’s media extensions for the Alpha. Typically, these instructions operate on
8 bytes or 4 half-words at a time. For an Add instruction, for instance, the carry path is broken
up after every 8 bits. This way, 8 parallel adds can be executed with one instruction. By
incorporating some crucial instructions for DSP applications into the CPU, it is possible to
achieve the same processing throughput on a general purpose CPU as with a special ASIC.

It seems that as soon as there is a large enough user base, CPU manufacturers will include
traditional coprocessor-like abilities in a CPU. The result is often much higher speed than
with a conventional coprocessor, as the coupling between processing units is tighter and more
parallelism between instruction pipelines can be exploited. The result is that it becomes in-
creasingly more difficult to find applications for which it makes sense to build special purpose
hardware.

1. Introduction 3

1.2 User-Configurable Hardware

One consequence of the high transistor count on an integrated circuit is the ability to produce
configurable hardware.In configurable hardware, some transistors are “wasted” to implement
configuration memory and routing switches instead of active logic circuitry. This memory is
used to control connections between various transistors on the chip. The immediate advantage
of configurable hardware is the ability to implementdifferent functionsin a chip at very low
cost. It is not necessary any more to implement a digital circuit using a silicon process. Instead,
configurable hardware brings the silicon foundry to the desktop.

Traditionally, the term configurable hardware is associated with Programmable Logic De-
vices (PLDs) such as Programmable Array Logic (PAL). PALs consist of a programmable
And-matrix and a fixed Or-matrix. One great advantage of PALs arepredictable signal de-
lays. The configuration memory of these devices is usually implemented by erasable ROM
cells. They can be programmed many times, but one often needs special programming ma-
chinery and the number of reprogramming steps is limited. Only recently have in-system
programmable PALs been introduced [Lat96].

In 1985, Xilinx Inc. introduced a new class of programmable logic devices, the first com-
mercialField-Programmable Gate Array(FPGA). As the name suggests, FPGAs were con-
ceived as a replacement for Mask-Programmable Gate Arrays (MPGAs). The configuration
memory is implemented by static RAM (SRAM) cells. Therefore, these devices can be pro-
grammed easily, rapidly (in milliseconds), and an arbitrary number of times. No special pro-
gramming machinery is required. By downloading aconfiguration bitstreamto such a device,
it is possible to adapt the device to a specific task in a couple of milliseconds. Typically, the
contents of the SRAM remain unchanged during an application session. Chapter 2 gives a
more detailed description of this technology.

1.3 Reconfigurable Coprocessors

The main drawback of special purpose hardware as defined in Section 1.1 is that it isspe-
cial purpose. Once built, it is not possible to change the hardware to accommodate slightly
different needs. A CPU can be programmed to implement any algorithm, but an ASIC imple-
menting an MPEG decoder will do only that. Another drawback is that for economic reasons
it is not sensible to build special purpose hardware for an algorithm that is executed only by
one user. For example, if a time consuming task is not “popular” enough to warrant the high
design and manufacturing costs of an ASIC, the user who has to solve that task has no other
options than optimizing the software code or buying a faster machine, both of which might
not suffice to achieve the needed level of performance.

With the advent of FPGA technology, however, it is possible to construct ageneral purpose
coprocessor, which can be programmed for a specific task and then reprogrammed for an-
other task within milliseconds. Such a system is usually called aCustom Computing Machine
(CCM) but we prefer the nameReconfigurable Coprocessor(RC), as it better characterizes
the close coupling to a CPU.

When compared with the use of hard-wired ASICs, the inclusion of a reconfigurable co-
processor in a computer system bears several advantages:

• The time-consuming part of an algorithm can be executed at the speed of hardware.

• The design implementing this part of an algorithm can be developed with the flexibility
and turnaround time of software.

• The available FPGA hardware can be reused for various algorithms, thereby reducing
circuitry that is otherwise unused in a system.

1. Introduction 4

• The hardware can be adapted to changing requirements or new algorithms, as only the
SRAM configuration data has to be generated anew.

• When specific parameters to an algorithm are known, the hardware can be special-
ized for those, thereby reducing the amount of logic (due to constant propagation) and
achieving higher speeds.

• The cost and power consumption of a system is reduced, as one reconfigurable copro-
cessor can fulfill tasks of several separate ASICs, provided that the tasks are separated
in time.

There are two main application areas where RCs can be used to speed up an application:
algorithms performinginteger operations on large amounts of data(most DSP applications
fall into this area) and theprocessing of input and/or output data streams. To perform well in
the first area, the RC should reside as closely as possible to the CPU, where it can execute, for
instance, a time-critical loop of some algorithm. To perform well in the second area, the RC
should be near the input/output ports or include these ports on the board.

The general architecture of an RC (shown in Figure 1.2) consists of one or moreFPGAs
connected to local memoryand an interface to the CPU. As will be seen in Chapter 6, the
speed of this interface is essential for achieving good performance. Often, a general purpose
connector where extension boards can be mounted is included as well. The connection be-
tween the system bus and the local memory of the RC shown in Figure 1.2 is not necessarily
present in an RC. It is, however, very convenient to have, as the CPU can then directly access
the board’s local memory and does not have to go through the FPGA, which might need to be
reconfigured to allow for that possibility.

CPU

FPGA(s)
Input

Output

Local

Memory

RC Board

System Bus

General Purpose Connector

Direct Access

to Local Memory

Memory

Figure 1.2: Typical Reconfigurable Coprocessor

In the past, most RCs have been realized as big external boards attached to the system
bus via an additional interface [ACC95, ABD92, BRV89, Ber93, GHK90]. But as FPGAs get
denser, modern RCs are realized as smaller extension boards [LSC96, Sha96], which can be
plugged directly into the system bus (such as a PCI bus [PCI93]). Chapter 7 presents some of
the RCs that have been developed in the past. The bigger boards described therein achieve or
surpass performance levels normally attributed to supercomputers.

1. Introduction 5

Programming an RC is difficult, even more so than programming a CPU. As the execution
unit of an RC is one or several FPGAs,programming an RC means designing hardware. There
are efforts under way to allow for the generation of FPGA designs directly from a “high-level”
programming language such as C [AS93, Gal95, IS95], but by and large, the main method
for describing an RC application is by means of schematic entry or hardware description
languages. This might be one reason why RCs are still not very popular, as few people are
trained in hardware design, and as hardware synthesis software is usually big, expensive and
often slow.

1.4 Hardware Synthesis

Hardware is usually described using a combination of the following three means:

• Schematic entry

• Hardware description language (HDL)

• Circuit layout

Still many hardware design engineers use schematic entry to describe a hardware circuit. But
over the last years, hardware description languages (HDLs) have gained ground and are be-
coming more popular. For utmost performance and density, using a layout editor is still the
preferred way for describing a circuit. Note that any combination of these three methods can
be used to describe a complete system. Also, a subcircuit described in the form of a layout
might be represented by an HDL description on a higher level.

Figure 1.3 describes the flow from a schema or HDL program to the final circuit, which in
this case is implemented using an FPGA. The dark shaded areas represent tools and hardware
which are the subject of this thesis.

A compilertranslates an HDL program or a schema into a device independentnetlistrep-
resenting the circuit. The netlist is mapped to the target device by atechnology mapper.
Technology mapping is a hard problem for FPGAs with complex cells (cf. Chapter 2) and
takes some time to decide which gates in a netlist are mapped into which cell in an FPGA.
The resulting netlist is thenplaced and routed, i.e., the physical location on the FPGA for the
gates in a netlist is determined (placement) and the gates are connected together with wires
(routing). Both problems are NP-complete - their runtime cannot be bounded by a polynomial
function, i.e. they require time exponential in the problem size - and require long run times
to achieve good results. Commercial tools often use placement algorithms based on simu-
lated annealing [KGV83]. This algorithm tries many different configurations until it reaches
a solution. Once the design is placed and routed, the netlist can be converted into an SRAM
configuration for the FPGA and finally be downloaded to the device.

Netlists that cannot be placed or routed, or that do not meet the timing constraints may
lead to changes in the design. Therefore, a feedback path as shown in Figure 1.3 exists from
several design phases to several other phases and often several iterations are necessary to reach
a satisfactory result.

Note in Figure 1.3 that the netlists between different stages may not be in the same format,
as they may be produced by software from different vendors. Also, most often, the output
from one phase iswritten to a file and read in againin the next phase, leading to inefficiencies.
These and other aspects of hardware synthesis software are discussed in Chapter 3.

1.5 Contributions

This thesis deals with the problem of speeding up computationally intensive tasks by means of
specialized hardware. The goal is the development of a hardware description system, which

1. Introduction 6

HDL Schema

Compiler

Netlist

FPGA

Corrections/

Adjustments

Layout

Editor

Mapped

Netlist

P&R'ed

Netlist

Technology

Mapper

Place &

Route

Download &

Runtime

System

Figure 1.3: Hardware Synthesis Flow

1. Introduction 7

runs on machines with moderate performance, allows for the construction of reconfigurable
coprocessor applications and supports avery fast design cycle. The resulting system, called
Hades(HArdware DEscription System), makes use of Field-Programmable Gate Array tech-
nology to implement areconfigurable coprocessor. It featuresfast, interactive physical design
tools to define and construct this hardware, and asoftware interface, which allows software
programmers to make use of the available hardware accelerator.

1.6 Overview of Thesis

The following Chapter 2 introduces the technology of FPGAs, focusing on the target architec-
ture of this thesis, the Xilinx XC6200. Chapter 3 presents the foundations of ourHadessys-
tem, namely the hardware description languageLola and theTrianusframework for FPGA de-
sign. Chapter 4 introduces theHades hardware— a coprocessor board based on the XC6200
FPGA. Chapter 5 introduces theHades software, featuring atechnology mapper, automatic
place and route tools, a loaderanddriver for the coprocessor board and asoftware interface
presenting a coprocessor application to the software programmer as an accelerated library
module. Chapter 6 shows the usefulness of Hades by presenting applications of the board and
the software and compares Hades to the commercial tool for the XC6200 FPGA. Chapter 7
presents related work. Chapter 8 summarizes the presented work, draws some conclusions
and presents ideas and suggestions for future work.

2 Field-Programmable Gate
Arrays

In this chapter, we present the motivation for using field-programmable gate arrays and de-
scribe various architectures. In particular, we present the Xilinx XC6200 FPGA and the rea-
sons it was chosen as the target architecture for this thesis.

2.1 Background

FPGAs continue the trend of higher integration and more flexibility in programmable logic
devices. Whereas PALs and complex PLDs are used for the replacement of glue logic on a
printed circuit board and the implementation of decoders and simple state machines, FPGAs
were invented as an alternative to mask-programmable gate arrays. These are mainly used for
the implementation of high-volume, complex logic chips in an electronic device, for which no
standard off-the-shelf solution exists.

A mask-programmable gate array is, as the name indicates, an array of gates with fixed
functionality, such as NAND-gates, where part of the routing network, typically the last metal
layer in the silicon process, is determined by the designer. This last layer of metal is manufac-
tured by the gate array vendor in a fabrication facility. The problem with this approach is that
the manufacturing process usually takes several days or weeks and that it is quite expensive.
Errors in the design lead to a faulty chip and hence to a substantial increase in costs. It is also
not easily possible to explore different design alternatives, except using slow simulation.

FPGAs try to alleviate these problems by making thegatesand therouting network pro-
grammable. The designer of a circuit can program the functionality of the chip “in the field”,
by simplydownloading configuration bitsonto the FPGA. FPGAs have a clear advantage over
MPGAs, as it is possible to create a new gate array within a few seconds, and — with SRAM-
and EEPROM-based FPGAs — to do so an unlimited number of times. Programmability
comes at a cost, however. The logic implemented in an FPGA is less dense (usually 10% of
an MPGA) and also slower (2-10 times) than its gate array implementation [DeH96]. This is
mainly due to the large amount of wiring resources needed (up to 85%) and the on-chip con-
figuration store (up to 10%), leaving only a small fraction of the chip area for active circuitry
(as little as 5%).

The feature of reprogrammability makes FPGAs useful in several areas:

• Replacement of glue logic: This continues the trend of other PLDs, such as PALs and
CPLDs.

• Replacement of MPGAs: This leads to a reduction of costs, as a design can be pro-
duced in shorter time and design changes can be accommodated even when the circuit
is already installed in a system.

• Speed of design cycle: The FPGA can be programmed in the system and tested right
away, without lengthy simulation cycles.

• Reconfigurable coprocessor: FPGAs can be programmed to implement parts of a time-
consuming algorithm in hardware.

8

2. Field-Programmable Gate Arrays 9

• Logic emulation: Instead of simulating a netlist, FPGAs can directly implement a cir-
cuit.

• Teaching: Students can implement complex circuits in a short time, verify them us-
ing real hardware, and, upon completion, delete the design and move on to the next
assignment [GLW94, Wir95, Wir96b].

In 1995, the total size of the programmable logic market was 1.7 billion US Dollars of
which the FPGA market was 716 million US Dollars. Several different FPGA architec-
tures from many vendors compete in that market. The leader is Xilinx with its 2000, 3000,
4000, 5200 and 6200 architectures. Other vendors include Actel (MAX), Altera (FLEX),
Atmel/Concurrent Logic (6000), AT&T/Lucent (Orca), Lattice (ispLSI), Motorola/Pilkington
(MPA) and Quicklogic (pASIC), all of them American.

2.2 General Structure

A field-programmable gate array consists ofprogrammable logic cellscontaining function
units and registers, aprogrammable routing network, andprogrammable input and output
(I/O) cells. The routing network connects logic cells with each other and with the I/O cells.
Figure 2.1 gives an overview of an FPGA.

Logic Cell

Routing

Network

I/O

Cell

Figure 2.1: General FPGA Structure

In many FPGAs, programmability is achieved through SRAM cells, which are intermixed
on the chip with the logic cells and the routing network. SRAM-based FPGAs can be imple-
mented using a standard CMOS process. Conceptually, the SRAM cell layer lies beneath the
logic and routing layers, controlling switches in the latter (Figure 2.3). The switches, which
are implemented as pass gates using n-type transistors, determine the functionality of the cells
and the direction of the signal flow (cf. Figure 2.2). The SRAM cells are implemented as 5 or
6 transistor cells.

Because of the volatility of the SRAM cells, the configuration bits are loaded from an
external storage device upon power up, typically from a serial ROM. A serial or parallel pro-
gramming interface is provided for that task. Protecting intellectual property in the presence
of a ROM is problematic, as the ROM can be read out not only by the FPGA, but also by using
a probe. Therefore, FPGA vendors try to protect the intellectual property of their customers
by keeping the format of the configuration bitstream secret.

2. Field-Programmable Gate Arrays 10

SRAM Cell

Pass Gate

Figure 2.2: Pass Gate

SRAM-based FPGAs can be programmed an unlimited number of times. Depending on
the size of the chip and the speed of the programming interface, the time needed for a full
reconfiguration is between hundreds of microseconds and hundreds of milliseconds.

Cells and Network
Serial

programming

path Configuration Store

Logic Cell Routing

Network

I/O

Cell

Figure 2.3: Configuration Store

Other technologies for storing configuration information and implementing switches are
based onantifuses[Act95, Qui94] and EEPROM cells [Alt96]. In this thesis we focus on FP-
GAs based on SRAM cells, as they are the only alternative for implementing a reconfigurable
coprocessor. Further information on configuration store technology can be found in [BFR92].

Among different FPGAs, there is a wide architectural variety in the functionality of the
logic cells and the structure of the routing network. If a logic cell provides onlysimple func-
tionality (e.g. any function of two inputs) then it is called afine-grainedarchitecture. If it
providesrich functionality(e.g. any function of four or more inputs and one or several op-
tional registers), then it is called acoarse-grainedarchitecture. More complex logic cells
often also require a more complex routing network.

2.3 The Xilinx XC6200

As our first example of a commercial FPGA, we examine the XC6200 architecture from Xilinx
[Xil96], the successor of the CAL architecture from Algotronix [Alg90, Kea89], which is
described in Section 2.4. It is an SRAM-based FPGA with an array of identical, fine-grained
cells and a hierarchical routing network. Two novel features of the architecture are aprocessor
interfaceand veryfast reconfiguration times, which makes the chip suitable for coprocessor
applications. The first implementation of the architecture, the XC6216, consists of an array of
64 by 64 cells.

2.3.1 Logic Cell

An XC6200 logic cell implementsany logic function of two inputsor amultiplexer, possibly
followed by aregister.As shown in Figure 2.4, theDynamic Muxto the right ofY2is the only
multiplexer that is controlled by a dynamic signal(X1). All other multiplexers are controlled
by SRAM configuration bits, denoted by shaded boxes attached to the bottom. The signals on
X1, X2andX3are determined by multiplexers selecting from eight possible inputs: any of the

2. Field-Programmable Gate Arrays 11

four neighboring cell outputs or any of the four length-4 FastLANE signals running along the
cell (see Section 2.3.2).

Clr

D Q

C

S

CS Mux

RP Mux

1

0

Y2

Y3

X3

X2

X1

Q'

F

Clk

Dynamic Mux

Figure 2.4: XC6200 Function Unit

The feedback fromQ’ to theY2andY3multiplexers in Figure 2.4 gives additional flexi-
bility, for instance to implement the register of a counter (F := REG(F⊕ cin)). TheRP Mux
can be used toprotect the register. When a register is protected, it is only writable through
the processor interface of the FPGA (Section 2.3.4). This can be useful for implementing
constants or for writing parameter values into a circuit without having to connect the register
to an I/O pad (also called padless IO).

To achieve higher transmission speeds, the multiplexers in Figure 2.4 haveinverted out-
puts. These can be a problem for the CAD software. Not only do these inversions exist in
the multiplexers within the cell, but also on routing multiplexers. A process calledinversion
compensation(cf. Section 5.7) is required to determine the polarity of input signals to a cell.
The reader should keep the presence of these inversions in mind when reading subsequent
chapters.

All Boolean functions of two or less inputs can be implemented by a single multiplexer
with optional inversions at its inputs. Figure 5.4 in Chapter 5 shows all cell functions supported
by Hades. As an example, we show the implementation of an AND- and an XOR-gate; other
functions can be implemented accordingly. The true value of the function is taken at pointC
in Figure 2.4, hence the inversion on the output of the central multiplexer must be taken into
account.

To implementF := a ∧ b, we connecta to X1 andX3 andb to X2. Y2andY3select the
inverted value ofX2 andX3, respectively.F := a ∧ b can be implemented by selecting the
true value ofX2 at Y2. To implementF := a ⊕ b, we connecta to X1 andb to X2 andX3,
invertingX3atY3.

Figure 2.5 shows the resulting circuit and Table 2.1 shows the truth table of the functions.
We use the Lola notation for describing a multiplexer (Chapter 3), whereMUX(sel: in0, in1)
indicates that whensel is zero, the multiplexer selectsin0, and when it is one, it selectsin1.

2.3.2 Routing Network

The routing network of the XC6200 consists ofconnections between neighboring cellsand a
hierarchy of longer connectionsbetween switches located at 4 and 16 cell boundaries and at

2. Field-Programmable Gate Arrays 12

Y2

Y3
X3 := a

X2 := b

X1 := a

˜MUX(a: ˜a, ˜b) = a AND b

Y2

Y3
X3 := b

X2 := b

X1 := a

˜MUX(a: ˜b, b) = a XOR b

0

1

1

0

Figure 2.5: Mux Implementation of the AND and XOR Functions

a b a AND b ˜ MUX(a: ˜ a, ˜ b) a XOR b ˜ MUX(a: ˜ b, b)

0 0 0 a = 0 0 b = 0
0 1 0 a = 0 1 b = 1
1 0 0 b = 0 1 ˜ b = 1
1 1 1 b = 1 0 ˜ b = 0

Table 2.1: Truth Table for AND and XOR Functions

2. Field-Programmable Gate Arrays 13

the array’s perimeter. The longer connections are termedFastLANEconnections. This hier-
archy of routing resources provides shorter signal delays, as the delays scale logarithmically
with the distance between cells, instead of linearly. All signals are uni-directional, i.e. they
have one source only. Tri-state buses must be emulated by using multiplexers.

On the first level of the routing hierarchy are neighbor connections (Figure 2.6). The
signal source of a neighbor connection can be either theF output of the function unit or one
of the three inputs from the other cells. For instance, thenorth output of a cell isMUX(sel0,
sel1: F, SIn, EIn, WIn). Hence, a cell can simultaneously be used for function generation and
routing. The selector signalssel0andsel1are determined by configuration bits. At 4x4 block
boundaries, the neighbor connection can be driven by a length-4 FastLANE as well.

Figure 2.6: XC6200 Neighbor Routing

The next level of the routing hierarchy is composed of length-4 FastLANEs. They run
across four cells and are connected together through switches, which are spaced 4 cells apart
(Figure 2.7). A length-4 FastLANE can be driven by another length-4 FastLANE or by the
signals on the previous or next level.

Accordingly, there are length-16 FastLANE signals driven by switches spaced 16 cells
apart and chip-length FastLANE signals driven by switches located at the perimeter of the cell
array.

Fourglobal signals(G1, G2, GClk, GClr) are provided for low skew, low delay signals
such as register clear and clock. [Xil96] presents the routing architecture in more detail. It
also describes the topology of themagic routing resources, which are not supported by our
tools due to their irregular structure with respect to hierarchy. They allow to connect the signal
of theX2or X3 input of a cell to two 4x4 switches.

2.3.3 Input/Output Blocks

Surrounding the array of cells, configurable input/output blocks (IOBs) are located at every
cell location. An IOB can be configured to act as an input, an output or a bi-directional driver
controlled by a tri-state enable signal. Not every IOB is connected to a pad (padless IOB).
A novel feature of the XC6200 is that padless IOBs can be connected to additional inputs of
IOBs with pads. This gives additional flexibility for the routing of signals. Also, it is possible
that an IOB can drive a control signal which goes into the array, for instance the chip select
signal. This feature makes it possible for a chip to generate its own control signals, thereby

2. Field-Programmable Gate Arrays 14

Figure 2.7: XC6200 Length-4 FastLANEs

making external control logic obsolete. The input/output architecture is discussed in more
detail in [Xil96].

2.3.4 Programming Interface

From a host processor, the XC6200 FPGA can be accessed like a conventional SRAM using
data, address, and control signals (Figure 2.8).

User

I/O

User

I/O

CtrlDataAdr

Figure 2.8: XC6200 Logic Symbol

Simple memory-mapped reads and writes using an up to 32-bit wide data bus are used to
configure the chip and to access the values of cells. Using this fast interface at a clock rate
of 33 MHz, it is possible to fully configure an XC6216 (with 64 x 64 cells) in 270µs. The
chip can also be partially reconfigured down to a single configuration bit. Applications of this
partial reconfigurability will be discussed in Chapter 6.

Special registersare provided for the quick configuration of multiple rows and columns
of cells and routing resources: Thewildcard registeris used to configure regular structures
which occur, for example, in every second column of every fourth row of the chip. Themask
registeris used to change only the relevant bits, for example, of a north multiplexer within a

2. Field-Programmable Gate Arrays 15

cell. For state access, themap registeris used to map bits on the data-bus to individual cells
in a column (e.g. bit 0 of the data bus is mapped to the cell in row 1, bit 1 to the cell in row 3,
etc.). [CKW95] and [Xil96] treat this subject in more detail.

2.3.5 Summary

The XC6200 has a simple, regular structure with simple logic cells and a hierarchical, uni-
directional routing network. A fast programming and access interface can be used for rapid,
partial reconfiguration and for accessing (reading and writing) user registers without using
routing resources.

On the downside, inversions on routing and logic multiplexers complicate the implemen-
tation of various software tools and the magic routing resources break the symmetry of the
other routing resources.

2.4 Other Architectures

In this section we give an overview of three other FPGA architectures, namely the CAL by
Algotronix, the XC4000EX by Xilinx and the AT6000 by Atmel. There are many more FPGAs
on the market and discussing them all would be beyond the scope of this introduction. A more
detailed, if somewhat older presentation of different architectures can be found in [BFR92].

2.4.1 CAL

The predecessor of the XC6200, the CAL (Configurable Array Logic) by Algotronix is not
available any more but is presented here for historical reasons [Alg90, Kea89]. It was one
of the firstfine-grainedSRAM-based FPGAs, featuring 32 by 32 cells, each of which could
implementany function of two inputs or a latch. Figure 2.9 shows the function unit of the
chip. It hadneighbor to neighbor connections, just as the XC6200, but these were the only
routing resources (Figure 2.6).

1

0

X2

X1

F

1

0

Y1

Y2

Y3

Figure 2.9: CAL Function Unit

The CAL was used in reconfigurable coprocessors, such as the CHS2x4 from Algotronix
[Alg91] and the Chameleon computer developed at the Institute for Computer Systems at ETH

2. Field-Programmable Gate Arrays 16

Zürich [Hee93, HP92]. The CAL may be regarded as a pioneering work on fine-grained archi-
tectures. Its main drawbacks were long propagation delays due to the lack of long connections
and the presence of level-sensitive latches instead of edge-sensitive registers.

2.4.2 AT6000

The AT6000 architecture from Atmel is a slight variant of the Concurrent Logic CLi6000
architecture [Atm95]. It is used in a laboratory for a digital design course for computer science
students at ETH Z¨urich [GLW94, Wir95]. The AT6000 is afine-grainedSRAM-based FPGA,
although less fine-grained than the XC6200. Each cell has three inputs, two can come from
any of the four neighboring cells and one can come from one of four local buses. It drives two
outputs, which are connected to all four neighboring cells. One output can be connected with
pass gates to the local buses. A logic cell contains an XOR-gate, a (N)AND-gate and a register,
plus two additional AND-gates reading from the local bus input (Figures 2.10 and 2.11). A
cell can, for example, implement a half-adder, a counter element, a multiplexer or a loadable
register.

ANDXOR

3 23210 1 0

AND AND

1

AND

A
N, S, E, W

B
N, S, E, W

A
N, S, E, W

B
N, S, E, W

OR

L
NS2

L
EW2

L
NS1

L
EW1

1

1

Passgates

Figure 2.10: AT6000 Function Unit

For routing, the two neighbor inputs can be passed to the neighbor outputs, straight-
through or crossed-over. This means that a cell is either used for logic or for routing, but
never for both. On each side of the cell there is alocal bus, which runs along 8 cells. A
local bus can be driven by multiple cells, thus implementing a tri-state bus. A vertical and
a horizontal local bus can be connected together, implementing acorner turn. At 8x8 block
boundaries, so-calledrepeatersare used to connect local buses to each other or toexpress
buses. The latter cannot be read by logic cells and are therefore faster.

The serial or 8-bit parallel programming interface can be clocked at 10 MHz. Partial
reconfiguration is possible down to a single cell and the state of all user registers can be read.

2. Field-Programmable Gate Arrays 17

Repeater

A

B A

B

A, B Describe Outputs

A

B A

B

A

B A

B A

B A

B

Express Bus

Local Bus

Figure 2.11: AT6000 Routing Network

2.4.3 XC4000EX

The XC4000EX is the third version of the market-leader architecture from Xilinx [Xil96]. It is
a coarse-grained SRAM-based FPGA, based on the architectures of the 2000 and 3000 series.
Figure 2.12 shows a diagram of a logic cell. It has three function generators (F, G, H), plus
two registers (XQ, YQ). F andG have four,H has three inputs, two of which can be the outputs
of F andG. The function generators are implemented as lookup-tables andF andG can be
used for implementingdistributed SRAM. In addition, the XC4000 featuresfast carry logic
for speeding up adder and counter structures.

The routing resources are intricate, if not astounding. A single cell has 12 input signals
and generates 4 outputs signals. It has 4 direct connections to its neighboring cells and access
to a dedicated carry chain. Between cells, switch matrices have access to 16 single, 8 double,
24 quadruple length lines, 16 long lines and 8 global signals. This gives a total of 45 vertical
and 32 horizontal lines near each cell. Figure 2.13 shows a simplified diagram of the routing
resources. The switch matrix implements a sparse connection of the input and output signals.
Apart from the switch matrix, two signals can be connected together at most cross points in
Figure 2.13. Some of the longer lines can be used to implementtri-state buses, other signals
are uni-directional in principle, although multiple sources can be connected to a signal.

The XC4000 is programmed through a serial interface (or 8-bit parallel in the case of the
XC4000EX). Partial reconfiguration and the setting of user registers is not possible. However,
it is possible to read the state of all logic cells.

2.5 Evaluation

Comparing FPGA architectures against each other is difficult. Each one of them has its
strengths in certain application domains and its weaknesses in others. A simple fact is that
Xilinx’s 3000, 4000 and 5200 architectures (all lookup table based, coarse-grained FPGAs)
hold roughly 70% of the FPGA market. This seems to indicate that these architectures are
well suited for different application domains. (Or it could indicate that customers play it safe
and go with the market leader.)

Table 2.2 and the following sections summarize the differences and similarities of the

2. Field-Programmable Gate Arrays 18

Function

Generator

G

Function

Generator

F

G1..G4

F1..F4

Function

Generator

H

D Q

SR

D Q

SR

C1..C4

YQ

Y

XQ

X

H
1

D
IN
/H

2
SR/H

0

Figure 2.12: XC4000EX Function Unit (Simplified)

CLB

CLB

CLB CLB

CLB

CLB CLB

CLB

CLB

Progr.

Switch

Matrix

Progr.

Switch

Matrix

Progr.

Switch

Matrix

Progr.

Switch

Matrix

Direct Connects

Doubles

Singles

Figure 2.13: XC4000EX Routing (Simplified)

2. Field-Programmable Gate Arrays 19

previously presented FPGAs, using representatives with equivalent gate capacity. Each feature
is also evaluated with regard to coprocessor applications and suitability for hardware synthesis.
We exclude the CAL architecture and we list the XC4020E instead of the XC4028EX, as even
the smallest EX device has a higher gate capacity than the other two FPGAs in the comparison.

XC6216 AT6010 XC4020E

introduced 1995 1994 1994
num. of cells 64x64 (4096) 80x80 (6400) 28x28 (784)
gates (K) 16–24 10–20 20
cell simple medium complex
flipflops 4096 (1/cell) 6400 (1/cell) 2016 (2/cell + IO)
suitability for

data-path + + +
random logic – – +
synthesis + – +/–

distrib. RAM partial no yes
routing hierarchical single, local, express single, double, long
fast carry no no yes
direction uni uni + tri-state uni + tri-state
reconfiguration

speed ns–µs µs–ms ms
full 0.27 ms 1.3 ms 33 ms
partial yes yes no

register
read ns ms (all) ms (all)
write ns – –

bitstream public proprietary proprietary

Table 2.2: Comparison of Different FPGAs

2.5.1 Logic Cell

The XC6200 features a simple cell which can implement any two-input Boolean function or a
multiplexer. Technology mapping is easy (cf. Section 5.4). The XC4000 has a very complex
cell which can implement from two functions of 4 inputs each up to certain functions of 9
inputs. Technology mapping is complex, as the software has to decide what part of a circuit to
combine and put into one cell. The AT6000 cell is a collection of special cases. Technology
mapping is complex, as some basic functions, such as the OR-gate, have to be constructed
from several cells, or certain parts of a circuit have to be combined and put into one cell.

All FPGAs are register rich (ratio of registers to logic gates). They are well suited for
pipelined, data-path intensive designs. In addition, the XC4000 with its high fan-in cells
is good for implementing random logic. Also, the dedicated carry logic is a big plus for
arithmetic circuits and the distributed RAM capability is useful in many applications.

2.5.2 Routing Resources

The XC6200 has a regular, hierarchical routing structure with few special cases. The XC-
4000’s abundant routing resources gives good routability at the cost of a complicated software

2. Field-Programmable Gate Arrays 20

implementation because of the many special cases to consider. Both the XC6200 and the
XC4000 have routing resources, which are independent of the chosen cell function. The ab-
sence of this feature is the biggest drawback of the AT6000, as the hardware synthesis software
must decide at an early stage whether to use a cell for routing or for logic. If, at a later time,
routing is not possible, it has to redo placement to free up some cells for routing.

The tri-state buses in the XC4000 and the AT6000 can be useful for certain applications,
but their absence in the XC6200 has its advantages as well, as it is not possible to destroy the
chip with a faulty configuration. This can be useful both in education [GLW94] and research
[HHC96, Tho96].

2.5.3 Coprocessor Suitability

So far, most reconfigurable coprocessors use either the XC3000 or the XC4000 series from
Xilinx (cf. Chapter 7). Reconfiguration times, although faster in newer devices, are quite slow
(ms) with regard to coprocessor applications and partial reconfiguration is not possible. Also,
reading user registers is not very fast (ms) and it is not possible to set them. Data-path intensive
circuits map well onto the logic cell as does random logic. The proprietary bitstream format
hinders the development of new tools by third party vendors or universities. Such tools could
give better support for coprocessor applications.

The AT6000 has relatively fast reconfiguration times and also supports partial reconfig-
uration. For a long time being the only FPGA to support these features, the AT6000 and
its cousins were a favorite among researchers for exploring partial reconfigurability [EH94,
HH95, LD93, WH95]. The cell supports data-path type applications well, while it is less
suited for random logic. As with the XC4000, the proprietary bitstream format hinders the
development of new tools.

The dedicated memory-mapped processor interface, the possibility of fast, padless I/O
and the fast reconfiguration times of the XC6200 make this chip a first choice for coprocessor
applications. This is not surprising as the architecture is targeted at that market segment. It is
not evident, however, if the fine-grained architecture of the XC6200 can implement arithmetic
circuits as efficiently as, for example, the XC4000 with its dedicated carry logic. However,
[Mul97] presents a fast adder circuit (also discussed in Chapter 6) and [KNS96] recently
described a constant multiplier with similar density and better performance than a XC4000
implementation. The logic cell lends itself to regular, pipelined data-path type applications.
The availability of the bitstream format makes it possible to write new tools, exploring various
possibilities of generation and reconfiguration of hardware.

2.5.4 Deciding on an Architecture

The simple cell, regular routing architecture, processor interface, fast reconfiguration times,
possibility of user register access and availability of the bitstream format made the XC6200 a
clear winner for implementing a reconfigurable coprocessor and associated software tools.

3 Foundations: Lola and Trianus

In this chapter, we present the foundations Hades is based on, namely the hardware description
languageLola and theTrianus framework for digital circuit design with FPGAs. Lola is
compared to the more popular languages VHDL and Verilog. The structure of Trianus and its
data structures are explained in some detail to give the reader background information for the
remaining chapters.

Further information on Lola can be found in [Wir95, Wir96b]. An overview of Trianus is
given in [GL96] and detailed information in [Geh97].

3.1 Hardware Description Languages

As in most engineering disciplines, traditional hardware design involves a graphical approach
using diagrams. Today, many hardware engineers still useschematic entryto describe their
hardware designs. Hardware synthesis tools are used to translate these schematics (drawings)
into netlistscontaininggates(such as ANDs, ORs, Registers) andwiresconnecting these gates.
The graphical description is well suited to describe the global signal flow in a digital system.
However, a schema containing many components is hard to read and understand. Also, en-
tering and altering a schema is often a tedious task, as it involves the placement of graphical
components on the drawing plane and connecting these with wires.

Carrying over the methodology used in software programming languages, a textual de-
scription of hardware is possible using hardware description languages (HDLs). These tex-
tual descriptions arepreciseand thesemanticsof the individual language constructs arewell
defined. Describing repetitive components is accomplished easily and descriptions can be pa-
rameterized with certain values, such as the width of a bus. HDL compilers perform the same
task as their graphical cousins, but take a textual description of the hardware as input instead
of a graphical one. Last, but not least, the demands posed on a computer system are much
smaller when text is processed instead of graphics.

3.2 The Hardware Description Language Lola

Lola (logic language) was designed by N. Wirth in 1992 as a simple, easily learned hardware
description language for describing synchronous, digital circuits. In addition to its use in a
digital design course for second year computer science students at ETH Z¨urich [GLW94], the
Institute for Computer Systems uses it as an HDL for describing hardware designs in general
and coprocessor applications in particular. The complete syntax is listed in Appendix A.

3.2.1 Overview

The purpose of Lola is tostaticallydescribe the structure and functionality of hardware com-
ponents and of the connections between them. A Lola text (or program) is composed of
declarationsandstatements. Statements consist of control statements and assignments. A
program describes the hardware on the gate level in the form ofsignal assignments. Signals
are combined using operators, thus forming expressions. These expressions can be assigned

21

3. Foundations: Lola and Trianus 22

to other signals. Signals and the respective assignments can be grouped together intotypes.
Types can be composed of instances of other types, thereby supporting a hierarchical design
style. An instance of a type is a hardware component (such as an adder). Types can be generic,
e.g. parameterizable with the word-width of a circuit.

3.2.2 Variables, Signals and Assignments

Variables serve to give a name to an electrical signal (a wire or net), a group of signals or a
component. Each variable is either of a signal type, an array type or a composite type. There
are three basic signal types in Lola: BIT (single source signal), TS (tri-state bus) and OC
(open-collector bus). A signal carries the value zero (’0) or one (’1), or undefined in the case
of a tri-state bus.

Signals can be declared in one of four different declaration sections: IN (input), INOUT
(input/output), OUT (output) and VAR (variable). Input signals may only be read, input/output
signals are tri-state or open-collector buses and may be read and written, output and variable
signals may be read and written. IN, INOUT and OUT signals make up the interface of a type
(cf. Section 3.2.4). INOUT and OUT signals are visible outside the scope they are declared
in, whereas VAR signals are local to the scope.

In an assignmentvar := exp, the expressionexp defines the value of variablevar. There
may only be one assignment to a variable of BIT type. Variables of type TS may have multiple,
conditional assignments. Variables of type OC may have multiple assignments.

3.2.3 Operators, Expressions, Control and Position Statements

Table 3.1 lists the basic operators of Lola, which are used to combine signals. In addition to
unary and binary operators, there are multiplexer, latch, register and set-reset latch operators.
Note that the register is not a special signal type, but an operator; it can appear anywhere in
an expression. This has the advantage that enable and special clock signals can be associated
with the register in an expression instead of in the declaration part.

Operator Meaning

˜ a not (negation)
a + b or (conjunction)
a * b and (disjunction)
a - b exclusive or

MUX(s: a, b) multiplexer (̃ s*a + s*b)
REG(clk: en, d) register (optional clock and load enable)
LATCH(en, d) latch, with load enable

SR(s’, r’) latch with set and reset (both active low)

Table 3.1: Lola Operators

An expressioncan be composed of operators, variables, numeric values and numeric ex-
pressions. If a variable is of type array, a selector may be used to specify an individual signal
(e.g.a.i or a[i] specify theith signal of an array). If a variable is of composite type, a selector
may be used to specify an output signal of that type (e.g.a.co would specify the carry-out
signal of an adder instance).

Thecontrol statements FORandIF are typically used to iterate over an array variable, and
to treat special cases in generic types, respectively.

Position statementscan be used to annotate variable names with positional information.
They make a Lola program target dependent and their interpretation is left to the synthesis

3. Foundations: Lola and Trianus 23

back-end. They are typically used to give hints to a placement algorithm or to specify pin
locations (see Section 5.5).

3.2.4 Types, Unit Assignments and Modules

Type definitions are used to group related declarations and assignments together into an entity
(i.e., a macro) describing a hardware component (e.g. an adder). A type definition consists
of an interface definition(input, input/output and output signals) and local signal declarations
and statements. Types can contain instances of other types, thus building a hierarchy. This is
very useful for structuring large designs into smaller, reusable components. Types can also be
generic, e.g. the word-width of a circuit need not be known in advance. Types are instantiated
(with concrete parameters) in variable declarations. Actual input signals are passed to an
instance in a so-calledunit assignment(see the example in Section 3.2.5).

Signals defined in the OUT section of a type are visible in the scope of the composite
variable and are accessed by means of selectors. E.g., if a typeA has an OUT signalco, then
with a being an instance of typeA, a.co can be used in an expression to access this signal.

Modules are the textual unit of compilation. They contain type and variable declarations
and statements. Types in modules may be exported and imported by other modules, hence
allowing the construction of libraries.

3.2.5 Example: Ripple-Carry Adder Circuit

The two types in Program 3.1 show the definition of a full adder and of a ripple carry adder of
unspecified word-width, which is based on the full adder.

Program 3.1Ripple-Carry Adder Types in Lola

TYPE AddElem; full adder
IN x, y, ci: BIT; inputs: data, carry
OUT s, co: BIT; outputs: sum, carry
VAR h: BIT; half sum

BEGIN
h := x-y; XOR
s := h-ci; XOR
co := x*y + h*ci two ANDs and one OR

END AddElem;

TYPE Adder(N); generic N-bit ripple carry adder
IN x, y: [N] BIT; ci: BIT; inputs: 2 data vectors & carry
OUT s: [N] BIT; co: BIT; outputs: sum vector & carry
VAR add: [N] AddElem; instantiate N full add elements

BEGIN
add.0(x.0, y.0, ci); unit assignment: add two bits
FOR i := 1 .. N-1 DO add.i(x.i, y.i, add[i-1].co) END;
FOR i := 0 .. N-1 DO s.i := add.i.s END;
co := add[N-1].co

END Adder;

They are used to construct an 8-bit adder circuit shown in Program 3.2. The use of several
operators and constant signals is shown, as well as the instantiation of a generic type and the
use of unit assignments. The example is split up into two programs to make comparison with

3. Foundations: Lola and Trianus 24

the subsequent VHDL and Verilog descriptions easier. We will refer to this example in this
and later chapters.

Program 3.2Ripple-Carry Adder in Lola

MODULE Add;

types as defined in Program 3.1

CONST Bits := 8;
IN ldx, rd: BIT;
INOUT D: [Bits] TS;
VAR

adder: Adder(Bits); instantiate generic
x, y: [Bits] BIT;

BEGIN
FOR i := 0 .. Bits-1 DO store D bus if not read

x.i := REG(̃ rd*ldx, D.i); into x if ldx
y.i := REG(̃ rd*˜ ldx, D.i) into y if ˜ ldx

END;
adder(x, y, ’0); unit assignment (with vectors

x and y and constant zero)
FOR i := 0 .. Bits-1 DO

D.i := rd | adder.s.i rd controlled tri-state assignment
END

END Add.

3.2.6 Compilation of Lola

In analogy to a high-level programming language compiler, the Lola compiler performs a
syntax- and type-check on the program and then generates an abstract syntax tree representing
it. An interpreter traverses this tree to generate an expanded data structure with signal and
expression nodes (cf. Section 3.3). The expansion step is necessary to generate the required
number of nodes described in FOR loops and IF statements, and to evaluate position state-
ments. This interpretation step, however, is different from the interpretation step in Verilog
and VHDL, which is based on a simulation model to generate the actual hardware (cf. Sec-
tion 3.2.7). The values of individual signals is not known to the Lola interpreter as only the
control statements are interpreted.

After expansion, an optional simplification step may be executed on the resulting data
structure. This simplification step propagates constants through the expression tree. An indi-
vidual instance may thus look quite different from its original type definition. For instance, if
the carry input is zero, the lowest full adder in Program 3.1 degenerates into a half-adder.

3.2.7 Other HDLs

HDLs used in industry areVerilog andVHDL (Very High Speed Integrated Circuits HDL),
both developed in the 1980s. Both languages were originally designed for hardware simula-
tion. The dynamic aspects are defined by the way a simulator works. A hardware synthe-
sizer must make an interpretation of the described constructs and map this into hardware with
equivalent behavior. Some language features are solely used for simulation and cannot be im-

3. Foundations: Lola and Trianus 25

plemented directly. Therefore, one often speaks ofsynthesizableVHDL or Verilog, which are
subsets of the language definition.

Compared to Lola, both languages are much more complicated and support more features.
VHDL and Verilog support operator overloading, so the adder in Program 3.2 might be written
asD := x + y, and the actual implementation of the adder is left to the hardware synthesizer.
Also, as both languages are used for simulation, a signal may carry more values than just zero
and one, which sometimes leads to code that can be simulated but not synthesized.

In VHDL, the interface (entity) and the implementation (architecture) of a type are tex-
tually separated. An entity may have multiple architectures, e.g. an adder circuit may be
implemented using a ripple-carry or a carry-look-ahead scheme. The types from Program 3.1
would look like Program 3.3 in VHDL.

Due to the separation of interface and implementation, the designer has the possibility
to provide multiple implementations for the same interface. For libraries, this is a welcome
feature, but for application code, this approach leads to verbosity and more code has to be
written. Another problem with this approach is that the declarations of interface and private
signals are textually separated. When writing the implementation, the designer always has to
consult the entity declaration to see what input and output variables are available.

Verilog has no generic construct. One has to use a preprocessor which then generates the
corresponding code. An 8-bit adder in Verilog is shown in Program 3.4.

An interesting note is that unlike in Lola, it is not possible in VHDL or in Verilog to use
the output signal of an instance directly. In theAdder type, we need an auxiliary variablec and
a map statementto transfer the carry-out of the previousAddElem to the carry-in of the next
one. This may seem like a trivial limitation, but it ultimately decides whether a language is
“handy” or not. Table 3.2 compares Lola with VHDL and Verilog and lists some of the major
differences.

Feature Lola VHDL Verilog

Simple + - +/-
Generics + + +/-
Overloading - + -
Structural + + +
Behavioral - + +
Synthesizable + +/- +/-
Position Hints + +/- +/-
Standard - + +
Fast Compilers + - -
Inspired by Oberon Ada C

Table 3.2: Lola vs. VHDL vs. Verilog

3.3 Trianus

Trianus is the name of the companion project of Hades, carried out by Stephan Gehring
[Geh97]. It serves as the base and foundation for the Hades software. The principal archi-
tecture was designed by S. Gehring and then fine-tuned based on experience with the Hades
tools. It has proven to be a very robust base for Hades and its implementation is sound and
well tested.

3. Foundations: Lola and Trianus 26

Program 3.3Ripple-Carry Adder in VHDL

entity AddElem is interface
port (x, y, ci: in bit;

s, co: out bit);
end;

architecture behavior of AddElem is one implementation
signal h: bit;

begin
h<= x xor y;
s<= h xor ci;
co<= (x and y) or (h and ci);

end behavior;

entity Adder is interface
generic (n: natural := 4);
port (x, y: in bit-vector(n-1 downto 0);

ci: in bit;
s: out bit-vector(n-1 downto 0);
co: out bit);

end;

architecture structure of Adder is one implementation

component AddElem declare used entities
port(x, y, ci: in bit; interface must be repeated

s, co: out bit);
end component;

signal c: bit-vector(n downto 0); auxiliary carries
begin

c(0)<= cin;
gen: for i in 0 to n-1 generate

ae: AddElem port map(unit assignment
x => x(i),
y => y(i),
ci => c(i),
s => s(i),
co => c(i+1));

end generate;
cout<= c(n);

end structure;

3. Foundations: Lola and Trianus 27

Program 3.4Ripple-Carry Adder in Verilog

module AddElem(x, y, ci, s, co);
input x, y, ci;
output s, co;

wire s, co; define output pin types
wire h;

assign h = x̂ y;
assign s = ĥ ci;
assign co = (x & y)| (h & ci);

endmodule

module Adder(x, y, ci, s, co);
input [7:0] x, y;
input ci;
output [7:0] s;
output co;

wire [7:0] s; define output pin types
wire co; define output pin types
wire [6:0] c; auxiliary carries

instantiate eight adder elements
AddElem bit0(.x(x[0]), .y(y[0]), .s(s[0]), .ci(ci), .co(c[0]));
AddElem bit1(.x(x[1]), .y(y[1]), .s(s[1]), .ci(c[0]), .co(c[1]));
AddElem bit2(.x(x[2]), .y(y[2]), .s(s[2]), .ci(c[1]), .co(c[2]));
AddElem bit3(.x(x[3]), .y(y[3]), .s(s[3]), .ci(c[2]), .co(c[3]));
AddElem bit4(.x(x[4]), .y(y[4]), .s(s[4]), .ci(c[3]), .co(c[4]));
AddElem bit5(.x(x[5]), .y(y[5]), .s(s[5]), .ci(c[4]), .co(c[5]));
AddElem bit6(.x(x[6]), .y(y[6]), .s(s[6]), .ci(c[5]), .co(c[6]));
AddElem bit7(.x(x[7]), .y(y[7]), .s(s[7]), .ci(c[6]), .co(co));

endmodule

3. Foundations: Lola and Trianus 28

3.3.1 Motivation and Structure

TheTrianusproject tries to improve performance of hardware design tools by tightly integrat-
ing them throughone common data structure. It decomposes the tools into afront-endand
severalback-ends, all integrated through aframework. Trianus features acircuit checker, with
which different representations of the same circuit can be checked for equivalence (e.g. a hand
layout can be compared with a Lola specification), and abrowser, which can extract a textual
view from a layout or a schematic.

The result is the Trianus framework for FPGA design [Geh97, GL96]. It consists of an
architecture independent front-endfor whichseveral architecture dependent back-endscan be
developed. The front-end encapsulates common operations on design data (Section 3.3.2), an
HDL interpreter back-end (Section 3.3.4), a circuit checker (Section 3.3.6), a browser (Sec-
tion 3.3.6), and a graphical user interface framework for editors.

The separation into a front-end and several back-ends bears the advantage that based on
the framework, new back-ends (for a new FPGA architecture, for instance) can efficiently be
developed and integrated. For the user of the system, this results in a uniform interface and
consistent behavior of the tools. For the programmer, the use of a shared front-end and a com-
mon data structure reduces the amount of code to be written and tested when implementing
a new back-end. This reduction in code complexity results in a more reliable and smaller
system.

The name Trianus is a derivation from the name of the two-headed Greek god Janus and
stems from the fact that the framework supportsthree different viewsonto the same circuit,
namely atextual viewby means of a Lola program, aschematic viewand alayout viewin
a layout editor. Figure 3.1 gives a graphical representation of possible transitions between
views.

HDL

SchematicsLayout

Compile,

Place & Route

Extract

Extract,

Place & Route

Extract

Data_

structure

Figure 3.1: Different Views in Trianus

The three views in Trianus give users a choice between different representations of a de-
sign. Some prefer describing their design with a program, some with a schematic and some
with a layout. Using the circuit checker and extractor, consistency between the three views
can always be verified (manually or automatically).

By using only one common data structure for representing design data, intermediary file
input and output as shown in Figure 1.3 is avoided. Hence the design flow shown in that figure
can be simplified to the one shown in Figure 3.2. The shaded areas correspond to the Lola
HDL and the Trianus software described in this chapter.

3. Foundations: Lola and Trianus 29

HDL Schema

FPGA

Corrections/

Adjustments

Layout

Editor

Technology

Mapper

Place &

Route

Download &

Runtime

System

Compiler

Figure 3.2: Lola and Trianus Part in Design Flow from Fig. 1.3

3. Foundations: Lola and Trianus 30

3.3.2 Data Structures

In the following, we give a brief overview of the basic data structure used for design represen-
tation in Trianus. We refrain from introducing every detail and leave out those aspects which
are not relevant in this thesis’s context. In later chapters we give more information on the data
structures should the need arise. For a more detailed discussion of Trianus and its underlying
design, we refer the reader to [Geh97].

The central data structure describes a hardware circuit in a general, compact, device inde-
pendent manner.Generalityandcompactnessof the data structure are important attributes, as
they make it possible to keep the data in memory between different phases in the design cycle.
No translation steps are necessary when switching between different tools and, especially, no
files need be written and read again. Also, from a software engineering point of view, using
only a single data structure instead of a multitude reduces system complexity and learning
time.

The data structure is based on the constructs offered by Lola (cf. Figure 3.3). Hierarchi-
cal information is available and maintained across all tools. Operators, signal names, types,
instances and modules exist in a Trianus data structure, as well as wires which are used to
connect operators. Other than basic geometric information (u, v, w, h, to in Program 3.5),
no device specific information is stored. Specifically, additional temporary data needed by a
back-end tool (e.g. a placement algorithm) has to be managed by that tool itself.

Type-Based

One fundamental principle in Trianus is thatall instances of a typehave exactly thesame
(relative) placementinformation and thesame wiring. That is, the placement and wiring
of a type determines the placement and wiring of all its instances. This concept is ensured
by the system and has to be ensured by all tools as well. Trianus provides algorithms (cf.
Section 3.3.3) for distributing information from a type to all its instances. We call tools or
algorithmstype-based, if they have this property of propagating information from a type to all
its instances. It implies that an algorithm makes only direct changes to the data structure of a
type, and never to that of an instance.

Type Definitions

The following sections describe the types occurring in a Trianus data structure, as they are
defined in the Oberon programming language [RW92]. In Trianus, Oberon’s type extension
is used for specializing behavior and describing the semantic difference between the types.
When describing extended types, those inherited fields which have a different meaning than
in the base type are listed in parentheses and an explanatory comment is added.

Node

Node is the basic type for building a data structure describing a circuit. Its definition is shown
in Program 3.5.

The fct field describes the function of a node. For a “pure” node, this is one of the basic
operators of Lola (e.g. not, and, mux, register). For extensions ofNode, the function is listed
in the respective paragraphs below. A node, per se, exists in the data structure only to describe
operators and abstract syntax trees (e.g. the- operator in typeAddElem of theAdd example of
Program 3.1). See Figure 3.4 for a graphical representation of an operator and operand tree,
and Section 3.3.4 for an explanation of the use of abstract syntax trees.

3. Foundations: Lola and Trianus 31

Program 3.5Definition of Node

Node = POINTER TO NodeDesc;
NodeDesc = RECORD

fct: SHORTINT; operator (Zero, Not, And, Reg, ...)
x, y: Node; operands
link: Node; next in same instance
outer: Instance; outer instance/type
wire: Wire; list of wires to all destinations

of this node
u, v, w, h: INTEGER; physical location and dimension
to: SHORTINT; additional physical information
id: INTEGER general purpose field

END

Object

Variables of a signal type are represented by anObject type, shown in Program 3.6, which is
derived fromNode.

Program 3.6Definition of Object

Object = POINTER TO ObjectDesc;
ObjectDesc = RECORD (NodeDesc)

(fct) BIT, TS, OC
(x) expression tree defining this signal
(y) always NIL
name: Name; name of signal/instance/type
type: Type; type of signal/instance
mode: SHORTINT; IN, INOUT, OUT, VAR
next: Object next in declaration sequence

END

Thename of an object is the same as the one in the Lola declaration.mode indicates the
type of the signal (input, tri-state/open-collector, output, variable).type points to the BIT, TS
or OC type structure andfct (from Node) is either BIT, TS or OC. (E.g.x, s, h in typeAddElem
of theAdd example.)

Elements of a signal array are also represented as objects. The only way to determine that
an object is indeed an array element is through its name. Individual elements of a declared
array variablex: [3] BIT are represented as objects with namesx.0, x.1, x.2.

Instance

Instances of composite and generic types are represented by theInstance type, shown in Pro-
gram 3.7, which is derived fromObject.

Thename of an instance is the same as the one in the Lola declaration.mode is always
VAR, as instances may only be declared in VAR sections.type points to the type structure
of which this instance is an instantiation. (E.g.add: [N] AddElem; in typeAdder of theAdd
example).

3. Foundations: Lola and Trianus 32

Program 3.7Definition of Instance

Instance = POINTER TO InstanceDesc;
InstanceDesc = RECORD (ObjectDesc)

(fct) Inst
(x) list of unplaced nodes
(y) list of placed nodes
(mode) VAR
dsc: Object; list of interface signals and

local variables/instances
open: BOOLEAN are contained objects visible?

END

Type

Composite and generic types are represented by theType type. For each instance of a generic
type, a concrete composite type exists which contains the actual parameters.Type is derived
from Instance. Its definition is shown in Program 3.8.

Program 3.8Definition of Type

Type = POINTER TO TypeDesc;
TypeDesc = RECORD (InstanceDesc)

(fct) Typ/Module
(mode) Expanded, Parameterized
code: Object; syntax tree for interpretation
marked: BOOLEAN; for export
color: SHORTINT

END

Thename of a type is the same as the one in the Lola declaration.mode indicates, whether
it is a generic or a normal composite type.code points to the syntax tree, which is used for
interpretation and for generation of expanded types out of generic ones. Themarked field is
TRUE when the type is marked for export.color is used by visualization tools. Since a Lola
module is both a description and the only instantiation of a circuit, a type is used to represent
the outermost scope of a program. (E.g. typeAddElem, typeAdder(N) in Program 3.1, module
Add in Program 3.2.)

Wire

The last type left to describe isWire. It represents a physical connection in a circuit, whereas
logical connections are represented by the operand tree ofNode. For example, an OR-gate
reading from two AND-gates as shown in the full adder in Program 3.1 has two logical con-
nections to the AND-gates represented by thex andy pointer in theNode data structure, while
the actual connections made in an XC6200 FPGA, for instance using neighbor connections,
would be represented byWires. The definition ofWire is listed in Program 3.9.

The specific values forfrom andto are determined by the respective back-ends. The back-
end for the XC6200 FPGA, for instance, stores information on the routing multiplexers into
from andto (e.g.from = Function Unit output,to = West neighbor routing multiplexer).

3. Foundations: Lola and Trianus 33

Program 3.9Definition of Wire

Wire = POINTER TO WireDesc;
WireDesc = RECORD

from, to: SHORTINT; physical source and destination
u, v, w, h: INTEGER; physical location and dimension
next: Wire; next in same net
link: Wire; next in same instance
outer: Instance; outer instance/type
id: INTEGER

END

Summary and Example

Figure 3.3 summarizes the principal types of a Trianus data structure and shows the corre-
sponding Lola constructs.

Node

Object

Instance

Type

Trianus Types Lola Construct

Operators

+, *, REG, etc.

Signals of type

BIT, TS, OC

(incl. elements

of array type)

Instances of

composite types

Composite or

generic types/

modules

Wire No corresponding

construct

Figure 3.3: Trianus Types and Lola Constructs

The possible values and their meaning for the function field, which are relevant to Hades,
are listed in Table 3.3. Additional values are possible and are used for representing the abstract
syntax tree of a Lola program (Section 3.3.4).

As an example, we describe in Figure 3.4 the data structure generated for theAddElem
type in theAdd example from Program 3.1.

A similar data structure exists for every instance of such anAddElem. Thedsc (descender)
list of an 8-bit instantiation (adder) of the genericAdder type contains 8 instances ofAddElem
(add.0, add.1, etc.), each containing the descender list (x, y, etc.) shown in Figure 3.4.

3. Foundations: Lola and Trianus 34

Value offct Meaning

BIT uni-directional signal
TS tri-state bus
OC open-collector bus
Inst instance of a type
Typ type (generic or expanded)
Module outermost scope
Zero constant zero
One constant one
Buf buffer
Not inversion
And and
Or or
Xor exclusive or
Latch D-latch
SR set-reset-latch
Reg + Reg1 register
Mux + Mux1 multiplexer
Tri + List tri-state assignments

Table 3.3:fct Values and their Meaning

(XOR)

outer

x

y

AddElem (Typ)

Expanded

outer

type

dsc

x (BIT)

IN

outer

next

x

y (BIT)

IN

outer

next

x

ci (BIT)

IN

outer

next

x

s (BIT)

OUT

outer

next

x

co (BIT)

OUT

outer

next

x

h (BIT)

VAR

outer

next

x

(AND)

outer

x

y

(AND)

outer

x

y

(XOR)

outer

x

y

(OR)

outer

x

y

to module

Figure 3.4: Data Structure forAddElem Type

3. Foundations: Lola and Trianus 35

3.3.3 Algorithms

The core of Trianus provides various algorithms which operate on the data structures just
described. The most important ones for the Hades tools are algorithms forplacing nodes,
which are used by the placement algorithm,inserting wires, which are used by the router,
andbroadcasts, which are used by all back-end tools (such as the mapper, placer, router and
loader).

The broadcasting mechanism is of special interest, as it is used to guarantee the afore-
mentioned consistency between instances and their type. The relevant constants, types and
procedures are shown in Program 3.10. Depending on a selector, a message based on the base
typeMessage is sent to the nodes and wires in a Trianus data structure, including all extensions
of nodes. For instance, it is possible to send a message to all instances of the same type by
using the selectorSelType. This can be used to distribute placement and routing information
to all instances of a type, after the type has been placed and routed.

Note: the terminology used herein for message sending is not to be confused with the
one from object-oriented programming. The broadcast mechanism is a genericdata structure
iterator construct. It applies operations to the nodes and wires of a data structure. The nodes
and wires do not react to the message sent to them, it is rather the iterator mechanism that
invokes the operation on the nodes and wires. The next paragraph explains this process in
more detail.

The broadcast mechanism starts at an instance and iterates over all nodes and wires in that
instance, proceeding recursively into sub-instances contained in that instance. It invokes (if
present) the procedures stored in the procedure variablesdoNode for each node and extensions
thereof, anddoWire for each wire encountered. It is possible to send a message based on
Message to

• all nodes and wires,

• all instances of a certain type,

• all visible nodes and wires within a given rectangle, and

• all placed nodes and wires.

3.3.4 Lola Compiler Back-End

A Lola program is translated by the Lola compiler into an abstract syntax tree [Wir96b],
which can then be interpreted by a Lola interpreter to generate an expanded data structure
representing the circuit. Compiling, type checking and generating the syntax tree is very fast,
as only a single pass over the source code is needed. No logic minimization is performed, since
this would possibly break the correspondence between an instance and its type, violating an
invariant in Trianus.

The Trianus Lola back-end translates the produced syntax tree of the Lola compiler into a
syntax tree based on the Trianus data structure, which is the same as for representing a circuit,
namelyNode objects with special values in the function (fct) field.

The data structure representing the syntax tree is interpreted and the circuit is expanded
(or generated) into another Trianus data structure. The expanded data structure can be passed
to back-end tools, such as a placer and router, for further processing.

As an example, consider the code for the adder in Program 3.2. The first two FOR loops
in the body of moduleAdd will generate, when interpreted, a number of registers for the
x andy vectors and some negations and AND-gates for the load enable signals. Likewise,
interpretation of the unit assignment ofadder will connect thex andy vectors with the input
vectors of an instantiated 8-bit adder, which is generated by interpreting the code in the generic

3. Foundations: Lola and Trianus 36

Program 3.10Message Broadcast

CONST
message broadcast selectors
SelAll = 0; to all nodes/wires
SelType = 1; to all instances of type msg.type
SelRect = 2; to all nodes/wires (partially)

visible within msg.r
SelVisible = 3; to all nodes/wires (partially)

visible in open instances within
msg.r

SelTop = 4; to all nodes/wires completely
within msg.r, not going into
sub-instances

SelPlaced = 5; to all placed nodes/wires

TYPE
MessageBase = RECORD END;

NodeProc = PROCEDURE(node: Node; VAR msg: MessageBase);
WireProc = PROCEDURE(wire: Wire; VAR msg: MessageBase);

Message = RECORD (MessageBase)
r: Rect;
type: Type;
doNode: NodeProc; called for each node
doWire: WireProc called for each wire

END;

PROCEDURE Broadcast(inst: Instance; VAR msg: Message; sel: SHORTINT);
send msg to all nodes and wires in inst, sel is the broadcast selector

3. Foundations: Lola and Trianus 37

Adder type shown in Program 3.1. Within that instance, 8 full adders (AddElem) are generated,
each consisting of the data structure shown in Figure 3.4.

Compilation combined with expansion is several orders of magnitude faster than with tra-
ditional VHDL or Verilog compilers (which, notably, also perform more work). See Section 6
for performance data. For a more detailed discussion of the translation and expansion steps
see [Geh97].

3.3.5 XC6200 Layout Editor

The layout editor is one of many back-end tools in Trianus and is built upon the generic editor
framework. It provides a low-level view of XC6200 designs as a matrix of cells with routing
switches in between. Since the XC6200 FPGA features a very simple cell, its function is
easily displayed by the editor as a gate (possibly in conjunction with a register). The design
hierarchy and the signal names are also visualized to reflect the design structure. This almost
schematic-like view helps the designer identify parts of a design quickly. A displayed design
is manipulated using the mouse. Figure 3.5 shows an instance of anAddElem, with three gates
and the wires between the gates. Note that the carry is implemented using the half-sum and a
multiplexer, instead of two AND- and an OR-gate. The squares represent logic cells and the
rectangles between the squares represent switches at 4x4 boundaries.

8/4
add

ci s

cox
ci

x
y h

Figure 3.5: XC6200 Layout ofAddElem

In addition to just displaying synthesized layouts, the layout editor can be used to create
circuits from scratch. It is possible to set each cell’s functionality separately using popup-
menus. Connections are drawn with the mouse or with the aid of popup-menus. Groups of
cells and interconnections can be combined into instances of a type (hard-macro) and stored
in libraries for later use. Thus, a circuit can be constructed interactively by plugging together
instances of prefabricated and tested types.

The editor is a type-based tool, i.e. when a design contains several instances of the same
type, any change made to a single instance is broadcast to all instances of that same type. This
feature allows for the rapid manual construction of bit-sliced designs. Furthermore, the editor
can be used for floor planning by laying out empty instances and filling in functionality only
later.

Quick View Updates are Essential

The editor framework of Trianus supports quick view updates. Especially in design automa-
tion tools, where hundreds or thousands of gates and wires have to be drawn, it is crucial for
interactive performance that local changes to a design only cause local screen updates. Also,
when the designer shifts the view onto a circuit, only those parts should be redrawn which
enter the field of view; the unchanged portion of the screen should be moved using a bitblock

3. Foundations: Lola and Trianus 38

transfer. It is a sad fact that many commercial layout editors simply redraw the whole screen
when something is changed or the view is shifted. This results in slow screen updates and
flicker, and it unnecessarily slows down the editing and layout process.

3.3.6 Other Tools

Trianus offers additional tools, of which only the circuit extractor is used by the Hades router.
They are briefly described in the following sections. More detailed information can be found
in [Geh97].

Checker and Extractor

Rather than synthesizing circuits, it is sometimes desirable or even necessary to hand-craft a
circuit with the aid of a layout editor. Such manual circuit implementation is inherently error-
prone. To support manual implementation, Trianus provides acircuit checkerwhich compares
a design with a circuit specification. The design may be entered with the layout editor and
the specification may be obtained through a Lola program. Mismatches between specification
and implementation are detected and denote errors in the laid-out design, assuming a correct
specification. The checker is type-based and therefore very fast.

Matching is based on ordered binary decision diagrams (OBDDs) [Bry86, Bry92, Geh97].
Each variable can be either one or zero and thus represents a decision node. OBDDs represent
Boolean expressions in a memory efficient and canonical form and are thus well suited for
comparison. The main drawback of OBDDs is that their size heavily depends on the ordering
of the input variables. The Trianus system, however, does not suffer from this potential prob-
lem in practice, as expressions are usually small and contain only few variables. The OBDD
for the carry out (co) signal of typeAddElem from Program 3.1 is shown in Figure 3.6.

co := x*y + h*ci

ci

1 0

h

1 0

y

1 0

x

0

1 0

0

1

Figure 3.6: OBDD for Carry-Out ofAddElem

A circuit extractorconstructs connectivity information from a design edited with the lay-
out editor. This information is used by the circuit checker to verify the correctness of a circuit.
A circuit extractor is needed, because the layout editor does not keep connectivity information
consistent when a design is being changed. Like other tools it operates on types and calculates
net connection information only for a type, before propagating it to instances.

The extractor and checker are also used to allow the mixing of manual and automatic
routing and for checking the correctness of the routed result (see Section 5.6).

3. Foundations: Lola and Trianus 39

Browser

The browser is used to translate a Trianus data structure back into textual information. Also,
it serves to show the interface (hence its name) of Lola types and is an indispensable tool for
browsing libraries. By using the browser, it is possible to obtain a textual description of a
laid-out circuit or sub-circuit. This can sometimes be useful for viewing a circuit in a different
representation, for instance, during manual layout when many wires are shown on the screen.

Schematics Editor

As a third possible view onto a circuit or as a third means for design entry, Trianus offers a
schematics editor calledSchemtogether with a circuit extractor and checker. It, too, is based
on the editor framework and is a type-based tool. Using the browser, it is possible to extract a
textual view of a schematic and pass this text to the Lola compiler. The resulting data structure
can then be placed and routed using Hades. Hence, Schem is a different input possibility to
describe (part of) a coprocessor application. Figure 3.7 shows anAddElem in a schematic
view.

add.0

y

x
h

ci

co

s

Figure 3.7: Schema Showing anAddElem

3.4 Discussion

Lola is a simple, easy to learn hardware description language for describing digital circuits
on a structural level. Module libraries can be built with Lola, which in turn can be used to
construct coprocessor applications on the basis of small, composable components. Position
statements can be used to guide a placement algorithm to obtain a good layout. The language
is small, synthesizable and has clear semantics such that it can be learned and put to work
within a week.

Trianus is a fast, device independent framework for circuit design offering a general, yet
simple data structure. A flexible broadcast mechanism is used to alter the data structure and to
keep a consistent one-to-one correspondence between types and their instances. Type-based
tools guarantee efficiency even for large designs. The layout editor is comfortable to use and
provides immediate response for most operations. It can be used for manual layout and for
floor-planning of large designs.

On the downside, Trianus shows quadratic run-time behavior on unfavorable input due to
the simple implementation of the data structure (a linked list of nodes). This implementation
will become a limiting factor of the data structure’s performance, as FPGA devices get bigger.
A more efficient data structure for representing the geometric relationship of nodes would be
advantageous, such as quad trees [FB72] or a simple hash table as presented in Section 5.9.
Also, support for libraries and for the copying of data structure elements such as types is
missing. The latter is a prerequisite for the implementation of libraries, which are essential for
the development of reconfigurable coprocessor applications.

4 Hades Hardware

In this chapter, we present the hardware part of this thesis, theHades reconfigurable copro-
cessor(cf. Figure 4.1). A tutorial-style introduction to the hardware is presented in [Lud96].

Throughout this chapter, names printed inSans Serif represent labels in figures or iden-
tifiers in programs. Names followed by an apostrophe (’) represent signals which are active
low.

HDL Schema

Compiler

FPGA

Corrections/

Adjustments

Layout

Editor

Technology

Mapper

Place &

Route

Download &

Runtime

System

Figure 4.1: Hades Hardware Part within the Design Flow of Fig. 1.3

40

4. Hades Hardware 41

4.1 Motivation

Many reconfigurable coprocessor (RC) boards based on FPGAs exist today. Guccione lists
over 50 different designs [Guc94]. In Chapter 7, we give an overview of related work. The
architecture and structure of these boards are quite similar and the community working in the
field of custom computing has a good understanding of what a reconfigurable coprocessor
should look like. Most boards contain one or more FPGAs and interface hardware, which
connects the board to a host computer. These boards may contain some local memory, which
can be accessed by the FPGA(s) and sometimes by the host. This memory is mostly used for
caching to overcome the limited communication bandwidth between the host computer and
the coprocessor board [Ber93]. One deficiency of most current systems is that they are ac-
cessed through a special interface over a system bus. Compared to the (usually) very efficient
protocol on a processor/memory bus, the protocol on a system bus often introduces undesired
communication overhead (multiplexed address and data buses, arbitration).

With theHades RC board, we wanted to overcome this problem by providing a coproces-
sor board with local memory thatlooks like and behaves like conventional memory to the host
computer, especially in terms of latency. The Hades board makes use of the memory interface
of the XC6200 FPGA. At the time of writing, the Hades board for the Ceres-2 workstation
together with the driver software is the only system presenting a memory-card interface to the
application, which allows fast access to the FPGA and the local memory.

An architecturally similar board for the PCI bus [LSC96, VCC97] does not yet support
access through memory operations, because the driver software makes it necessary to move
data using slow I/O commands. This slows down communication with the RC considerably
(cf. Chapter 6 for a quantitative analysis).

4.2 Design Alternatives

As described above, our reconfigurable coprocessor should consist of one or more FPGAs
attached to local memory. We wanted to build a simple system for evaluating ideas and as we
only had access to two FPGA engineering samples we opted for an RC with a single FPGA.
There are several alternatives to implement such an RC:

• an FPGA attached directly to the CPU, with the possibility to directly access main mem-
ory,

• an extension card connected to the system bus, containing an FPGA, with DMA capa-
bility to access main memory,

• an extension card connected to the system bus, containing an FPGA and local memory,
possibly with DMA capability.

We now discuss these alternatives, presenting their advantages and disadvantages.

4.2.1 FPGA Attached to the CPU

Conceptually, the first alternative from the list above is the cleanest, as it most closely resem-
bles the traditional definition of a coprocessor (cf. Figure 4.2). If the FPGA is attached to the
CPU via a coprocessor interface (Alt. 1), then it can access memory only through the CPU. If
it is attached to the memory/processor bus (Alt. 2), then it can access memory directly.

Both alternatives have one major advantage, namely, that the latency of data transfers
between the CPU and the RC is as small as possible. Lower latency can only be achieved by
incorporating the FPGA directly on the CPU chip [BRA96, DeH96, ECF96, Raz94]. It is a
good setup when an RC is used to implement small statement sequences (within a software

4. Hades Hardware 42

CPU

Memory

Input

Output

Processor Bus

Host

Bridge

System Bus

FPGA

Alt. 1

FPGA

Alt. 2

Attached via

Coprocessor

Interface

Attached via

Processor Bus

Figure 4.2: FPGA Attached to the CPU (Two Alternatives)

loop), where just a few words of data need to be exchanged between the CPU and the RC. If
required, the RC has access to main memory, just as the CPU, and can easily share data with
a software application.

But there are also several problems with the two alternatives:

• Alt. 1: If the FPGA is attached to the CPU via a coprocessor interface, then a speedup
gained by using the FPGA could be offset by the lack of parallelism between the CPU
and the FPGA, as the former must be used to move data in and out of the FPGA.

• Alt. 1: The design of the RC is not portable to different CPUs, and not even to different
memory systems using the same CPU.

• Alt. 1: Such a setup would require the construction of a new processor board, a task
which was beyond the scope of this work.

• Alt. 2: If the FPGA is attached to the processor bus like normal memory, then arbitration
logic must guarantee that only one master is active and memory would not be available
at all times due to refreshes. Also, modern memory systems tend to be very complicated
for achieving the high speeds needed to fill processor cache lines quickly. Hence, they
do not perform equally well when smaller amounts of data are transferred or when the
memory access pattern is random.

• Alt. 2: Like any multiprocessor system, concurrency between the RC part and the
CPU part of an application is hindered by the additional competition on the memory
bus. Depending on the access pattern and the presence of a second level cache, this
problem can be very severe, i.e. the memory bus can be saturated quickly. The speed
of applications executed on fast CPUs are often dominated by the memory access time,
not by the time of computation. That is, the CPU spends most of its time waiting for the
memory system instead of computing [Con96].

• Alt. 2: Another problem when lacking a dedicated coprocessor interface is that logic in
the FPGA would have to be used to implement the communication signals between the
CPU and the FPGA. This logic might be too slow when interfacing to a fast CPU.

Despite these problems, the idea of an FPGA tightly coupled to the CPU looks attractive, and
we would like to pursue this in the future (cf. Chapter 8), specifically by using a slower (and
cheaper) CPU with a simple memory system.

4. Hades Hardware 43

4.2.2 Extension Card with DMA Only

The second alternative from the list above is an RC board that contains an FPGA and DMA
logic for quick data transfers from and to memory. Such a setup is shown in Figure 4.3 — the
local memory shown has to be ignored for the discussion in this section. The DMA option
allows an RC application to access main memory. One limitation of this setup, however, is
that all data transfers have to use the system bus. If only small transfers are made, the control
overhead deteriorates performance.

Depending on the target system bus, such a card is relatively easy to build, as there is a
well defined interface. On the downside, building a board, which can act as abus mastercan
be quite complex, since bus arbitration is needed and additional control signals have to be
generated.

4.2.3 Extension Card with Local Memory

The third alternative overcomes the shortcomings of the solution above in that the RC board is
equipped with local memory. The data to be processed by the FPGA can be transferred from
the source (main memory or IO board) into local memory on the RC in one large chunk using
programmed IO or DMA. Hence, the RC and the CPU can pursue work concurrently after the
transfer and the RC is not loading the system bus with read requests.

This setup is very common for RC boards nowadays. It decouples the RC from the rest of
the system. Thereby, the control part of an application on the host side can remain small. Ad-
ditionally, since the card has local memory, it can act as a smart input preprocessor, performing
some filtering operations on incoming data, before sending the data to the host [VBR96]. The
data might be transferred to the RC via DMA from an IO board or there might be a connector
for hardware extensions included on the RC.

As with the solution in Section 4.2.2 the hardware for this card is relatively easy to build
due to the well-defined interface to the system bus. The DMA control in Figure 4.3 could be
left out, as the FPGA with its local memory can act as a stand-alone computational unit, which
has to communicate with the host only rarely.

4.3 Overview of the Hades Reconfigurable Coprocessor

The Hades hardware consists of anextension cardfor the Ceres-2 workstation(cf. Sec-
tion 4.4). It featuresone XC6216 FPGAand256 KB of fast SRAM. An address decoderis
realized withthree 22V10 PALs[AMD95, Cyp95]. The card isaccessed like conventional
memoryusing address and data buses and read/write control signals. A schema of the copro-
cessor board is shown in Figure 4.4. The complete board layout and a picture of the board is
shown in Appendix C.

4.4 Choice of Host Workstation

When we had to decide on a host computer for the Hades RC board, the choice was between
a commercial architecture (like a PC, Sun or Macintosh) and the Ceres workstation, which
was developed at the Institute for Computer Systems. Our Institute has a long tradition in
building its own workstation hardware [Ebe87, Hee88, HN91, Ohr84]. The Ceres-1, Ceres-2
and Ceres-3 computers have been used since 1987 in research and education. An experimental
workstation named Chameleon used an array of six CAL-1 [Alg90, Kea89] chips for a recon-
figurable coprocessor and a single CAL-1 for all control logic [Hee93, HP92]. For a digital
design course, a small extension board for the Ceres-3 (the machine used in education) based
on the Concurrent Logic 6000 FPGA was developed [GLW94].

4. Hades Hardware 44

CPU

Memory

Input

Output

Processor Bus

Host

Bridge

System Bus

DMA

Control

FPGA

Local

Memory

Figure 4.3: FPGA with Local Memory on Extension Card

4. Hades Hardware 45

North

South

EastWest
256 KB

SRAM

8 x

64Kx4

Adr (15..0)

Data (31..0)

Host Workstation

Ceres_2

XC6216

FPGA

'645

'541
A.17 .. A.2

D.31 .. D.0

Decoder

and

Control

PALs

22V10

'679
A.31 .. A.20 BoardAdr

SRAM R/W Control

FPGA −> SRAM

R/W Control

Control Signals (RESET', RW', DS')

FPGA Control

Expansion Connectors

A.19, A.18, A.4, A.3, A.2

Line Driver Control
AV'

CPUAEN'

CPUDEN'

'645 = Transceiver

'541 = Buffer

'679 = Decoder

Figure 4.4: Hades Reconfigurable Coprocessor

We developed the Hades RC board for the Ceres-2 [Ebe87, Hee88], the second generation
Ceres workstation, which has the following characteristics:

• 1985/1988 technology

• National Semiconductor NS32532 CPU @ 25 MHz (40 ns cycle time) with 512 byte of
shared instruction and data cache [NS88]

• proprietary bus with arbitration

• 4 or 8 MB DRAM

• 1 memory cycle equals 6 processor cycles (240 ns)

• memory transfer rate of 12.5 MB/s (as seen by applications)

• 80 MB harddisk

• disk transfer rate of 120 KB/s (as seen by applications)

• Oberon operating system with all source code available

The reasons for choosing the Ceres-2 as our host platform were as follows:

• the Hades RC board looks like a normal memory card to the Ceres-2,

• the Ceres-2 has a 32-bit wide data bus, which delivers satisfactory performance for our
purposes,

• it is used in our group as the main computing platform,

4. Hades Hardware 46

• its architecture is well understood,

• numerous extension boards have already been produced (color display controller, Ether-
net interface, audio/video interface),

• all maintenance can be accomplished at the Institute,

• the Oberon operating system was written by members of the Institute, and

• it has a simple bus protocol.

At the time we started our project, no RC board existed that used the XC6200. To gain ex-
perience with the Trianus/Hades tool set as soon as possible, availability of such a board was
more important than performance or compatibility with commercial systems. Therefore, we
chose the Ceres-2 as our target platform rather than a commercial architecture. Furthermore,
we knew of other people working on a PCI board [LSC96]. Clearly, to gain wide-spread
acceptance, a second generation Hades RC should be implemented as a PCI card with corre-
sponding driver software or the Hades software should be ported to a commercial board. See
Chapter 6 for a comparison of the PCI card [LSC96] with our Hades RC.

4.5 Architecture of the Hades Board

The Hades RC board shown in Figure 4.4 consists of a single XC6216 FPGA in a 299 pin
grid array package [Xil96] and 256 KB of local memory implemented with fast SRAM (8
Motorola 64Kx4 bit SRAMs [Mot95]). The memory-card interface is realized with three
22V10 PALs [AMD95, Cyp95], which generate the necessary control signals for the XC6216
and the SRAMs. See Appendix D for a complete list of hardware components used on the
board.

The programming and access interface to the XC6216 is that of a conventional SRAM
(cf. Section 2.3). Therefore, the coprocessor board looks like a memory board to the CPU.
Accessing the XC6216 takes the same amount of time as accessing “normal” memory (240 ns).

The board features a 16-bit wide address and a 32-bit wide data bus to access the XC6216
and the local memory (Data and Adr in Figure 4.4). 16-bit addresses and 32-bit data can
address 256 KB of local memory. This memory could hold, for instance, three 320x256x8-bit
images or 1.5 seconds of stereo CD-quality audio data.

Although we could have used the XC6216’s capability to generate the control signals
needed by the CPU to access the XC6216 [Xil96], we decided against this option as we did
not have any software to generate the configuration bits nor hardware to test the decoding
circuitry itself at the time. Instead, we use three 22V10 PALs for interface and control logic
(Decoder and Control PALs in Figure 4.4).

Two expansion ports are provided, to allow for hardware extensions. Series resistors pro-
tect the FPGA pins connected to these ports from possible damage caused by high currents.

4.5.1 Host Interface

The Ceres-2 bus is clocked at 25 MHz. One memory cycle takes six clock cycles. The data
bus is 32-bit wide, therefore a peak throughput of 25/6 MHz * 4 Bytes = 16.7 MB/s could be
achieved. Using the CPU only, a transfer rate of 12.5 MB/s can be achieved in practice, by
today’s standards a truly antique value.

Program 4.1 lists the Lola code for the decoder chip controlling the XC6216 FPGA on
the Hades RC board. Subsequent sections refer to the variable names defined in this program.
Appendix E additionally lists the Lola code for the RAM control PAL and the code for the
PAL implementing communication ports.

4. Hades Hardware 47

Program 4.1Lola Code for FPGA Control PAL

TYPE DecoderXCCtrl; PAL22V10
IN

Clk: BIT;
BoardAdr’: BIT; board is selected
A19, A18, A4, A3, A2: BIT; address lines needed for decoding
CPURW’, CPUDS’: BIT; CPU: read/write, data strobe
RESET’: BIT; master reset

OUT
XCCS’, XCOE’: BIT; XC: is selected, may drive pins
XCAOE’, XCDOE’: BIT; XC: may drive A/D buses
XCReset’, XCGClr: BIT; XC: reset, global clear
CPUAEN’, CPUDEN’: BIT; CPU drives the A/D-bus
XCStep: BIT; single stepping

VAR
select, write, XCSel, RAMSel, PortSel: BIT;
oe: BIT; register

BEGIN
select :=̃ CPUDS’ * ˜ BoardAdr’;
write := select *˜ CPURW’;
XCSel := select *̃ A19 * ˜ A18; 00’xxx
RAMSel := select *̃ A19 * A18; 01’xxx
PortSel := select * A19 * A18 *̃ A4; 11’0xx

XCCS’ := ˜ XCSel;
10’000 disable, 10’001 enable OE’
oe := REG(write * A19 *˜ A18 * ˜ A4 * ˜ A3, A2));
XCOE’ := ˜ oe;

10’010
XCReset’ :=˜ (write * A19 * ˜ A18 * ˜ A4 * A3 * ˜ A2) * RESET’;
10’011
XCGClr := write * A19 * ˜ A18 * ˜ A4 * A3 * A2;
10’100, generate one clock pulse, high -> low -> high
XCStep :=˜ (write * A19 * ˜ A18 * A4 * ˜ A3 * ˜ A2);

CPU uses data bus
CPUDEN’ := ˜ (XCSel + RAMSel + PortSel);
CPU drives address bus
CPUAEN’ := ˜ (XCSel + RAMSel);

XC may drive data bus
XCDOE’ := ˜ (oe * ˜ XCSel * ˜ RAMSel * ˜ (PortSel *˜ CPURW’));
XC may drive address bus
XCAOE’ := ˜ (oe * ˜ XCSel * ˜ RAMSel)

END DecoderXCCtrl;

4. Hades Hardware 48

Line Drivers and Address Comparator

The host interface comprises four bi-directional line drivers (’645 in Figure 4.4) for interfacing
the 32-bit data bus, two uni-directional line drivers (’541) for driving the 16-bit address bus, a
12-bit address comparator (’679) and three PALs (22V10) realizing decoding and control logic.
Five address lines (A.19, A.18, A.4, A.3, A.2) are connected to the decoder directly, defining
differentregions in the address spaceas defined in Table 4.1. The listed addresses are relative
to a base address, which is determined by the address comparator.

The direction of the data line drivers is controlled by signalCPURW’ of the Ceres bus
(see Figure 4.5 for timing information). The enable signals for the address and data line
drivers are generated by the decoder (CPUAEN’, CPUDEN’). The address comparator requires
the 12 address lines to be in a specific sequence, namely address lines that are one followed
by lines that are zero when active. In our case, the RC board lies between FEC00000H and
FECFFFFFH, so the highest 12 bits of the address to decode are FECH. The sequenceA.31 ..
A.25, A.23 .. A.20, A.24 is used to decode this address range. A problem resulting from this
requirement is described in Section 4.6.4. The comparator’s enable signal is theAV’ (address
valid) signal of the Ceres bus (see Figure 4.5). The comparator will assert signalBoardAdr’
whenever a correct address is on the address bus and signalAV’ is asserted.

The host is given priority over the XC6216 when accessing the address and data buses
of the RC board. For this purpose, the decoder drives two output enable signals read by
the XC6216 (XCAOE’ and XCDOE’ for the address and data buses, respectively). A user
configuration in the XC6216 may not drive the address- and data-buses when the respective
enable signals are not active.

Memory Map

The different memory regions selected by the decoder are shown in Table 4.1. The function-

No. Address (A.19..A.0) Functionality

1 00000 - 3FFFF FPGA (configuration + register access)
2 40000 - 7FFFF SRAM 256 KB local memory
3 80000 - 80003 FPGA output disable (XCOE’ = 1)
4 80004 - 80007 FPGA output enable (XCOE’ = 0)
5 80008 - 8000B FPGA reset (XCReset’ = 0)
6 8000C - 8000F FPGA global clear (XCGClr = 1)
7 80010 - 80013 single step clock (XCStep = pulse)
8 80014 - 80017 Go/Busy flags
9 80018 - 8001F reserved

10 C0000 - C0003 general purpose port 0 (R/W)
11 C0004 - C0007 general purpose port 1 (R/W)
12 C0008 - C000B general purpose port 2 (R/W)
13 C000C - C000F general purpose port 3 (R/W)
14 C0010 - C001F reserved

Table 4.1: Memory Map of Hades Board (Address is Relative to a Base)

ality of the different regions are used as follows:

1. Programming the XC6216 and access to the registers within the FPGA.

2. Access to on-board memory. Individual byte accesses are controlled by the byte enable
signalsBE’.0..3 [Hee88] andRAMWE’.0..3 (cf. Appendix E).

4. Hades Hardware 49

3. Disable Output Enable signal of the XC6216. This is useful to regain control over the
buses, if a faulty configuration in the FPGA is driving them.

4. Enable Output Enable.

5. Reset the FPGA via theReset’ signal.

6. Clear the register in the FPGA via theGClr signal.

7. Issue a single clock pulse.

8. Asynchronous communication. A write to this region sets or clears theGo flag in the
decoder, depending on the value of data bus bit 0. This flag can be read by the FPGA.
A read from this region returns the value of theBusy flag on data bus bit 0. TheBusy
signal is driven by the FPGA.

9. Reserved.

10. General purpose read and write port (GPP). Individual read and write signals are gener-
ated fromCPURW’ and the values ofA.3..2. This region is for port 0.

11. GPP 1.

12. GPP 2.

13. GPP 3.

14. Reserved.

4.5.2 XC6216 Interface

As shown in Figure 4.4, the west side (left) of the XC6216 FPGA is connected to the data
bus, and the east side (right) to the address bus. This is demanded by the pinout of the chip.
The south side (bottom) connects to the control signals and the north side (top) can be used
freely via the expansion connectors. TheXCCS’ (chip select) signal of the FPGA is asserted
by the decoder whenever an access to the FPGA is made (address space 1 in Table 4.1). The
XC6216’s read/write signal is driven by theR/W’ signal of the Ceres bus. TheXCOE’ (global
output enable) of the XC6216 is driven by a register in the decoder (oe), which can be set
or reset by writing to address regions 3 or 4. This is a last measure against the case where a
(faulty) configuration in the XC6216 is driving the data-bus pins, which would prevent the host
from being able to reprogram the chip. TheXCReset’ (global reset) andXCGClr (register clear)
signals of the XC6216 can be asserted with writes to address space 5 and 6, respectively. The
Serial’ andWait control signals must be connected to power and ground [Xil96], respectively,
since the XC6216 is configured in parallel mode only.

There are four global signals on the XC6216.GClk, G1, G2 andGClr. The various clock
signals are explained in Section 4.5.4 below. TheGClr signal is driven byXCClr’ of the de-
coder.

4.5.3 Interface Timing

Figure 4.5 shows a timing diagram of the Ceres-2 bus signals (top) and, derived from them, the
chip select signal (XCCS’) for the XC6216 (bottom). In addition, the timings of a data write to
the FPGA and a data read from the FPGA are shown.DOut/DIn on the Ceres side correspond
to DRead/DAvail on the XC6216 side. Additional timing information for the Ceres-2 can be
found in [Hee88] and for the XC6216 in [Xil96].

4. Hades Hardware 50

CLK

CPUDS'

T1 T1 T2 T3 T4 T5

AV'

CPURW'

A

DIn

DOut

XCCS'

DXCIn

DXCOut

Ceres−2 timing

XC6216 timing

T1

Figure 4.5: Interface Timing

4. Hades Hardware 51

A read or writeaccess to the XC6216takes at leasttwo clock cycles. The interface is
synchronoussuch thatXCCS’, CPURW’, A andDOut are all sampled on a rising clock edge. An
access is initiated byXCCS’ being sampled low (start ofT3 in our case). An access terminates,
if XCCS’ is sampled high at the second clock cycle. It can be extended by keepingXCCS’ low
during that cycle, in which case the access terminates asynchronously as soon asXCCS’ goes
high.

We use theseextended access cycles, as theCPUDS’ signal remains low during three full
clock cycles (T3, T4, T5). SignalCPUDS’ goes low duringT2 and accordingly doesXCCS’.
XCCS’ is sampled synchronously atT3 (together with the other aforementioned signals). This
starts the access cycle. At the start ofT4, XCCS’ is still sampled low, initiating an extended
access cycle. The access is terminated asynchronously whenXCCS’ goes high during the next
T1 cycle. This is no problem, as there is enough time beforeXCCS’ could go low again during
the nextT2 cycle.

When the FPGA is written (DOut -> DXCIn) during a write access, the bus is sampled
synchronously at the start ofT3. During a read access (DXCOut -> DIn), the FPGA provides
the data on the bus during the extended access cycle untilXCCS’ goes high again (T4, T5, T1).
It is sampled by the CPU before the end ofT5.

4.5.4 Clocks

Three clocks are provided as global signals in the XC6216. The main clock used by the
XC6216 (GClk) is the Ceres clock running at 25 MHz. This guarantees the correct operation
of the processor interface and also avoids the need for additional synchronization registers
between the Ceres bus and the XC6216. TheG1 signal is connected to a 40 MHz oscillator
which is mounted on a socket on the board. It can be exchanged with slower or faster oscil-
lators. TheG2 signal is connected to theXCStep’ output of the decoder PAL. It is used for
single stepping and can thus be used to debug an application. A single step can be generated
by writing to address space 7.

The three clocks proved sufficient for most applications. Either the main clockGClk or
the single stepping mechanism onG2 was used. The fast clock onG1 was only used to test
the performance of some basic circuits (counters and adders). If an application demands a
slower clock, the main or the fast clock must be divided in the XC6216. This is, however,
quite inconvenient, as it introduces additional logic which must be placed at a certain location
inside the chip, interfering with other logic and complicating the placement task. In retrospect,
a more sophisticated clocking scheme based on an external programmable clock generator
would have been advantageous.

Care was taken when routing the clock signals. It was ensured that they run in a single
line across the board, without branches which would cause reflections [JG93]. The main
clock GClk coming from the Ceres-2 connector first goes to the decoder PALs, then to the
FPGA, then to the expansion connector and is parallel-terminated by a 330/270� resistor
pair. Likewise, the fast clock comes from the oscillator, goes to the FPGA and then to the
expansion connector and is terminated by a similar resistor pair.

4.5.5 Host – Coprocessor Communication

Normally, communication is implemented usingdirect register reads and writesusing the
XC6200’s processor interface. This is the most flexible way, as it allows an arbitrary number of
“flags” to be implemented. The pattern matcher application in Chapter 6 is an example using
this method, where the state machine controlling the application is modified using register
writes.

Two additional, simple schemes were devised to control communication between the host
application and the application running on the coprocessor:

4. Hades Hardware 52

The first scheme usestwo status bits in the decoder, one to initiate a computation (Go) and
one to signal its completion (Busy). TheGo flag is set or cleared by writing a one or zero to
address space 8 (cf. Table 4.1). TheBusy flag is inspected by reading from address space 8.
Its value is determined by theXCBusy signal generated within the XC6216. These bits free up
the data bus and allow for communication with the RC even when the data bus is used by an
application (for instance to access local memory).

The second scheme enablesindependent operationof coprocessor and host byusing in-
terrupts. A computation is initiated with theGo flag, but its completion is signaled with an
interrupt. The XC6216 can assert an interrupt line (INT7) and a software handler in the user
application can react to this signal.

4.5.6 Local Memory

The 256 KB of local memory are implemented with eight 64K x 4 bit, 15 ns SRAM chips
[Mot95]. The chips have separate output and write enable signals, where the write enable
overrides the output enable. The decoder derives separate write enable signals for each byte
from the host’s byte enable and from the XC6216’s write enable signals. The high speed of
15 ns is needed to enable a 40 ns memory cycle (25 MHz clock) when accessing the SRAM.
The maximum access time to local memory can be calculated as shown in Table 4.2, all values
being worst case. The decoder PAL is included in the calculation, as the write and output
enable signals for the SRAM are generated by that PAL.

Signal Delay (ns)

Clock to Function Output 2.5
Neighbor to Pad 6.5
22V10 7
SRAM Access 15
Pad to Neighbor 5
Register Set-Up 3
Clock Skew 0.9

Total 39.9

Table 4.2: Worst Case Access Time to Local SRAM

An access time less than 40 ns is important, such that it is possible to switch between
reading and writing the SRAM in consecutive clock cycles. Higher speeds can be achieved
when data is only read or only written: during reads, theRAMOE’ control signal is kept enabled
and only the addresses are changed; during writes theRAMWE’ control signal is toggled and
address and data are changed.

4.6 Constructing the Board

In the following, we give a description of the construction process of a printed circuit board.
Experienced hardware designers may skip this section, but readers new to the field may find
some interesting information herein. For a more detailed experience report see also [Lud96].

4.6.1 Describing the Printed Circuit Board

Once the design of the RC was fixed on paper, CadStar [ZR95] was used to describe the board
in a schema (see Figure B.1 in Appendix B). Based on this, a printed circuit board (PCB) with

4. Hades Hardware 53

two signal and separate power and ground layers was defined. A Ceres-2 expansion board is
an extended double Eurocard (233 x 220 mm2), so there was ample space to place compo-
nents. This was done manually and care was taken that all dual-inline packages were facing
the same direction (such that power and ground pins were all at the same position, which
eases debugging). We decided to use sockets for all chips and no surface mount technology
was used. After successful placement, the board was routed automatically. A pin swap opti-
mization step reduced wire length by more than 10%, but also caused a problem on the final
board, as described in Section 4.6.4. A PCB manufacturer produced four prototype boards.

4.6.2 Describing and Implementing the Decoder

The decoder’s logic equations were defined in the Lola HDL (cf. Section 3.2). We simulated
the decoder thoroughly before translating the Lola code into the CUPL language [Log91] used
by the tools that generate the Jedec files (PAL fuse maps). Logic partitioning onto the three
PALs and pin assignment was done manually. The Lola code for the complete decoder is listed
in Program 4.1 and in Appendix E. A PAL burner was used to program the PALs based on the
Jedec files.

4.6.3 Assembling the Board

After receiving the boards we tested them for short circuits. The connections to the various
chips – especially power and ground – were checked manually using a multimeter. During
this testing, we found a net which was not correctly connected (cf. Section 4.6.4).

After soldering the sockets for all chips and the connectors, the board was inserted into
a Ceres-2, which booted without problems. One after the other, the line drivers, the decoder
PALs (which functioned right away) and the SRAMs were added to the board. We tested the
relevant signals of each newly added component. Finally, the FPGA was inserted as well and
the first design was downloaded.

4.6.4 CAD-Software Pitfalls

To reduce the wire length of nets, board routers perform a process calledpin and gate swap-
ping. Pins of a chip can be exchanged with each other if they implement the same function.
For instance, the outputs of a transceiver chip (’645) can be swapped, as long as the inputs
are swapped accordingly. Whether certain pins can be swapped or not is described in a device
description file (in the case of CadStar). Due to an error in our description of the ’679 address
comparator, the router “optimized” address lineA.24 by moving it to its “natural” position
betweenA.25 andA.23 (cf. Section 4.5.1). The wire length was reduced, since a crossover
was removed, but the decoded address was wrong. Cutting the nets on the PCB by hand and
inserting two patch wires solved the problem, however in a not very aesthetic way. The lesson
learned was: double- and triple-check the final plots of your board before sending them to the
manufacturer!

4.6.5 Power Consumption

A fully populated Hades board with 8 SRAM chips, 3 decoder PALs and an (idle) FPGA
draws 980 mA (4.9 W) in standby mode (without being accessed). Accessing the SRAM from
the host draws another 230 mA (1.15 W). An FPGA design full of registers (4096) toggling at
25 MHz adds another 300 mA (1.5 W).

For comparison purposes, the Ethernet board for the Ceres-2 draws 850 mA (4.25 W)
in standby mode (without being accessed), so the standby current used by Ceres-2 extension
cards seems to be quite high.

4. Hades Hardware 54

4.7 System Software

The Hades board occupies 1 MB in the address space of the host’s operating system. This
address space must not be cached, otherwise, changes in the FPGA or in the on-board mem-
ory are not observed by the processor. The Ceres-2 runs the Institute’sOberon operating
system[WG92], whereby we were able to modify the kernel to provide the needed address
space. More details on the bitstream generator and the hardware/software interface is given in
Section 5.7 and 5.8.

4.8 Discussion

Adequate Testbed

The board has proved its value for implementing and testing coprocessor applications. See
Chapter 6 for a discussion of an application using the board and a presentation of perfor-
mance data. The performance of the Ceres-2 and its bus was adequate and competitive with
a prototype PCI-card we received from Xilinx [LSC96], which had to be accessed using slow
input/output commands.

A Software Person Can Build Hardware (With Some Help)

The Hades RC board was our first hardware project. It proved advantageous to have a simple,
conservative design, which was intellectually manageable and overseeable at all times. We
spent more time learning the CAD tools than actually designing or constructing the board.
With some help from hardware experts it was possible for a software-oriented person to con-
ceive, describe and implement an FPGA-based coprocessor board in three months.

Interfacing to the XC6200 FPGA

Interfacing to the XC6216 is quite easy. The control logic for generating the two necessary
signals (CS’ andRW’) of the synchronous interface is simple and easily built (depending on
the complexity of the host bus protocol, of course).

Operating System Issue

The availability of an operating system which we could change was an invaluable advantage.
When discussing such issues with other researchers, we always heard complaints about the
difficulties of writing driver software for the respective host operating system. The downside
of the medal, of course, is that such a setup is only possible in a research environment.

Months Later

Just one and a half years later, we have gained enough experience to suggest different design
alternatives. One would be to include a programmable clock chip. The other would be the
use of synchronous SRAMs to implement local memory. Also, implementing the decoder in
one large PAL (like a MACH211 [AMD95]) or an ispGAL [Lat96] would ease maintenance.
Today, we would also feel confident to target a more sophisticated bus, such as PCI, which
would improve performance of data transfers to and from the host considerably at the cost of
more complicated driver software required by commercial operating systems.

5 Hades Software

In this chapter, we present theHades software. It consists of layout synthesis software com-
prising atechnology mapper, aplacer, afloor plannerand arouter. In addition, abitstream-
generator, a loaderand aruntime systemare provided (cf. Figure 5.1). The Hades software is
based on the Lola hardware description language and the Trianus framework for digital circuit
design (cf. Chapter 3 for an introduction). An overview of the Hades software is given in
[GL96].

HDL Schema

Compiler

FPGA

Corrections/

Adjustments

Layout

Editor

Technology

Mapper

Place &

Route

Download &

Runtime

System

Layout

Synthesis

Chip Programming

& Device Driver

Figure 5.1: Hades Software Part within the Design Flow of Fig. 1.3

55

5. Hades Software 56

5.1 Problem Statement and Motivation

Digital circuit design is a difficult, error-prone task. Like any other engineering discipline,
abstraction and modularizationare the key to a successful completion of a system. Only
through abstraction is it possible to intellectually manage a digital circuit containing hundreds
to possibly millions of functional units. The aid of a computer during the design and imple-
mentation of a digital circuit is mandatory to manage the hierarchical data structures involved
(see [Geh97] for a discussion of CAD frameworks).

As was presented in Section 1.4, the termhardware synthesisdescribes the process of
generating an implementation of a digital circuit based on a specification, which exists in the
form of a schema or a program written in an HDL. Hardware synthesis is composed oflogic
synthesisandlayout synthesis. The former is the problem of finding functional units (gates),
which implement the specification. The latter is the problem of fitting the functional units into
the available resources of the target device, be it custom logic, standard cells or an FPGA.

5.1.1 Layout Synthesis

This chapter treats the subject of layout synthesis. Our starting point is aTrianus data struc-
ture, also called anetlist. This netlist has been generated by the Lola HDL compiler or a
schema editor. The task is to implement the circuit represented by the netlist on an instance of
the XC6200 FPGA architecture. There are several degrees of freedom on how this circuit can
be implemented:

• Technology Mapping: how are the basic gates of the netlist mapped onto the available
cells of the FPGA?

• Placement: how are the mapped cells arranged on the rectangular grid of the FPGA?

• Routing: how are the placed cells interconnected using the available wiring resources of
the FPGA?

5.1.2 Intractability

The problems above are not independent from one another. Routing depends on the placement
of cells, which in turn depends on the mapping of gates onto cells. In general, the problem
to find the optimum solution for any of the above tasks isNP-hard [Coo71, GJ79, Kar86].
Because of the intractability of solving these problems optimally, layout synthesis tools often
useheuristics, which approximate an optimal solution as closely as possible. Aside: the same
statement holds for most optimization problems; for example, logic synthesis is another NP-
hard problem.

5.1.3 Current Approaches

We give a short overview over current approaches in all of the three problem domains. A
longer introduction can be found in [Pfi92]. All these problems are normally solved using
heuristics, which are not guaranteed to find the global optimum.

Technology Mapping

As was stated above,technology mappingis the task of assigning the function units in a netlist
to the available cells of the FPGA. Consider the problem of mapping the full adder of Sec-
tion 3.2.5 to the cells of the coarse-grained XC4000EX, and the fine-grained AT6000 and
XC6200, respectively. Ideally, the three input, two output full adder fits into one cell (CLB)
of the XC4000EX and makes use of the fast-carry logic. On the AT6000 the carry logic is

5. Hades Software 57

implemented using NAND-gates, a full adder taking up three logic and one routing cell. On
the XC6200, an ideal implementation of a full adder uses two XOR-gates and a multiplexer,
hence three cells.

Most current technology mappers use agraph-based approachpioneered by [Keu87] and
further developed by [DGR87, FRV91, BFR92]. The netlist is represented in a canonical,
technology-independent graph structure. The various possible cell configurations are also rep-
resented in a similar structure. By usinggraph matching, a minimal cost cover of the netlist
graph using cell configuration graphs is calculated. Obviously, as there are many ways how to
cover the netlist using subgraphs, this process can take a long time. Many different mappings
have to be evaluated to find the “best” one, which is the result of a dynamic programming algo-
rithm or some heuristic. The advantage of this approach is that it is technology-independent.
The same mapping algorithm can be used for various FPGA devices and also for other target
technologies such as standard cells. To support a new architecture, only a new graph repre-
sentation has to be defined.

Another approach is todirectly mapthe netlist to the available FPGA cell configurations.
The mapping of netlist gates to cell configurations of the FPGA is determined by the algorithm
itself. The mapping isconstructed. This approach isefficientwhen the target cells are simple,
and more complex for more complicated cells such as the CLBs of the XC4000EX family.

Hence, graph-based mapping is used for coarse-grained cells and direct mapping is used
for fine-grained cells. Consequently, the mapper for the XC6200 described in Section 5.4 uses
the direct approach.

Placement

Placementis the task of arranging the mapped cells onto the grid in the FPGA. For placing
the full adder from the example of Section 3.2.5 onto the XC6200, the task would be to place
the two XOR-gates, the two AND-gates and the OR-gate. How are they placed relative to each
other? How is a group of full adder elements — making up an N-bit wide adder — arranged?
How are bigger functional units, like an ALU or a state machine placed with regard to each
other and with regard to I/O pins, connecting the functional units to the outside world? There
are several approaches to tackle these problems.

Constructive placement: this is a very fast placement method. An overview of several
algorithms is given in [HWA76]. Constructive placement deterministically arranges the cells
according to a programmed “recipe”. For instance, a two-input cell might be placed where
space is found, then the two sources feeding these inputs are placed to the right of the cell, and
to the right above. The placer described in Section 5.5 uses this approach.

Min-cut: this is a graph partitioning method, trying to minimize the number of connections
(net cut) between two subgraphs while keeping the sizes of the subgraphs approximately the
same [KL70, Bre77, FM82, Kri84]. It starts with an arbitrary partition of the netlist and swaps
gates between the partitions, if this reduces the net cut. The swapping is repeated until no
further reduction can be achieved. A linear time algorithm using a good heuristic is presented
in [FM82] and an improved version is presented in [Kri84]. The total runtime of the algorithm
depends on the number of partitions the netlist is divided into.

Simulated annealing: this is the most popular — and successful — approach to placement
[KGV83]. It is based on a model from physics. Annealing is the process by which molecules
in a hot gas arrange themselves as the gas is cooled down. The arrangement minimizes the
energy stored in the gas. Simulated annealing cools down the “gas of cells”. In the beginning,
the cells float around freely and exchange positions with other cells. A grading function,
e.g. based on the total length of wiring, is evaluated for a given configuration. If the grade
for the current configuration is better than for the previous one, the current configuration
is accepted. If the grade is worse than before, however, the configuration is only accepted
with a certain probability. This allows the algorithm to leave local minima and is the key to

5. Hades Software 58

finding a placement which is close to the global minimum. After each evaluation step the
temperature is lowered, i.e. the area within which a cell may float around is made smaller.
Simulated annealing gives very good results, but its problems are long runtimes and — due
to its randomness — non-deterministic solutions. One placement run may give a completely
different result from a previous one, despite being produced from the same input. This can be a
real problem when iterative design methods are used or when device utilization becomes very
high and manual support is needed. In these cases, non-deterministic placement algorithms
make things harder for the designer than necessary.

Min-cut and simulated annealing yield the best results. Constructive placement is the
fastest. Certain placement algorithms combine several of the above approaches and use the
best result. This process, of course, takes even more runtime.

Routing

Routingis the process where placed cells on a rectangular grid are connected together using
the available wires (also called routing resources). Taking the example from Section 3.2.5, the
router has to connect the OR-gate of the carry out with the two AND-gates, which in turn have
to be connected to the XOR-gate and the carry input coming from the OR-gate in the previous
adder element.

Routing resources can be put into two categories: channels and switchboxes. A routing
channel is a region free of logic cells. The cells lie on either side of the channel. Wires run
from one side of the channel to the other, possibly crossing over each other, connecting cells
on one side with cells on the other side (see Figure 5.2). A more general routing structure is
the switchbox, which connects wires from different sides. While routing channels are often
found in standard cell technology, switchboxes are typical for FPGAs.

In Figure 5.2, achannel routerconnected the top row of cells to the lower row of cells.
For a given width, the channel router uses as high a channel as is necessary to perform the
routing. These routers perform not so well in FPGAs, as there is a multitude of available
routing resources, not just channels.

Row of Cells

Row of Cells

Routing Channel

Figure 5.2: Routing Channel

A maze-running router[Lee61, Hig69] spreads a wave from the destination (D) of a signal
in all directions until the wave reaches the source (S) signal (cf. Figure 5.3). Depending on
the implementation, the wave starts from the source or from both ends. Also, the shape of the
wave can be influenced in many ways, such that only horizontal or only vertical wires are used,
or that expansion in one direction is more “costly” than in another direction. A maze-runner
represents the most flexible routing algorithm. Its main problem is the long runtime, as the
time required to spread a wave in all directions grows with the square of the distance.

Despite this, themaze-running routeris still the most popular routing algorithm due to its
flexibility. It can be accelerated by several techniques, so that the quadratic behavior affects
the routing of only a few nets [Dio87, DM95]. The router described in Section 5.6 is a maze-
running router.

5. Hades Software 59

3

1

2

S

D

4

Figure 5.3: Wave Expansion (1, 2, 3, 4) with Resulting Route

5.1.4 Problems with Today’s CAD Tools

Speed

Many algorithms used in today’s FPGA layout synthesis tools were adapted from packages
used for ASIC design. There utmost performance in both time and space of the resulting
circuit is mandatory. Long runtimes (minutes to hours) of the tools are widely accepted and
also most often the only way to achieve a result in the target technology. This can be tolerated
when the target technology’s turnaround time is in the range of days to weeks.

However, with the availability of a silicon foundry on the desktop in the form of an FPGA
system, this approach is no longer viable. The engineer can now work with and develop hard-
ware in the same way as is common in software development, namely, using iteration and ex-
ploration. If the FPGA device can be programmed in a couple of microseconds, then it should
be possible to synthesize the necessary configuration bits within seconds or at least a few
minutes. Sadly, with current commercial tools this is impossible [Fie95, Woo96a, WLH97].

During one day, many design cycles can be performed in software development. Good
programming language compilers have turnaround times in the range of seconds [Wir96a].
With modern operating system concepts such as dynamic linking and loading, a programmer
can test a module a few seconds after having made a change to the program text. This statement
is at least true for the Oberon System [WG92].

One driving force in the development of the Hades layout synthesis tools was to achieve
the same level of speed for the development of hardware. As can be seen in Chapters 6 and 7,
this has been achieved for all parts of the synthesis flow except for routing, which is the slowest
part of our software. Especially, HDL compilation, mapping and placement are very fast.

Interactivity

Interactive use of layout tools is mandatory to achieve high quality layouts of FPGA circuits
[Ber93, BT94], especially with the XC6200, as current placement algorithms perform poorly
on fine-grained architectures [HW96, WCG96]. Therefore, we strove for tools that the de-
signer caninfluence at all levels. When describing a circuit with the Lola HDL, this is possible

5. Hades Software 60

throughposition statements; during placement, the layout editor can be used toarrange cells
and instances manually; and during routing,single nets can be routedbefore others, nets can
berouted manuallyand the designer hascontrol overwhichresourcesmay or may not be used
by the router.

Integration

In software development one means for higher productivity are integrated software develop-
ment tools. Pioneered by Borland in their Turbo Pascal product, today’s software tools are all
integrated. This means that all steps from the writing of the program code to the debugging of
the program can be performed within the same environment.

This is not true for synthesis tools. Various tools from various vendors interoperate only
through files. A schematic editor software produces an EDIF file which has to be read by the
place and route software. The output of HDL compilers is a netlist in the form of a file, which
has to be read and parsed again by back-end tools. These translation steps are costly in terms
of time and memory, as files have to be written and read again. Section 3.3 and [Geh97] treat
this subject in more detail.

Hades is based on the Trianus framework and achieves integration through using one cen-
tral data structure.

Transparency

Current hardware description languages and associated synthesis tools often try to abstract too
much from the underlying hardware. This is done, among others, for economic reasons. To
support many different devices and target technologies, it makes sense to abstract from them
in one way or another.Reuse of designis an often heard goal. In the software world, this is
common practice. Programs written in a high-level programming language are portable across
different hardware architectures. In many cases, one is willing to sacrifice a factor of 1.5 to 2
in performance to gain portability.

Likewise, hardware synthesis tools abstract from the target technology and map to them
using elaborate algorithms. This results in slow tools even when a lower-level design style is
chosen. A good (or bad) example of this is the compilation of astructural VHDL description
of a one-dimensional discrete cosine transform taking three hours for just synthesizing the
netlist. It can then be placed (using hints) and routed using the vendor’s tools in just five
minutes [WCG96, Woo96a]. We compiled the Lola version using Trianus in under a second.

When hardware is described inbehavioral style, current synthesis tools often fail to a-
chieve good layout densities or they fail to meet the performance requirements. Therefore, we
believe that astructural, that is, a fairlylow-level, descriptionof the hardware is necessary.
This should result in good performance and especially in transparency for the designer: “What
You Describe Is What Is Synthesized”. Note that writing target specific HDL code to achieve
good performance is also recommended for VHDL, for instance by [GS95]. Using a structural
style to describe the basic components, we can then compose our circuit using elements of
libraries, much like we use procedures from modules to build software systems. The latter
style then describes the hardware on a higher level, as only the functional blocks and their
interaction is described, rather than the whole circuit.

5.2 Programming Methodology

The Hades software was developed using the Oberon-2 programming language [MW91] and
the Oberon System [WG92]. We extensively used preconditions, assertions and (less fre-
quently) postconditions to enhance the quality of our code and to improve the localization of

5. Hades Software 61

errors in the software. This proved very useful during the development of the Trianus frame-
work and the Hades back-end. When a precondition fails, it is the user of the service who
failed to meet the contract. When a postcondition of the called service or an assertion check
based on the assumption that the service performed its duty fails, then it is the implementer of
the service who is at fault.

Additional convenient features of the Oberon-2 language and the Oberon System are:
checked array indices, NIL checks on pointers and automatic garbage collection (mandatory
for extensible systems). These features are suddenly of interest to the rest of the software
world — one might even dare to say: humanity — due to the advent and popularity of the
Java language. All proved extremely useful and might be evidenced by the lack of a runtime
debugger. A few output statements and a comfortable post-mortem trap viewer are all that was
necessary to develop the Hades software successfully and efficiently.

5.3 Overview

The Hades tools consist of a technology mapper using a direct approach (Section 5.4), a con-
structive placer and floorplanner (Section 5.5), a maze-running router (Section 5.6), a bit-
stream generator and loader (Section 5.7), a hardware monitor and an interface generator
(Section 5.8) for providing a software interface to a coprocessor application running on the
FPGA. The tools use the Trianus framework [Geh97]. At all times they use and preserve
the hierarchical design information given by the Lola HDL description. The tools support an
incremental design style by way of fast turnaround times and user control during all phases.

The following sections discuss the various tools and algorithms used in their natural se-
quence of the design flow as shown in Figure 5.1. Their complexity in source and object
code is analyzed and put into perspective. The chapter concludes with a few observations
on the programming methodology used and discusses possible improvements. The tools are
evaluated in terms of speed in Chapter 6.

When discussing an operation on a Trianus data structure in the following sections, we
often list Oberon code to better illustrate an algorithm. This fairly low-level description is
meant to serve as a tutorial on using the Trianus data structure and an aid to the reader of our
source code. Using and manipulating a Trianus data structure correctly is not trivial and the
more examples are given, the better this process can be understood.

5.4 Mapper

A technology mapper is a program that transforms a hardware independent description of a
circuit into a form suitable for the technology available in the target device. In our case, this
means mapping a Trianus data structure produced by the Lola HDL compiler onto the XC6200
FPGA architecture. Note that although we refer to the Lola compiler as being the tool to
produce the data structure, it can also be produced using a schematics editor (cf. Section 3.3.6).

In a Trianus data structure, described in Section 3.3, the logic of a circuit consists of a
list of named binary expression trees, where the name corresponds to variables in the Lola
program. The expressions can be composed of unary or binary operators of Boolean logic
(Not, And, Or, Exclusive-Or), constants (Zero, One), multiplexers, registers, SR-latches and
latches. Except for the last two, a cell of the XC6200 can directly implement any of these
operators. In fact, the match between the Lola constructs and the possible cell configurations
of the XC6200 is almost perfect. One might suspect that Lola was designed for the XC6200,
but this is not the case. Rather, the XC6200 was designed to be as flexible and simple as
possible — as was Lola — and the resulting basic operators are very similar.

A mapper for the XC6200 should therefore be quite easy to develop, as almost no work
has to be performed to do the mapping. It is for this reason that we have chosen a direct

5. Hades Software 62

approach to technology mapping, rather than writing a generic mapper using the widely used
graph matching technique described in [Keu87]. Normally, a mapper determines what logic
gates are implemented by what cells — hence a preplacement step is performed. Since in our
case the mapping is almost one-to-one, we defer this step to the placement phase described in
Section 5.5.

In the following, we will often use the terms instance and type. A type is a Trianus data
structure describing a type definition in Lola. An expanded type is an instantiated type, i.e.
a generic type with actual parameters. An instance is an actual hardware component of an
expanded type, such as an adder element. See Section 3.2.4 and [Geh97] for further details on
the difference between generic and expanded types.

5.4.1 The Algorithm

The mapper takes as input a Trianus data structure representing a compiled Lola module. It
first initializes theid field of all nodes in the data structure. Theid field is used to mark
nodes which have been mapped already, such that already visited nodes are not visited again.
The algorithm then sorts the type hierarchytopologically, with types not containing instances
of other types occurring first. This is necessary for the correct treatment of an instance’s
input variables, as will be seen later. All instances of every expanded type are mapped in
the sequence defined by the topological order. The mapping is accomplished by invoking a
procedure for every instance and for the type itself using atype broadcast(cf. Section 3.3.3).
The mapper is the first of the back-end tools making use of this broadcasting mechanism.
Recall that the type broadcast invokes the procedure stored in thedoNode field of the message
for all instances of the type stored in thetype field, and finally fortype itself. The used
procedureMapType callsMapDescendants, which traverses all signals defined in an instance
or type and invokes a map procedure for them. After the broadcast, the signals occurring in
the module itself are mapped. Finally, unused signals and instances are removed from the data
structure. This could be done by the compiler, but was not considered during its development.
It came as a natural addition to the mapping process, as every node is visited by the algorithm
and its use can be determined. Program 5.1 presents the pseudocode for the process just
described.

Program 5.1Overview of Mapping Algorithm

PROCEDURE MapModule(module);

TriBase.InitID(module); unmark all nodes (and wires)
TriBase2.TopoSort(module, list); topological sort
msg.doNode := MapType;
WHILE list # NIL DO

msg.type := list.type;
call msg.doNode for every instance of msg.type
and for msg.type itself
TriBase.Broadcast(module, msg, TriBase.SelType);
list := list.next

END;
MapDescendants(module);
RemoveUnused(module)

We will now describe the necessary steps to actually map the operators of the Trianus data
structure onto the XC6200. Table 3.1 listed the operators available in Lola and Figure 2.4
showed the structure of the logic cell of the XC6200 FPGA. Figure 5.4 shows the possible cell

5. Hades Software 63

configurations (without the optional register) as represented in the XC editor. Inputs to the
cells come from left, right and below.

0/0 4/0

Figure 5.4: XC6200 Cell Configurations (without Registers)

For every variable or output signal node in an instance, the expression tree is traversed
depth-firstand the nodes encountered are marked as mapped. Eachoperator noderequiring
manipulationis changed in-place, that is, the data structure is changed on-the-fly. For instance,
if an AND-node has to be transformed into an OR-node, thefct field of the node is changed
accordingly. This saves space and time, as no additional nodes have to be allocated.

Implementation note: On some occasions (input variable and constant node duplication),
a new node has to be allocated and in those cases we appreciated the existence of reference
parameters in the Oberon language very much. It made the mapping procedure more elegant
and easier to use as the pointer field being changed could simply be passed as a reference
parameter. In a language without this feature (such as Java), an additional parameter would
have to be passed indicating which field needs to be updated, or a function procedure would
have to be used.

Constants One and Zero

To conserve memory space, the constants One (’1) and Zero (’0) occur only once as global
variables in a compiled Trianus data structure. But since they must be represented as actual
gates at several locations of the FPGA, a new node representing the constant must be generated
for every occurrence in the expression tree. The pointer field pointing to the unique constant
node is updated to point to a new copy of such a constant node.

Not

NOT-operators associated with a signal name (label) or which are feeding a register occur as
proper cells in the layout. All others can be merged into the operators with more than one
input (see the NOT in expressiony below). Two NOTs in sequence are replaced by a buffer.
See Figure 5.5 for some code examples and their associated mappings.

And, Or and Exclusive Or

As can be seen in Figure 5.4, the XC layout editor does not allow to arbitrarily invert the inputs
and outputs of AND- and OR-gates. For instance, an AND with two inverted inputs must be
represented as a NOR-gate. Table 5.1 lists the AND-, OR- and XOR-gates with all possible

5. Hades Software 64

z := ˜˜c

y := a * ˜b

x := ˜a

a

b

c

x

y

z

Figure 5.5: Mapping of NOT-Gate

negations at their inputs and output in the left columns, and their transformed representation
in the XC layout editor in the right columns.

AND OR XOR

a * b a * b
˜ a * b ˜ a * b
a * ˜ b ˜ b * a

˜ a * ˜ b ˜ (a + b)
˜ (a * b) ˜ (a * b)

˜ (˜ a * b) ˜ b + a
˜ (a * ˜ b) ˜ a + b

˜ (˜ a * ˜ b) a + b

a + b a + b
˜ a + b ˜ a + b
a + ˜ b ˜ b + a

˜ a + ˜ b ˜ (a * b)
˜ (a + b) ˜ (a + b)

˜ (˜ a + b) ˜ b * a
˜ (a + ˜ b) ˜ a * b

˜ (˜ a + ˜ b) a * b

a - b a - b
˜ a - b ˜ (a - b)
a - ˜ b ˜ (a - b)

˜ a - ˜ b a - b
˜ (a - b) ˜ (a - b)

˜ (˜ a - b) a - b
˜ (a - ˜ b) a - b

˜ (˜ a - ˜ b) ˜ (a - b)

Table 5.1: Binary Operators (Left) and Their Mapping (Right)

As an example, Program 5.2 lists the code to map an AND-gate. Note that since we
traversed the data structure depth-first, the expression in the left and right subtrees have already
been mapped and are in their correct form. This is important as the handling of negations
would not work otherwise. Similar algorithms are used to map OR- and XOR-gates. Figure 5.6
presents the algorithm in graphical form.

D-Latch

The latch has to be represented with a multiplexer, where the output is fed back to the zero-
input. In Lola, the transformation can be described as

x := LATCH(enable, data) => x := MUX(enable: x, data).
As an XC6200 logic cell cannot have a combinational feedback loop, an additional buffer
node has to be inserted between the output of the multiplexer and the feedback input. We
also require that the latch is named, that is, that the latch node is rooted in a signal node.
This is necessary for ensuring the proper working of other tools, such as the extractor and the
checker. It is not a major restriction, but rather enforces a good design style. Figure 5.7 shows
a graphical representation of the transformation step and Program 5.3 lists the code necessary
for doing the transformation.

In the code, we generate two new nodes and change one existing node into a new form.

5. Hades Software 65

Program 5.2Mapping of AND-Gate

And:

prevpoints to previous node
n points to current node

IF (n.x.fct # TriBase.Not) & (n.y.fct = TriBase.Not) THEN
Swap(n.x, n.y) a * ˜ b => ˜ b * a

END;
n.x * n.y OR˜ n.x * n.y OR˜ n.x * ˜ n.y
IF (n.x.fct = TriBase.Not) & (n.y.fct = TriBase.Not) THEN

IF prev.fct # TriBase.Not THEN proper And
˜ a * ˜ b => ˜ (a + b) upper part of Figure 5.6
n.fct := TriBase.Not; change n into Not
n.x.fct := TriBase.Or; change n.x into Or
n.x.y := n.y.x; eliminate Not on n.y
delete node n.y superfluous node

ELSE prev.fct = TriBase.Not => Nand
˜ (˜ a * ˜ b) => a + b lower part of Figure 5.6
prev.fct := TriBase.Or; change prev into Or
prev.y := n.y.x; eliminate Not on n.y
n := n.x.x; change n
delete former nodes n, n.x, n.y

END
END

Program 5.3Mapping of Latch

Latch:

IF previs not a labelTHEN report error
ELSE

BUF(prev)
node := NewNode(TriBase.Buf, prev, NIL);
MUX1(BUF, data)
node := NewNode(TriBase.Mux1, node, n.y);
MUX(enable, MUX1)
n.fct := TriBase.Mux; n.y := node

END

5. Hades Software 66

AND NOT

ORNOT NOT

ba ba

AND

OR

NOT NOT

NOT

ba ba

deleted node

n

n.x n.y

n.y.xn.x.x

n

n.x

n.x.x n.x.y

prev

prev.y

prev

n

n.x

n.x.x

n.y

n.y.x n

Figure 5.6: Mapping of AND-Gate

label

enable data

LATCH

label

enable

data

MUX

MUX1

BUF

prev

n

n.x n.y

Figure 5.7: Mapping of Latch

5. Hades Software 67

SR-Latch

The set-reset-latch with active low control signals has no equivalent in the XC6200 logic cell
and is implemented using two cross-coupled NAND-gates. Like the D-latch, the SR-latch has
to be rooted in a signal name. We refrain from explaining the transformation in detail and just
give the equivalent description in Lola:

label := SR(set’, reset’) => label := ˜ (˜ (label * reset’) * set’).
The newly produced expression tree has to be mapped again, as we might have introduced
additional negations and AND-gates which should be mapped to OR-gates.

One notable point is that the transformation has to be done in a way that respects the
XC editor’s limitation given in Table 5.1. The second NOT in the expression above has to
be mapped to the left subtree of the AND-gate. Mapping it to the right subtree could not be
represented by the XC editor. This is quite a subtle point as one might naturally write down
the expression above as

label := ˜ (set’ * ˜ (label * reset’)).
which would lead to an erroneous expression tree.

Multiplexer

The mapping of a multiplexer node is straight-forward. A negation on the selector input of the
multiplexer is mapped by eliminating the negation and swapping the two inputs, i.e.

a := MUX(˜ sel: in0, in1) => a := MUX(sel: in1, in0).
A negation occurring at the output of the multiplexer is propagated to the inputs. If the input
is already negated, the negation is eliminated, otherwise, a new negation is inserted:

a := ˜ MUX(sel: in0, ˜ in1) => a := MUX(sel: ˜ in0, in1).

Register

A register with an enable input is implemented using a multiplexer in front of the register, with
the selector signal being the enable and one feedback path being the register’s output:

a := REG(enable, b) => a := REG(MUX(enable: a, b)).
Since the enable signal might be negated, the generated multiplexer has to be mapped again to
eliminate the negation and swap the inputs.

When a register is reading directly from a signal name, an additional buffer between the
register and the signal has to be inserted, as this is mandated for by the XC layout editor.
The same has to be done if both inputs of a gate before the register read the register’s value.
This can occur with enabled registers, reading their negated value. Other cases should be
considered as bad designs, but the software must handle these cases nonetheless. Figure 5.8
summarizes the mapping of registers.

Duplication of Input Variables

Input variables declared in type declarations can occur more than once in expression trees of
signal assignments. Since the XC editor displays input variables at the point of use, they must
be duplicated to allow for multiple displays of the same input variable name in a design. For
instance, considering theAdder example shown in Program 5.4, the carry input variableci
occurs more than once in the expressions of typeAddElem and must therefore be duplicated.
For duplication, the aforementionedid field used for marking mapped nodes comes in handy.
We can use it to determine, whether an input variable is referenced more than once. For every
further reference, a copy of the variable is created.

A tricky point in the development of this duplication code is the presence of scopes. Since
instances of other types can occur within a type and input variables can be passed as parameters
to other input variables in inner instances, the duplication of inner input variables has to be

5. Hades Software 68

d := REG(d * d)

c := REG(en, ˜c)

b := REG(en, x)

a := REG(x)

x

en b

a

c

d

Figure 5.8: Mapping of Register

propagated upwards in the inclusion hierarchy. This is accomplished by a separate pass over all
input variables of instances declared in a type; after these, inner instances have been mapped.
If an input variable of an inner instance refers to an input variable in the current instance, the
latter must be duplicated. Program 5.4 illustrates this point. Note in the example that the carry
output of the previous adder element, which is passed to the carry input of the next adder
element, is an output variable and does not have to be duplicated.

Anonymous Expressions

Another problem occurring with nested instances is that the actual parameter in a unit as-
signment can be an arbitrary expression, not only a signal name. These expressions are not
anchored in a signal variable and are thereforeanonymousin the current scope. Their roots
are the respective input variables of the instances to which they are passed. Program 5.5 illus-
trates this problem. Again, as with the duplication of input variables explained above, these
anonymous expressions are mapped during the same pass over all instances and their input
variables.

Global and Buried Inputs and Outputs

The mapper is also used for transferring positional information found in adevice description
file to the global input and output signals. The global input and output signals are normally
implemented as pins of the FPGA. In the XC6200, however, input signals not occurring in
the device description are implemented usingburied input registers, accessible through the
coprocessor interface of the XC6200. Likewise, outputs without a description are treated
asburied outputs, only accessible through the coprocessor interface. Note that these do not
have to be implemented as registers, as the coprocessor interface can also read the state of
the combinational output of a cell. Program 5.6 shows an example of such buried IOs and
Figure 5.9 shows the corresponding layout. The interface generator described in Section 5.8
represents these buried inputs and outputs as interface variables to the software programmer.

5. Hades Software 69

Program 5.4 Input Variables and Scopes

TYPE AddElem;
IN x, y, ci: BIT;
OUT s, co: BIT;
VAR h: BIT;

BEGIN
h := x-y; first reference to x
s := h-ci; first reference to ci
co := MUX(h: x, ci) duplicate x, ci

END AddElem;

TYPE Adder;
IN x, y: [8] BIT; ci: BIT;
OUT s: [8] BIT; co: BIT;
VAR add: [8] AddElem;

BEGIN
add.0(x.0, y.0, ci); x.0, ci have to be duplicated
FOR i := 1 .. 7 DO

add.i(x.i, y.i, add[i-1].co) x.i has to be duplicated, co not!
END;
FOR i := 0 .. 7 DO s.i := add.i.s END

END Adder;

Program 5.5Anonymous Expressions

TYPE AddElem;
IN x, y, ci: BIT;
rest as before

END AddElem;

VAR
x, y, sub: BIT;
add: AddElem;

BEGIN
add(x, y-sub, sub); add or subtract

XOR is anonymous and
only accessible through add.y

...

Program 5.6Buried Inputs and Outputs

MODULE Buried;
IMPORT Adders;
IN x, y: [2] BIT; buried inputs
OUT s: [2] BIT; buried outputs
VAR a: Adder(2); ripple-carry adder

BEGIN
a(x, y, ’0);
FOR i := 0 .. 1 DO s.i := a.s.i END

END Buried.

5. Hades Software 70

0/4

x.0

y.0

x.1

y.1

a

cin
x.0

x.1 co

add.0

coci
x sx

hy
ci

add.1

coci
x sx

hy
ci

x.0

y.0
cin

x.1

y.1

s.0

s.1

s.0

s.1

Figure 5.9: Buried Inputs and Outputs

Various Mappings

In addition to the tasks described above, the mapper translates coordinates of Lola position
statements given in user coordinates (cell based) into model coordinates used by the Trianus
framework.

The mapper also inserts a buffer between an output variable which reads directly an input
variable, hence an assignment of the form

out := in
is translated into

out := BUF(in).
Additionally, it inserts a buffer between a global output or tri-state signal and its corresponding
gate. This is needed for a process calledinversion compensation, which will be described in
Section 5.7. So

out := a * b
is translated into

out := BUF(a * b).

5.4.2 Discussion

Although not a difficult problem in principle, the development of the mapping algorithms
revealed many subtleties, which were not accounted for in the beginning. In fact, after dis-
covering a problem with the mapping of negations and binary gates in an earlier version, we
rewrote the whole mapper from scratch, using the approach described above.

The regular structure of the XC6200 and its simple cell were very advantageous in the
development of the mapping algorithm. A direct approach only makes sense for simple cells.
In fact, our mapping algorithm does nearly nothing in terms of technology mapping, as most
functions of the Lola description are directly implementable by a logic cell. Grouping multiple
expressions into one cell is not possible and we can refrain from using a graph-based approach
to find a mapping of the compiled netlist onto the target cells.

The complications that occurred during the development of the algorithm, and which were
discussed in the preceding paragraphs, were founded more in the requirements of the Trianus

5. Hades Software 71

data structure than in the architecture of the XC6200 FPGA.

5.5 Placer and Floor Planner

The placement algorithm used by the Hades placer isconstructive and deterministic. It pro-
duces the same output for the same input, always. The main objectives during its development
were quick response and usability for interactive, iterative design. Using a stochastic approach
such as simulated annealing [KGV83] was not viable due to the non-deterministic results pro-
duced and the long runtimes. Since we rely on the designer to give placement hints — one
reason being that the designer will have to give placement hints anyway to achieve a satis-
factory layout [WCG96] — we must use a placement algorithm that produces the same result
for the same input. The approach taken by the Hades placer is similar to the one described in
[MD95].

5.5.1 The Algorithm

The placer takes as input a mapped Trianus data structure, sorts the type hierarchy topologi-
cally (innermost first), then places each type and propagates the placement information to its
instances using a type broadcast. Each type is placed into an “empty” chip of equal size as the
target chip. After the types and instances included therein have been placed, the output buffers
inserted by the mapper are placed near the corresponding output pins and all expression trees
and instances occurring in the module are placed into the actual chip. The overall structure is
given in pseudocode form in Program 5.7.

Program 5.7Overview of Placement Algorithm

PROCEDURE PlaceModule(module);

TriBase.InitID(module); unmark all nodes (and wires)
msg.doNode := UpdateInstances; used to copy placement information
TriBase2.TopoSort(module, list); topological sort
WHILE list # NIL DO

type := list.type;
type.id := Placed; mark type as placed
NewPlacer(p); initialize placer data structure
PlaceDescendants(p, type); place all signals and instances
type.w :=bounding box width; calculate bounding box
type.h :=bounding box height;
msg.type := type;
msg.placer := p;
propagate placement information stored in the placer msg.placer
to all instances of type msg.type
TriBase.Broadcast(module, msg, TriBase.SelType);
list := list.next

END;
NewPlacer(p);
PreplaceOutputBufs(p, module);
PlaceDescendants(p, module);
UpdateType(p) copy placement information

The interesting part of the placement algorithm is the placement of the signals and in-

5. Hades Software 72

stances occurring in a type. This is accomplished by procedurePlaceDescendants. We use
several heuristics described below to achieve a reasonable placement, which can then be im-
proved using the layout editor and placement hints. The sequence of objects being placed is
as follows:

1. instances and signals with their associated expression tree, which have a position hint

2. arrays of instances

3. arrays of variables

4. arrays of output and inout signals

5. instances

6. remaining signals

7. anonymous expressions (reachable only via an input signal of an inner instance)

The reader may note the extensive use of thearray property. In fact, the presence of arrays
of signals and instances and the availability of this information in the back-end tools is the
single most crucial information. It makes a simple, constructive approach usable, achieving a
reasonably good placement on the first attempt.

In the following, we present the placement of arrays, instances and expression trees after
giving a few preliminary explanations on free space management.

5.5.2 Free Space Management

Free space on a chip is managed using abitmap. When a single gate from the netlist is
placed in a specific cell position, a free bit in the bitmap is sought at that position or in its
neighborhood (4 cells in each direction). If no free bit (cell) is found, placement fails and
the user must provide a placement hint. When an instance with a certain width and height is
placed, a rectangular area of that size is sought in the bitmap using a simple search strategy
in the horizontal and vertical directions. Again, if no space is found, placement fails. The
positions occupied by an instance or a gate are marked in the bitmap. Overlaps of instances
and other instances or instances and single gates are allowed and can be very useful to achieve
a dense layout (cf. Section 6).

A more clever way of free space management would involve the use of quad-trees [FB72].
However, since the algorithm described here gives reasonable results, we did not pursue this
further.

5.5.3 Placement of Arrays

The algorithm used for placing arrays is as follows: a sequence of instances is placed accord-
ing to the width and height of the corresponding type. Remember that all instances of the
same type share the same placement information. If instances are higher than wide, they are
placed adjacent to each other in the horizontal direction; if they are square, or wider than high,
they are placed adjacent to each other in the vertical direction. Instances with lower indices
are placed first, therefore an array is placed from left to right or from bottom to top. The latter
is especially important, as the processor interface of the XC6200 allows to access columns of
cells efficiently. For multi-dimensional arrays, the algorithm alternates between vertical and
horizontal placement when going from one dimension to the next. Programs 5.8 and 5.9 show
this algorithm in detail.

If the array elements are not instances, but signals representing expression trees, the dis-
tance between the elements is determined by the width or height of the trees. Arrays of signals

5. Hades Software 73

Program 5.8Placement of Arrays I

PROCEDURE PlaceArray(p, obj, u, v, dim, lastDim, VAR w, h);

IF dim< lastDim THEN not last dimension
REPEAT

thisW := 0; thisH := 0;
place array of next dimension (recursive call)
PlaceArray(p, obj, u, v, dim+1, lastDim, thisW, thisH);
p.dir :=other direction(p.dir);
adjust u, v, w, h according to thisW, thisH, p.dir (direction)
obj := next in same dimension

UNTIL obj = NIL
ELSE last dimension

index := 0;
get pitch from first item
IF obj IS TriBase.Instance THEN

if obj is higher than wide, suggest horizontal placement
IF obj.h> obj.w THEN

p.dir := Horizontal;
pitch := obj.w+1;
u := p.minU start with lowest u coord

ELSE
p.dir := Vertical;
pitch := obj.h+1;
v := p.minV start with lowest v coord

END
ELSE simple object

p.dir := Vertical;
pitch := p.pitch; default pitch used by placer
v := p.minV start with lowest v coord

END;

continued in Program 5.9

5. Hades Software 74

Program 5.9Placement of Arrays II

continued from Program 5.8

REPEAT
thisW := 0; thisH := 0;
PlaceObject(p, obj, u, v, thisW, thisH);
IF (index<= 1) & ˜ (obj IS TriBase.Instance) THEN

adjust prediction for simple objects,
obj[1] sometimes has different size than obj[0]
IF thisH> thisW THEN

p.dir := Horizontal; pitch := Max(thisW, p.pitch)
ELSE

p.dir := Vertical; pitch := Max(thisH, p.pitch)
END

END;
adjust u, v, w, h according to thisW, thisH, p.dir (direction)
INC(index);
obj := next in same dimension

UNTIL obj = NIL
END

represent, for instance, an N-bit wide loadable register or an N-bit comparator circuit. Such
simple array elements most often fit into one cell and no type is declared for them. For the
special case where the first element (with index 0) of such an array has a different size than the
next one, the algorithm adjusts the placement. This guarantees that the whole array is placed
in the desired manner. Such a case could occur for the lowest bit of a counter, which consists
of a toggle register, whereas other bits of the counter consist of an XOR-gate with a register
and an AND-gate.

5.5.4 Placement of Instances

Instances are composed of other (arrays of) instances and of (arrays of) expression trees rooted
in signals. Instances have a predetermined size, as their type already has been placed. In-
stances themselves are placed on top of each other at the next free position that is found in
the free space bitmap. If the boundary of the chip is reached, the horizontal coordinate is
incremented by the widest width encountered since the last reset of the vertical coordinate and
the vertical coordinate is reset. Hence, instances that are not part of an array are placed going
from the bottom to the top and from the left to the right of the chip.

5.5.5 Placement of Expression Trees

Expression trees are rooted in an object representing a signal name. The algorithm proceeds
from this root into the leaves of the tree (pre-order traversal). Since every node of a Trianus
data structure occupies at most one physical cell in the XC6200 FPGA, the first node is placed
at the current position. Then, the first and second subtree of the tree are traversed recursively
[MD95]. Several nodes are put into one cell whenever possible. For example, an expression
of the form

a := REG(˜ x * y)
uses a single cell. In doing this, the placement algorithm determines the geometrical position
of the nodes and thus performs a task traditionally associated with a technology mapper.

5. Hades Software 75

When a node cannot be merged into the current cell it is placed to the right of that cell, if
it is in the first subtree, or above that cell, if it is in the second subtree. Thus, the first subtree
is placed at the same vertical position as the root cell, and the second subtree is placed at the
same horizontal position, with the vertical position increased by the first subtree’s height. In
case of a multiplexer, the second subtree is placed to the right of the root cell and above the
first subtree, and the third subtree is placed above the root cell and above the second subtree.
The figures at the end of this section illustrate the different placement strategies.

Program1 5.10 and 5.11 show in more detailed form the actions taken when placing the
various node types. In that program,p is a placer data structure, which stores positional
information for the placed nodes. This information is used during a type broadcast at a later
stage.

Program 5.10Placement of Nodes I

PROCEDURE PlaceArg(p, arg, u, v, offU, offV, to, VAR w, h);

If arg is a gate or another expression tree, it is placed at u+offU, v+offV.
If it is an input label, it is placed at the point of usage u, v.
w and h return the size of the arg expression tree.

PROCEDURE PlaceNode(p, sig, u, v, to, VAR w, h);

IF sig.id = Void THEN not yet placed
myWx := 0; myWy := 0; myHx := 0; myHy := 0;
CASE sig.fct OF
| TriBase.BIT , TriBase.TS: new root, if already placed it is a leaf

PlaceObject(p, sig(TriBase.Object), u, v, myWx, myHx);
myWx := Max(myWx, Cell); myHx := Max(myHx, Cell)

| TriBase.Zero, TriBase.One: leaf cell
ASSERT((sig.x = NIL) & (sig.y = NIL), 110);
PositionNode(p, sig, u, v, to); place sig and set sig.id
myWx := Cell; myHx := Cell

| TriBase.Buf, TriBase.Not:
merge negations and buffers into cell u, v if possible

| TriBase.And, TriBase.Or :
mapper guarantees next assertion
ASSERT(sig.y.fct # TriBase.Not, 111);
PositionNode(p, sig, u, v, to); place sig and set sig.id
IF sig.x.fct = TriBase.Not THEN ˜ x * y, ˜ x + y

place negation on first subtree into same cell u, v
PlaceArg(p, sig.x, u, v, 0, 0, XCBase.A, myWx, myHx)

ELSE
place first subtree to the right at u+Cell, v
PlaceArg(p, sig.x, u, v, Cell, 0, XCBase.A, myWx, myHx)

END;
place second subtree above at u, v+myHx
PlaceArg(p, sig.y, u, v, 0, myHx, XCBase.B, myWy, myHy);
calculate this node’s own width and height

continued in Program 5.11

If a cell contains a register, there may be a feedback from the output of the register to the

5. Hades Software 76

Program 5.11Placement of Nodes II

continued from Program 5.10

| TriBase.Reg:
try to put argument gate of REG into same cell as REG
take special care in treating feedbacks x := REG(x * y)
PositionNode(p, sig, u, v, to); place sig and set sig.id
reg1 := sig.y; r1u := u; r1v := v;
mapper guarantees enable = one and reg1.y is gate, not label
ASSERT(reg1.x = TriGen.one, 112);
ASSERT(˜ (reg1.y.fct INfTriBase.BIT, TriBase.TSg, 113);
to := TriBase.Void;
last gate of data is in same cell as register
PlaceArg(p, reg1.y, u, v, 0, 0, XCBase.Func, myWx, myHx);
arg := TriBase2.AArg(sig);
IF arg = sig THEN feedback on upper path

to := XCBase.A
ELSE

arg := TriBase2.BArg(sig);
IF arg = sig THEN feedback on lower path

to := XCBase.B
END

END;
feedback indicated in reg1.to
PositionNode(p, reg1, r1u, r1v, to);
clock signal
PlaceArg(p, sig.x, u, v, 0, myHx, XCBase.Clk, myWy, myHy);
calculate this node’s own width and height

| similar processing for other node types
END;
INC(w, myWx); INC(h, myHx) adjust w, h by own size

END;
Check(p, u, v, w, h) adjust u, v if top of chip reached

5. Hades Software 77

gate in front of the register, e.g.x := REG(x * y). This case is encoded in the Trianus data
structure with a special value in theto field of theReg1 node. The placer handles this case
in Program 5.11 (TriBase.Reg) using theTriBase2.AArg andBArg procedures. These traverse
the expression tree starting at the current node and return the first or second argument of the
node, respectively. In the case of the register, this is the first or second argument of the data
input to the register. Applied to the example above,AArg yields the register itself (since it is
rooted in objectx, which is the first argument to the AND-gate in front of the register) and
BArg yields objecty. Thus, since the register refers to itself, theto field of theReg1 node is
set toXCBase.A. A feedback on the second path would result into = XCBase.B.

5.5.6 A Note on Routability

Using the tree based approach described in the last sectionguarantees a routable designat the
expression and type level. Of course, the approach wastes some cells by leaving them unused.
In our experience, the user can manually improve such a placed expression quite easily, while
still keeping it routable. The responsiveness of our tools guarantees that this can be done
efficiently. The reader is referred to Chapter 6 and Appendix F for case studies on using the
tools interactively.

5.5.7 Examples

In the following, we present some short Lola code examples and the corresponding layout
produced by the placement algorithm. The routing is shown as well. The first six examples
are taken from Chapter 6, Section 1.3 of [Pfi92], which served as examples for the placement
algorithm for the CAL FPGA architecture [Alg90, Kea89]. The algorithm presented in that
thesis uses several heuristics to ensure a routable placement. We chose an even simpler place-
ment algorithm. As can be seen, the produced result is always routable at the level of the
type.

Figure 5.10 shows a simple expression tree. The tree structure of the code can clearly be
seen in the layout. The first argument of the XOR-gate is to the right of it, while the second
argument is above.

TYPE Example1; Tree

IN a, b, c, d, e: BIT;

OUT z: BIT;

BEGIN

z := ˜((a * b) − (c + (˜d * e)))

END Example1;

0/0
e1

z

c

a
b

d
e

Figure 5.10: Tree Example

In the next example in Figure 5.11, an array of expression trees is placed. The expression
tree itself is the one from Figure 5.10. The routing remains the same, as the basic structure is
the same. Since the tree is as wide as tall, vertical array placement is used andz.1 comes to
lie abovez.0.

5. Hades Software 78

TYPE Example2(N); Forest

IN a, b, c, d, e: [N] BIT;

OUT z: [N] BIT;

BEGIN

FOR i := 0 .. N−1 DO

z.i := ˜((a.i * b.i) − (c.i + (˜d.i * e.i)))

END

END Example2;

0/0
e2

z.0

z.1

c.0

c.1

a.0
b.0

a.1
b.1

d.0
e.0

d.1
e.1

Figure 5.11: Array of Trees Example

The example in Figure 5.12 nicely illustrates our placement strategy, which uses the height
of one subtree to determine the vertical position of the other subtree. The circuit grows in
height from its leaves and the largest gap between two subtrees occurs near the root (e.g.p.0).
The first subtree ofp.0 is comprised of all cells to the right ofp.0, while the second subtree is
comprised of the AND-gate abovep.0. Note that only neighbor routing resources are used to
preserve position independence of the resulting instance. It would be better to use the length-4
FastLANE connection to route the second argument ofp.0 andp.1. The layout is far from
optimal, but it is predictable and, most importantly,repeatable, i.e. a second invocation of the
placer on the same input will yield the same result. An additionalcompaction stepsuch as the
one used in [Pfi92] could be used to improve the placement, i.e. to reduce the height of the
expression tree by two rows.

The next example shown in Figure 5.13 realizes the multiplexer function shown in Fig-
ure 5.12 with Lola’s multiplexer construct and encoded selector signals. The resulting circuit
is much more compact than the one shown in [Pfi92]. This is, of course, a direct result of
the availability of the multiplexer in a single cell in the XC6200 architecture, a feature CAL
lacked.

The following example shown in Figure 5.14 implements a left and a right shift register.
The first register is placed according to the array placement heuristic, while the second, al-
though similar in structure, is placed according to the expression tree heuristic. In the first
example, subsequent array elements refer to previous array elements, which have been placed
already, hence the expression tree traversal is always only one level deep. In the second exam-
ple, however, the placement of the first array element causes a tree traversal of depth N-1, as
all subsequent array elements have not yet been placed and are referenced by previous ones. It
is questionable, if it would be advantageous to prevent the placement of array elements in ex-
pression tree traversals and rely on the array placement to place these nodes. It might produce
better placements only in certain cases. We have not investigated this issue further.

Next, we present a parallel to serial converter in Figure 5.15. When the layout is compared

5. Hades Software 79

TYPE Example3(N); Selector

IN a, b, c, d: BIT; q, r, s, t: [N] BIT;

OUT p: [N] BIT;

BEGIN

FOR i := 0 .. N−1 DO

p.i := (a * q.i) + (b * r.i) + (c * s.i) + (d * t.i)

END

END Example3;

0/0

0/4

e3

p.0

p.1

d
t.0

d
t.1

c
s.0

c
s.1

b
r.0

b
r.1

a
q.0

a
q.1

Figure 5.12: Selector Example

5. Hades Software 80

TYPE Example4(N); Mux

IN a: [2] BIT; q, r, s, t: [N] BIT;

OUT p: [N] BIT;

BEGIN

FOR i := 0 .. N−1 DO

p.i := MUX(a.1: MUX(a.0: q.i, r.i), MUX(a.0: s.i, t.i))

END

END Example4;

0/0
e4

a.1
p.0

a.1
p.1

q.0
r.0

a.0

s.0
t.0

a.0

q.1
r.1

a.0

s.1
t.1

a.0

Figure 5.13: Multiplexer Example

to the same example in [Pfi92], the advantage of the XC6200’s ability to implement a register
and a multiplexer in the same cell is apparent. The last array element is a register with an
enable input, which is implemented by the mapper with a multiplexer with feedback, and
the rest are simple multiplexers in front of registers. Again, the expression tree placement
heuristic overrules the array placement heuristic.

Finally, we show the resulting layout of the automatic placement algorithm of two funda-
mental circuits, the binary up-counter, shown in Figure 5.16, and the ripple-carry adder, shown
in Figure 5.17.

Depending on the routing of the input signals, the default layout of the adder might be
the desired one, although a routable layout with a bounding box of three by one cells can be
accomplished manually. Most often, the desired bounding box of the counter should be two
by one cells instead of one by two. Hence, the counter must be placed using hints. Of course,
the layout and routing for such fundamental circuits should be defined once in the form of a
library component, which can be imported into user programs.

This concludes the presentation of the layouts produced by the placement algorithm. A
set of larger examples can be found in Chapter 6 and Appendix F. There, a coprocessor
application and a microprocessor are developed and placed with Hades and the limitations of
the algorithm when applied to large designs can be clearly seen.

5.5.8 Manual Placement and Back Annotation of Position Information

When the design placement is not satisfactory, the layout editor is used to improve the place-
ment manually. For instance, the placement of a type such as the one in Figure 5.12 might
be optimized manually. Since most users would like this additional placement information to
be associated with the description of the logic itself, it must beback annotatedinto the Lola
HDL description of the circuit. This is accomplished by a utility procedure, which produces a
textual representation of the placement information contained in a displayed layout. When ap-

5. Hades Software 81

TYPE Example5(N); Shift Right Reg

IN in: BIT;

OUT out: BIT;

VAR s: [N] BIT;

BEGIN

s.0 := REG(in);

FOR i := 1 .. N−1 DO s.i := REG(s[i−1]) END;

out := s[N−1]

END Example5;

TYPE Example6(N); Shift Left Reg

IN in: BIT;

OUT out: BIT;

VAR s: [N] BIT;

BEGIN

s[N−1] := REG(in);

FOR i := 0 .. N−2 DO s.i := REG(s[i+1]) END;

out := s.0

END Example6;

0/0

0/4

e6

s.0out s.1 s.2 in s.3

e5

in

s.3out

s.0

s.1

s.2

Figure 5.14: Shift Register Example

5. Hades Software 82

TYPE Example8(N); ParallelToSerial

IN in: [N] BIT; read: BIT;

OUT out: BIT;

VAR s: [N] BIT;

BEGIN

s[N−1] := REG(read, in[N−1]);

FOR i := 0 .. N−2 DO

s.i := REG(MUX(read: s[i+1], in.i))

END;

out := s.0

END Example8;

0/0
e8

in.0

read
s.0out

in.1

read
s.1

in.2

read
s.2

in.3

read
s.3

Figure 5.15: Parallel to Serial Converter

TYPE CountElem; Counter Element

IN ci: BIT;

OUT q, co: BIT;

BEGIN

q := REG(q − ci); co := q * ci

END CountElem;

TYPE Counter(N); N−bit Up−Counter

IN ci: BIT;

OUT q: [N] BIT; co: BIT;

VAR c: [N] CountElem;

BEGIN

c.0(ci); q.0 := c.0.q;

FOR i := 1 .. N−1 DO

c.i(c[i−1].co); q.i := c.i.q

END;

co := c[N−1].co

END Counter;

0/0
c

ci

ci

q.0

c.0

ci

ci

q

co

q.1

co

c.1

ci

ci

q

co

q.2

c.2

ci

ci

q

co

q.3

c.3

ci

ci

q

co

Figure 5.16: Counter Example

5. Hades Software 83

TYPE AddElem; Full Adder

IN x, y, ci: BIT;

OUT s, co: BIT;

VAR h: BIT;

BEGIN

h := x−y; s := h−ci; co := MUX(h: x, ci)

END AddElem;

TYPE Adder; N−bit Adder

IN x, y: [N] BIT; ci: BIT;

OUT s: [N] BIT; co: BIT;

VAR add: [N] AddElem;

BEGIN

add.0(x.0, y.0, ci);

FOR i := 1 .. N−1 DO

add.i(x.i, y.i, add[i−1].co)

END;

FOR i := 0 .. N−1 DO s.i := add.i.s END

END Adder;

0/0
aadd.0

ci

x
ci

s

co

x
y h

add.1

ci

x
ci

s

co

x
y h

ci

x.0
ci

x.1

s.0

s.1

x.0
y.0

x.1
y.1

Figure 5.17: Adder Example

5. Hades Software 84

plied to the layout shown in Figure 5.16 and 5.17, for instance, the text shown in Program 5.12
is produced. This text can be copied into the Lola description, such that subsequent compi-
lation and placement steps of the program yield the desired placement. Note that the layout
information for a type is only displayed once, as all instances have the same placement (e.g.
c.0, c.1 andadd.0, add.1).

Program 5.12Textual Layout Information

c :: 1, 1; Counter
c.0 :: 0, 0; CountElem

q :: 0, 0;
co :: 0, 1;

c.1 :: 1, 0; CountElem
q.0 :: 0, 0;
q.1 :: 1, 0;
co :: 1, 1;

a :: 1, 3; Adder
add.0 :: 0, 0; AddElem

s :: 0, 0;
co :: 0, 1;
h :: 1, 0;

add.1 :: 0, 2; AddElem
s.0 :: 0, 0;
s.1 :: 0, 2;

The use of the layout editor and placement hints is exemplified in the pattern matcher
application in Section 6.2.

5.5.9 Floor Planner

In addition to the automatic placement algorithm we developed a simple floor planner. It
makes use of the placer, but omits the last stage of placement, namely, the placement of the top-
level instances and expression trees. Hence, all types are placed by the placement algorithm,
but top-level instances are placed by the user. Typically, the floor planner is used if a design
is too big to be placed automatically. The user can preplace certain components using a drag-
and-drop mechanism, then optionally adjust the placement of certain types, and finally back
annotate the Lola program with position statements. Then, a new compilation and placement
step will most likely yield a fully placed design. The floor planner was used during the layout
of the Wotan microprocessor presented in Appendix F.

5.5.10 Discussion

As will be shown in Chapter 6, the simple approach used by our placement algorithm leads
to very fast placement times at the cost of quality. However, for regular designs such as data-
paths, the array placement heuristic yields quite satisfactory results. The structure of the Lola
code is reflected in the quality of the placement in the sense that the algorithm performs quite
well on small types and small expressions. Large types and large expression trees result in
wasteful placement leaving many cells unused.

The placement of instances does not take into account the connectivity between these
instances. To improve this situation, a min-cut approach as described in [FM82] and [Kri84]
could be used, which gives good results at almost linear runtime costs.

5. Hades Software 85

It would be advantageous to be able to place only single types and edit them manually.
However, the Trianus framework currently does not support the duplication of types or the
creation of objects based on a type, except by using the Lola back-end to interpret the Lola
code tree. Hence, it is not possible to open the layout editor on a single type and improve its
placement. Our floor planner is an intermediate solution to this problem, but not a satisfactory
one. To implement libraries, the duplication of types is needed anyway, so the framework will
have to support it in the future.

5.6 Router

As mentioned in the introduction to this chapter, the router used in Hades is amaze-running
routerbased on the algorithm presented in [Lee61] and used in [Pfi92] (Section 5.3). Despite
being a brute-force approach known for a long time, it is the only practical algorithm that
meets our requirements. These are

• generality: the algorithm must be capable of routing all kinds of nets (two or more
terminals, various shapes)

• customizability: the user must be able to influence the algorithm in various ways (used
routing resources, direction of routing)

• adaptability: the algorithm must be adaptable to future routing architectures

A maze-running router finds a path between two cells (terminals) by considering all possible
paths between the two and choosing the cheapest one. The cost of a path is a combination
of distance and used routing resources. Rare routing resources cost more, e.g. a neighbor
wire is cheaper than a length-4 FastLANE wire, which is cheaper than a length-16 FastLANE
wire, etc.. Also, paths with bends, i.e. changes of direction, cost more than straight paths.
As the router enumerates the paths with incrementing costs, it will find the cheapest path first
and does not consider more expensive paths, which also connect the two terminals. Still, as
all possible paths must be considered, the runtime is quadratic in the distance between the
terminals. Various tricks can be used to limit this quadratic behavior, the effects of which are
discussed in Chapter 6.

5.6.1 The Algorithm

The router takes as input a placed design and routes all connections between cells (also called
nets). It finds a path from the source of a signal to all destinations of that signal. In the case
of the XC6200, it finds a path from cells generating a signal to the cells using that signal at its
inputs. It does this by routing connections point to point, i.e. nets with two terminals. If a net
has more than two terminals, such as one source and more than one destination, one connection
after the other is routed. The router sorts the type hierarchy topologically (innermost first) and
routes all nets in each type, propagating the resulting routing information to all instances of
that type using a type broadcast. As the module itself is also a type, it will be routed by this
process in the same manner. The router data structure is shown in Program 5.13 and the overall
structure of the algorithm is given in Programs 5.14 and 5.15. In those programs,r represents
a router data structure.

The router makes extensive use of the broadcasting mechanism. The following list ex-
plains some of the more subtle points of the algorithm shown in Programs 5.14 and 5.15. The
numbers in the list correspond to the numbers given in parentheses in the programs.

1. The user is allowed to insert wires into a design manually, for example, to preroute
certain nets. The extractor of the Trianus framework (cf. Section 3.3.6) is used to collect

5. Hades Software 86

Program 5.13Router Data Structure

Router = POINTER TO RECORD
module, type: TriBase.Type; module and type, which get routed
coord: TriBase2.Coord; list of wire coordinates for

type-based insertion
nets: TriNetTables.Table; table of nets to be routed
minU, minV, maxU, maxV: INTEGER;bounding rectangle
hierarchies: SET; routing resources, which are

allowed for routing
map: LeeMap; matrix of routing resources, used

for wave expansion
wires: SET; wire directions, which should be

considered for the marking of map
cost: INTEGER; current cost class for queue
queue: ARRAY CostClasses OF Node;circular priority queue of next

positions in the Lee-map
END;

these wires, attach them to the correct source node and insert them into the correct
instance. This is necessary for the correct functioning of the router. See [Geh97] for a
more detailed description of the extraction process.

2. Only types that have not yet been routed must be processed. This test is necessary, as
it is possible to use the router incrementally, whereby certain types might have been
routed during an earlier routing step.

3. As multiple instances of the same type are placed at different positions across the chip,
not all instances have the same routing resources available at the same relative position.
But since the instances are of the same type, they all must be routed the same way.
Consider the four instances of the same type shown in Figure 5.18. Ini1 we could use
the length-4 FastLANE signal to route the output of cells to the input of celld (as done
in i1r), however, ini2 this routing resource would not be available at the same position
(as shown ini2r). Therefore, the router first has to check what routing resources are
available when routing a type. This is determined by invoking procedureLegalHierar-
chies for each instance of the type to be routed. This procedure determines the position
of the first instance and compares the positions of all subsequent instances to that posi-
tion, excluding routing resources not available to all of them. Obviously, invoking this
procedure is not necessary when the module itself is routed.

4. A further problem with multiple instances of the same type is the fact that routing re-
sources crossing these instances, must be marked as used, as they are not available for
routing the current type. Consider again the instances shown in Figure 5.18. The neigh-
bor wires running upwards in the third column make the cell’s north output of the second
and third column unusable during the routing of the type. The north output is neither
available in the third cell ofi1 nor in the second cell ofi2, hence it is not available for
routing in the secondandthird cell of the type itself. Program 5.16 shows in detail how
the marking is accomplished, namely by usingtwo nested broadcasts, a type broadcast
for finding all instances of the current type and a bounded broadcast for marking the
wires intersecting the current instance.

5. Just as was the case in the mapper algorithm, the router has to process input variables
separately, as they are additional destinations of nets, which are not accessible from

5. Hades Software 87

Program 5.14Overview of Routing Algorithm I

PROCEDURE RouteSingleType(module, type);

PrepareRoute(module); extract manually inserted wires (1)
TriBase2.TopoSort(type, list);
WHILE list # NIL DO

thisType := list.type;
IF thisType.id # Routed THEN not yet routed (2)

msg.hierarchies := allowedHier;
IF module # thisType

collect legal hierarchies for routing (3)
msg.doNode := LegalHierarchies;
msg.type := thisType;
init u, v, minU, minV, maxU, maxV of msg
TriBase.Broadcast(module, msg, TriBase.SelType);
move thisType to coords of first instance
thisType.u := msg.u; thisType.v := msg.v

END;
NewRouter(r, module, thisType, msg.hierarchies);
IF module = thisType THEN

InitFromInst(r, module); mark used wires
RouteGlobals(r) route clock and clear signals

ELSE
mark all used wires, which run over current type’s instances (4)
msg.doNode := MarkWires;
msg.type := thisType; msg.router := r;
TriBase.Broadcast(module, msg, TriBase.SelType)

END;
collect all nets to be routed and store them into r
RoutePlacedNodes(r, thisType);

continued in Program 5.15

5. Hades Software 88

Program 5.15Overview of Routing Algorithm II

continued from Program 5.14

process all objects declared in thisType
obj := thisType.dsc;
WHILE obj # NIL DO

IF obj.fct = TriBase.Inst THEN
it is an instance
next assertion is guaranteed by topological sort
ASSERT(obj.id = Routed, 110);
connect inputs in obj with sources in thisType (5)
RouteInputs(r, obj(TriBase.Instance))

END;
obj := obj.next

END;
process list of nets to route and send a type broadcast (6)
RouteAndUpdate(r);
undo move of thisType
IF mod # thisType THEN thisType.u := 0; thisType.v := 0 END

END;
list := list.next

END

within the current type. Therefore, all instances contained in the type must be processed,
and all input signals of those instances must be connected to the sources which are
contained in the current type.

6. All nets to be routed are collected in a data structure rooted in the router data structure.
The nets are first sorted according to a distance criteria discussed in Section 5.6.3 and
are then routed using a Lee-map algorithm which is introduced in Section 5.1.3 and
described in more detail in Section 5.6.4. The information on wires that need to be
inserted into the Trianus data structure is stored in the router. After all nets have been
routed, this information is broadcast to all instances of the current type using a type
broadcast.

5.6.2 Finding the Nets

To find out which nets of a type need to be routed, all placed nodes of the type are traversed
sequentially using the list rooted intype.y (cf. Program 3.7). If a node represents a gate, itsx
andy subtrees point to the source signals read by that node. If the position of the source node
is different from the current node’s position, the net is appended to a list of to-be-routed nets,
which is rooted in the router data structure (fieldnets in Program 5.13). For each net, this list
contains the source and destination nodes, as well as the input, to which the source has to be
connected (e.g. the upper or the lower input of an AND-gate).

5.6.3 Scheduling the Nets

Once it is known, which nets have to be routed, the sequence in which the nets are routed has to
be determined. We choose a straightforward heuristic to determine this sequence.Shorter nets
are routed before longer nets, and nets with thesource and destination in the same row or the

5. Hades Software 89

0/0 4/0
i1

s
d

i1r

s
d

i2

s
d

i2r

s
d

Figure 5.18: Routing Resource Conflicts

Program 5.16Marking of Wires Running over Instances

Below, some necessary type guards have been left out for brevity.

PROCEDURE MarkWire(wire, VAR mark);

r := mark.router;
TriBase2.AbsWire(wire, wu, wv); absolute position of wire
DEC(wu, mark.minU); DEC(wv, mark.minV);
wu, wv relative position of wire to instance causing this broadcast
IF In(wire.to, r.wires) THEN only consider legal wires

mark wire position relative to type’s u/v
SetMap(r, r.type.u+wu, r.type.v+wv, wire.to, Used)

END

PROCEDURE MarkWires(inst, VAR msg);

ASSERT((inst.type = msg.type) OR (inst = msg.type), 100);
IF inst.type = msg.type THEN it is an instance, not the type itself

minU, minV contains absolute position of inst
TriBase2.AbsNode(inst, mark.minU, mark.minV);
bounding box of inst is stored into mark.r
mark.r.u := mark.minU; mark.r.v := mark.minV;
mark.r.w := inst.w; mark.r.h := inst.h;
mark.doWire := MarkWire; mark.router := msg.router;
send mark message to all wires, which intersect with mark.r
TriBase.Broadcast(msg.router.mod, mark, TriBase.SelRect)

END

5. Hades Software 90

same column are routed before other nets. Thisscheduling policyachieves quite satisfactory
results, in that it routes the nets in a similar way an experienced designer would. A good
scheduling policy is crucial for the performance of the router. Experience with this simple
policy was quite positive, especially since we did not schedule the nets at all in the beginning.
We refrained from examining alternative policies, but as they are so crucial to the performance
of the router, it might be worthwhile to try out different ones. A similar scheduling policy is
also used by [DM95].

5.6.4 Routing a Net

In the following, we explain the steps and data structures involved to route a single net, that
is, a connection from a source node to a destination node (also called terminals). As was
said before, the router uses a Lee-map to represent the routing resources. This is a two-
dimensional matrix of four routing resource entries, where each entry represents a routing
resource at a certain position in a certain direction; e.g. the length-4 FastLANE multiplexer in
north direction in column 15, row 4. The indices of the matrix are the horizontal and vertical
coordinates of the routing resource. A “wave” is spread in this map to find all possible paths
between two terminals.

Prior to routing, the map is initialized with the valueFree, indicating that all routing re-
sources are available. Then, already used routing resources, i.e. wires already present in the
Trianus data structure, are marked in the Lee-map withUsed. Finally, all wires that are be-
ing sourced by the source node and all neighbor outputs of the source node itself are marked
as possible destinations of the wave with the valueDest. The spreading of the wave in the
Lee-map can terminate as soon as a position marked asDest is encountered.

The spreading starts at the destination node, proceeding outwards in all directions until the
bounding rectangle (cf. next paragraph) is encountered or an entry marked asDest is found.
The spreading has to start at the destination node, since we might have multiple target positions
marked asDest. For each routing resource, which might be connected to the destination, all
possible sources feeding that routing resource are marked as well and the wave spreads from
those points further on. To ensure that once the source is found, a way back to the destination
can be constructed, the routing resource from which the wave spread is entered into the map
at the current position.

To limit the number of map points visited, abounding rectangleis used. If a type is routed,
the size of this rectangle is the size of the type’s bounding box (cf. Section 5.6.5). If the net
is in the top-level (module) the rectangle is made 1/4 larger on each side than the bounding
box spanned by the source and destination nodes (cf. Figure 5.19). If routing fails within this
rectangle, it is enlarged to the size of the chip and a new attempt is made. This two-phase
approach speeds up the routing of the top-level nets by a factor of two on the average.

A priority queueof points, from which the wave will spread further, is maintained. Each
queue element is weighed according to the current direction of wave spreading and the cost
of the routing resource (as was explained earlier). This priority queue ensures a breadth-first
spreading strategy of the wave and also helps to limit the use of costly routing resources and
bends (turns of the routing direction). For example, if the current routing resource is a neighbor
north multiplexer, then further possible points of spreading are the next north multiplexer
further south, the east multiplexer west of it and the west multiplexer east of it. In this case, the
spreading will continue with the south multiplexer, as the east and west multiplexers represent
a change of direction, which are penalized with a higher cost.

The spreading of the wave proceeds until an entryDest is found. Now, backtracing can
start. By examining the entries in the Lee-map, the path back to the destination node can
be constructed out of wire segments. The segments themselves are not yet inserted into the
Trianus data structure in the form ofWires, but the necessary information is attached to the
router data structure (coord field in Program 5.13). This is done so that only one update per

5. Hades Software 91

S

D

Full Chip Size

Bounding Box

of S and D

25% Wider and Taller

Figure 5.19: Growing of Bounding Box

type has to be made to the Trianus data structure using a type broadcast.
Program 5.17 summarizes the necessary steps to route a single net and the next section

explains the process with a small example.

Example

The routing of some expression trees was already shown in Section 5.5.7. For a detailed
example, consider Figure 5.20, whered has to be connected withs. In the following, numbers
written in italics refer to the numbers in the comments of Program 5.17.

First, the algorithm marks the elements of the Lee-map asFree and then marks the wires
to the left ofs and belowd asUsed (not available for routing). Then, the wires leavings to the
north (1) and the remaining neighbor outputs of cells (2) are marked as possible destinations
(with Dest). The algorithm starts to spread the wave atd, namely at the input multiplexer
for the upper input (3). Possible sources feeding that multiplexer are the neighbor outputs of
the cells to the north, south and east ofd, and the neighbor output of the switch to the west
of d. The neighbor output of the south cell is already marked asUsed and can therefore not
be used. Additionally, the length-4 FastLANE outputs of the switches to the north, south,
east and west are possible sources, which can be connected to the upper input multiplexer of
d. Therefore, seven elements are inserted into the priority queue of further wave spreading
points: three elements with equal weight, namely the south output multiplexer to the north of
d, the west output multiplexer to the east ofd and the east output of the switch to the west of
d, and four entries with higher weight — since these resources are rarer than neighbor routing
resources, namely the south output for length-4 FastLANE of the switch to the north and the
corresponding length-4 FastLANE outputs to the south, east and west ofd.

The algorithm then proceeds by removing the first element from the priority queue (5),
say the entry for the east output of the switch west ofd, and by spreading the wave (7, 9) at
that position (since it is not a destination,6). Further entries will be put into the priority queue
for all possible sources of that neighbor multiplexer at the switch, which are the north and
south neighbor multiplexer in column 3, the east multiplexer in column 2, length-4 FastLANE
routing resources in east and west direction and the length-16 FastLANE routing resource in
east direction. All these entries have their according weights, but increased by one compared
to the ones before, because these entries are farther away fromd. The remaining entries

5. Hades Software 92

Program 5.17Routing of a Net

PROCEDURE FindPath(r, src, dst, input, inst, VAR done);
route from src to input of dst, insert wires into inst

handle clock, clear and constant signals separately
mark all wires of src as destinations (1)
w := src.wire;
WHILE w # NIL DO

TriBase2.AbsWire(w, wu, wv);
SetMap(r, wu, wv, w.to, Dest);
w := w.next

END;
mark unused outputs of src as destinations (2)
FOR dir := North TO West DO

IF r.map[su, sv, dir].from>= Free THEN SetMap(r, su, sv, dir, Dest) END
END;
calculate bounding rectangle into r.minU, r.minV, r.maxU, r.maxV

find path by wave expansion: start from inputs of dst (3)
FOR dir := West4 TO North BY -1 DO QueuePos(r, du, dv, input, dir, 1) END;
LOOP

INC(r.cost); (4)
IF r.cost = MaxCost THENEXIT END;
GetPos(r, u, v, to, tu, tv, newTo); consider cells in cost class r.cost (5)
WHILE to # TriBase.Void DO

GetMap(r, u, v, to, mark);
IF mark.from = Dest THENEXIT found it, result in u, v, newTo, to (6)
ELSIFmark is free entryTHEN spread (7)

mark cell as visited, with direction where we came from (8)
SetMap(r, u, v, to, newTo, tu, tv);
Spread(r, u, v, to) (9)

END;
GetPos(r, u, v, to, tu, tv, newTo) (10)

END
END;
done := to # TriBase.Void;
IF done THEN generate path while backtracing (8)

WHILE not at dstDO
from := to; to := newTo;
append information for new wire to r.coord
PositionWire(r.coord, inst, src, u, v, from, to);
get next entry
GetMap(r, u, v, to, mark);
newTo := mark.from

END
END

5. Hades Software 93

0/0 4/0

s

g

d

Figure 5.20: Spreading of the Wave

with the current weight are processed (10, neighbor multiplexers to the north and east ofd)
before the weight is increased (4). Eventually, the east neighbor multiplexer of cell 2/2 will
be processed and the destination coming froms will be found (6). Now, backtracing can start
and since the algorithm stored the direction from which it was coming from in the Lee-map
(8), the path back to the destination can be constructed. Figure 5.21 shows the resulting route.

0/0 4/0

s

g

d

Figure 5.21: Resulting Route

5.6.5 Interactive Routing and Scripting

The user can influence the router in various ways. By setting or clearing flags, the user can
determine which routing resources are to be used. For example, when routing small types,
which cover more than four cells but should not use the length-4 FastLANE resources, their
use can be disallowed. Also, the user can let the router use the bounding box of the placed type,

5. Hades Software 94

or expand the type to the maximum possible size prior to routing. This expansion step is also
accomplished by using a topological sort of the type hierarchy, but this time, the outermost
type is expanded first. (Or rather, all instances of the outermost type.)

A single type can be routed, including all types contained in that type, to give the user the
possibility to try out different placements for a type, without having to route the whole design.
Also, single nets can be routed. This can be useful to be able to route certain nets manually
in order to impose an order on the use of routing paths. For high-performance designs, this
feature is essential. Chapter 6 and [Mul97] present some examples.

All routing commands can be recorded in ascript. This script is a simple text, which the
user can edit. Aplaybackcommand can be used to execute prerecorded routing steps. This
feature is useful when the router has to be used iteratively to obtain a routed design. If some
small change is made to the Lola program and the circuit is synthesized and placed again, the
user would have to re-enter all routing commands again manually. By using a script which
can be stored together with the Lola program, a design can be routed in the same way as in
a previous step. Scripts serve the same function in the router as position assignments in the
placer. The typical length of scripts is less than twenty commands.

As the ultimate measure for guiding the router, the user can insert wires manually into
the layout to enforce a specific routing. When switching from manual to automatic routing,
an extraction and verification step is necessary to ensure the consistency of the Trianus data
structure (cf. first note for Program 5.14).

5.6.6 Ripup

If a net cannot be routed, it is necessary to rip up (unroute) certain nets to make room for
a different route. This task is completely left to the user. No attempts are made to ripup
nets automatically. The user can ripup the whole design, only the top level (all nets in the
module), only instances of a selected type, or individual nets. Ripping up a type is an operation
accomplished in two phases: in the first phase, a type-broadcast is used to mark the wires that
need to be deleted in the type itself and all its instances, and in the second phase, all marked
wires in the design are removed.

Ripup should only be used during interactive routing to find a routing schedule for the
design. The schedule should then be recorded in a script and be associated with the design.

5.6.7 Discussion

The router is the most crucial piece of software in Hades. It relieves the user from the most
cumbersome task required for layout synthesis, namely connecting gates. We extended the
router of [Pfi92] to handle the newly available routing resources of the XC6200. Hence, we
had a working router after a short time. However, it turned out to be quite a large piece of soft-
ware, as all the special cases of the XC6200 routing architecture have to be considered. For
instance, at a FastLANE switch, the output of the length-4 FastLANE multiplexer is depen-
dent on the output of the neighbor multiplexer (shared routing multiplexer). This introduces
all kinds of special cases in the router during the spreading of the wave and also during back-
tracing. A more regular multiplexer arrangement, which might have used more silicon, would
have been advantageous, at least from a software engineering point of view. But as is often
the case in hardware design, certain “features” of the chip have to be fixed or by-passed in
software. See also Section 5.7 for a further problem of the architecture, whose solution was
deferred to software.

A second complication during the development of the router was the support for type-
based routing. Although it speeds up the routing of multiple instances by a factor proportional
to the number of instances of a type and is a worthwhile capability, the code to implement it
is quite complicated and needs profound knowledge of the Trianus data structure.

5. Hades Software 95

A resource of the XC6200 which we simply ignored is the “magic” routing resource
[Xil96]. It lets one of two inputs of the cell be routed to the next switch directly, by-passing in-
termediate cells. Its use in type-based routing is questionable, as all instances of a type would
be constrained to lie at the same position in a 4x4 block to make use of the magic resources.
Apparently, the usefulness of the magic resources is limited, as more often it is the function
output of the cell that has to be routed to the next switch quickly [Buc96] and not some input
signal of a cell. In engineering, whatever is called “magic” should be met with suspicion.

In our experience, almost all designs are routable after some iterations in the placement
phase. Certain nets may need to be prerouted by the user but almost always, this solves a rout-
ing or performance problem satisfactorily. The quick response of the router helps in making
an iterative design style viable. On a contemporary computer, the user seldom experiences
delays longer than one minute (cf. Section 6).

5.7 Bitstream Generator and Loader

Once a design is successfully placed and routed, the configuration bits for the SRAM of the
XC6200 can be generated. The configuration data of an FPGA is normally calledbitstream,
and we will use this term from now on. The XC6200 is the first FPGA architecture from
Xilinx, whose bitstream format is made public. Hence it is possible for third party vendors
and universities to develop their own bitstream generator and associated drivers for download-
ing the bitstream to the FPGA. We developed a board-independent bitstream generator and a
board-dependent driver module for the Hades coprocessor board. The separation into board
dependent and independent parts is important as it allows us to port the Hades software onto a
different XC6200 coprocessor board by only writing a new driver module.

5.7.1 Bitstream Generator Algorithm

The bitstream generator takes as input a fully placed and routed design. It issues a broadcast
to all placed nodes and wires of the data structure. The broadcast invokes a procedure for each
node to generate the configuration bits for a cell, and on each wire to generate the configuration
bits for the routing multiplexers. The configuration bits are stored into an array, which is a
mirror image of the XC6200’s configuration memory. This array of bytes can be stored into
a file for later use or downloaded directly onto the Hades hardware. Figure 5.22 depicts the
function unit of the XC6200. This is the same figure as in Section 2.3, repeated here for
convenience.

Inversion Compensation for Routing Multiplexers

The major problem during the development of the bitstream generator is the presence of in-
versions on routing multiplexers [Xil96]. We already mentioned this problem in Section 2.3.
A process calledinversion compensationhas to be implemented and executed for each cell
input, to determine the polarity of the input signal. Once this is done, the multiplexers of
the cell can be programmed such that the cell implements the desired function. For example,
if the cell should implementF := a ∧ b, we showed in Section 2.3 that the upper part of
Figure 5.23 implements the desired function, provided that the polarities of the input signals
are correct. If, for instance, thea input passes from its source to the destination cell through
an odd number of inverting routing multiplexers, the AND-function must be implemented as
shown in the lower part of Figure 5.23.

The whole process of inversion compensation is tricky and cumbersome to get right. There
is no systematic structure to the presence or absence of inversions on routing multiplexers, so a
large table for all possible cases has to be consulted. Again, a low-level detail of the hardware
makes the software complicated.

5. Hades Software 96

Clr

D Q

C

S

CS Mux

RP Mux

1

0

Y2

Y3

X3

X2

X1

Q'

F

Clk

Dynamic Mux

Figure 5.22: XC6200 Function Unit

Y2

Y3
X3 := a

X2 := b

X1 := a

˜MUX(a: ˜a, ˜b) = a AND b
0

1

Y2

Y3
X3 := b

X2 := ˜a

X1 := ˜a

˜MUX(˜a: ˜b, ˜a) = a AND b
0

1

Figure 5.23: Inversions on Inputs

5. Hades Software 97

Inversion Before the Register

A further complication arises from the inversion at the output of theRP Mux shown in Fig-
ure 5.22. If the cell should implementF := REG(a * b) the output of the central multiplexer
is inverted before being read by the register. Should the register see the values of an AND-
gate on its input, the central multiplexer must implement a NAND-gate to compensate for the
inversion at theRP Mux.

The inversion on theRP Mux is also the reason that the cell cannot implement all possible
functions of typeF := a op REG(F). This type of cell would implement a Moore-type state ma-
chine. However, several two-input gates and the multiplexer function cannot be implemented
this way. They store the inverted value of the function into the register, hence they implement
F := a op REG(˜ F). Xilinx realized this problem only recently and removed these classes of
functions from the data sheet.

Inversions and Input/Output Blocks

The biggest problem with inversion compensation happens in input/output blocks (IOBs).
While inversions on input signals to a cell can be compensated easily with theY2 andY3
multiplexers, there is no optional inversion possible in an IOB. Hence, it is not possible to
compensate an inversion caused by the routing multiplexers and, with it, the polarity of the
signal on the pad (to the outside world) might not be correct [Xil96]. We solved this problem
by requiring the presence of a buffer cell right next to the IOB (cf. Section 5.4). By configuring
the buffer cell accordingly, a possible inversion can be compensated. Note, however, that this
solution adds additional delay to all output signals. Another solution would be to invert the
signal at its source, but this is not a satisfactory solution to the user, as the inverted value of
what is expected would be read back during a state access through the processor interface.
Also, if the source is connected to another IOB, it might even be impossible to compensate
the inversion.

It is interesting (or rather, sad) to report that programmable inversions in the IO buffers
were left out for performance reasons [Kea96], but that the vendor’s design guidelines now
recommend the insertion of these buffer cells as well, causing additional delay.

5.7.2 Loader

Since the configuration bits for a design are stored in an array of bytes, it can be written to a
file or downloaded directly to the FPGA. When writing to a file, we use a simple algorithm
to compress the bitstream to 1/4 of its original size on average [BJL92]. The configuration
bits are downloaded to the XC6200 FPGA using 32-bit transfers where possible. A clear
separation between the low-level interface to the hardware and the hardware independent parts
of the loader make it easily retargetable.

5.7.3 Discussion

While not difficult in principle, the development of the bitstream generator was tricky due to
the presence of inversions on the routing multiplexers and inside the logic cell. It is these
“features” of hardware that contribute to software bloat. As of now, the bitstream generator
and loader lacks support for partial reconfiguration of the hardware and for making use of
the wildcard registers of the XC6200 (cf. Section 2.3.4). These features can be useful for the
implementation of an operating system for the XC6200 like the one described in [Bre96]. The
unit of reconfiguration would be a placed and routed instance, where input and output would
occur only through padless IO, i.e. using buried inputs and outputs (cf. Section 5.4).

5. Hades Software 98

5.8 Runtime System

A reconfigurable coprocessor is of little use if it cannot be accessed in a convenient way from
the software side. In Hades, the coprocessor application is described in the form of a Lola
program. Interaction between the host and the coprocessor is only possible through input and
output signals defined in the Lola program. These signals can be implemented using IOBs, i.e.
physical connections between the FPGA and the bus (cf. Section 4.5.1) or as logical inputs and
outputs in the form of buried IOs (cf. Section 5.4). The latter is more flexible and the preferred
way of interfacing with a coprocessor application in Hades. The advantages of buried IOs are
the following:

• No wiring to IOBs is needed.

• The application is relocatable within the FPGA.

• The application is portable to different hardware platforms using the XC6200 FPGA.

5.8.1 Automatic Interface Generator

Hades features an automatic interface generator. It generates an Oberon module from a Tri-
anus data structure. Such an interface module constitutes adriver modulefor the hardware
application. The module contains variable definitions of interface objects representing Lola
variables in the design. Each interface object has associated with it a map register value and
a column position. Arrays of bits are translated into correspondingly sized basic types of the
Oberon language. For instance, a bit vector of length-16 is represented by an interface object
of type Int. Type-bound procedures are used to read and write the values. Writing a value
only makes sense if the object represents a register. A write has no effect on combinational
logic gates as long as the register is not used for constant generation in these gates [Xil96].
Program 5.18 shows an excerpt of the interface generator. Types are derived from a generic
typeInterface and represent the basic types of Oberon (such as CHAR, INTEGER, etc.).

Once an Oberon module is generated for a coprocessor application, the software program-
mer can use interface objects to safely interact with the application. The interface preserves
type-safety on the software side, as no low-level features of the Oberon language must be used
to interact with the hardware part of the application. Obviously, type-safety on the hardware
part is non-existent, as untyped bit values are manipulated. The software programmer can
augment the automatically generated interface with additional code, for instance, to initialize
an array of bytes with one procedure call.

In Chapter 6, an interface for a pattern matcher application is automatically generated and
used to steer the data flow to and from the application.

5.8.2 Future Work

Every computer has an operating system managing its resources, such as disks, graphics and
input/output devices. A coprocessor as defined in Section 1.1 is not managed by the operating
system, but by the programming language compiler (e.g. a floating point coprocessor) or by
the programmer in the form of a library (e.g. a digital signal processor, graphics coprocessor).
A reconfigurable coprocessor (RC), however, is a resource changing its “behavior” when it
is reprogrammed. Therefore, a runtime system is needed to manage this resource in a way
transparent to the user. The first paper analyzing these issues in detail is [Bre96].

In its current form, the runtime system of Hades is sufficient for the manual loading of an
RC application and interaction through interface objects. It is the software programmer or the
client of the RC application, who initiates the loading of the necessary bitstream onto the RC.

The runtime system should provide more support for these tasks. It has to be known, what
application is currently loaded on the coprocessor in order to know if a software request results

5. Hades Software 99

Program 5.18Interface Objects

TYPE
Interface = POINTER TO InterfaceDesc;
InterfaceDesc = RECORD

next: Interface; interface objects can be linked
name: ARRAY 32 OF CHAR; name of variable in Lola
map: XCBoard.MapRegister; relevant bits
col: INTEGER; column where this value resides in
read value from column col using map register map
PROCEDURE (VAR i: InterfaceDesc) Read;
write value to column col using map register map
PROCEDURE (VAR i: InterfaceDesc) Write;

END;
...

Int = POINTER TO CharDesc;
IntDesc = RECORD (InterfaceDesc)

val: INTEGER; value being read and written
PROCEDURE (VAR i: IntDesc) Read;
PROCEDURE (VAR i: IntDesc) Write;

END;
...
PROCEDURE InitDescriptor(VAR i: InterfaceDesc;

name: ARRAY OF CHAR; map: XCBoard.MapRegister; col: INTEGER);
PROCEDURE SetMap(VAR i: InterfaceDesc);
is map register value of sub a subset of of?
PROCEDURE SubMap(VAR sub, of: InterfaceDesc): BOOLEAN;

5. Hades Software 100

in the loading of a new hardware module. This and other information about an RC application
should be stored in an application descriptor, to answer questions such as

• Where on the RC is the application located and how much area does it occupy?

• Does the application use IOBs to interface with the host?

• Does the application use the on-board SRAM?

• Are interrupts used?

All of this information is present in a Trianus data structure. It has to be distilled into an
application descriptor, which can be stored together with the configuration bitstream to a file
or into a program module.

5.9 Support Modules and Genericity in Oberon

5.9.1 Data Structure to Store Temporary Data

The Trianus framework implements a data structure that contains enough information to repre-
sent an FPGA design. If certain algorithms require additional information associated with the
nodes and wires occurring in the data structure, these algorithms must manage this additional
information themselves. Both, the placer and the router are tools that require such additional
data structures. We developed a module, which defines a data structure and operations on it
supporting both the placer and the router. It is a simple linear list of node and coordinate pairs,
which is used to store temporary information about wires and nodes that are to be inserted
into theTriBase data structure during a type-broadcast (cf. Section 5.5 and Section 5.6). For
efficiency reasons, a hash table accessed by the coordinate pairs is superimposed on the list to
speed up the search for already inserted wires during routing. This hash table speeds up the
routing of nets with high fanout by a factor of 3. Such a simple hash table could also be used
to reduce the time needed to locate nodes and wires in theTriBase data structure, a problem
already mentioned in Section 3.4.

5.9.2 Table Modules

A table module was implemented to store coordinates of already placed nodes. The table
supports dynamic growth, i.e. when new data is inserted, the table grows in size when needed.
For the implementation of the net sorting algorithm in the router, a similar container data
structure with different contents was needed (cf. Section 5.6.3). Here, the lack of support for
generic types in the Oberon language became apparent, as the two modules were identical
except for the type they stored. Developments such as [RS97] will make the Oberon language
more suitable for the development of general data structure container modules. Currently, the
language and the Oberon System lack support for this.

5.9.3 Xilinx Software Interface

Together with Marco Sanvido the author wrote a tool to produce CFG configuration files,
which are used by the Xilinx XACT step Series 6000 software. Using this tool, it is possible
to generate a design within the Trianus system, and use the Xilinx software to place and
route the design. This is useful for comparing the Hades and XACT back-end tools. The
converter makes use of two other data structure modules, which are very similar. One is to
store associations between strings and strings and one is for associations between integers
and strings. Again, both modules could be merged, if generic types would be available in the
Oberon language.

5. Hades Software 101

5.10 Quantitative Issues

In this section, we evaluate the complexity of the Trianus and Hades systems and compare
them to the commercially available tools for the XC6200 FPGA available from Xilinx. We
also analyze the memory consumption of the tools when a large coprocessor application is
compiled, placed and routed.

5.10.1 Code Complexity

In the following tables, we list the number of source code lines (Lines), the number of state-
ments as reported by the Analyzer tool (Statements) and the number of bytes of object code
for the Intel i386 processor (Object). We believe that the number of statements is a better
measure for source code complexity than the number of lines of code, as it is independent of
the coding style and the presence of comment lines in the source code.

Table 5.2 presents the data for the Hades back-end modules. The router and the loader
are by far the largest modules of the back-end. Each constitutes more than half the size of
the respective subtotals. This clearly is a sign for the additional complexity introduced with
hierarchical routing and the architecture’s irregularities and peculiarities.

Module Lines Statements Object

XCMapper 635 442 10437
XCPlacer 1265 886 20358
XCFloorPlanner 112 69 1947
XCRouterBase 1381 1152 25355
XCRouter 1231 865 16463
Hades 182 141 2645
Subtotal 4806 3555 77205

XCDriver 372 211 1943
XCBoard 576 266 5187
XCLoaderBase 1575 925 23387
XCLoader 844 733 16735
HadesInterface 199 49 1266
HadesInterfaceGen 309 266 4678
Subtotal 3875 2450 53196

Total 8681 6005 130401

Table 5.2: Hades Software Size

Table 5.3 lists the sizes of the Lola compiler (front-end), the Trianus front-end (including
the Lola compiler back-end, the data structure and the checker and editor frameworks), the
editor and checker for the XC6200 FPGA and the timing analyzer. It also lists the total size of
the Trianus and Hades system and compares it to Version 0.3.5 of the XACT step Series 6000
software from Xilinx Development Corporation, Scotland. XACT is bigger by a factor of 2
and does not include a runtime system, a driver for a coprocessor board or an architecture-
independent framework. However, it features a placer using various algorithms such as min-
cut, simulated annealing and constructive placement. Also, the router supports the Magic
routing resource and makes use of the shared configuration RAM in a length-4 FastLANE
switch [Xil96]. The latter is a constraint in the routing architecture, which the XC editor back-
end of Trianus does not support (cf. Section 5.6.7). In this table, we also give the size of the
object code for the Ceres workstation.

5. Hades Software 102

Subsystem Modules Lines Statements Object (Ceres)

Lola Compiler 2 780 946 15289 10184
Trianus Front End 18 7270 5789 127931 81388
XC Editor+Checker 9 5428 4406 96235 70020
Timing Analyzer 6 3630 3433 68217 50032
Support 8 2469 1620 39679 25340
Subtotal 43 19577 16194 347351 236964

Hades 12 8681 6005 130401 99548

Total 55 28258 22199 477752 336512
XACT - - - 1046528 -

Table 5.3: Total Size of Trianus/Hades System

It is interesting to note that the Trianus front-end is quite large when compared to the
rest of the system. This indicates that a lot of functionality in a CAD system can be made
independent of the target architecture.

To put the Trianus and Hades systems into perspective, Table 5.4 lists the size of the
Oberon-2 compiler for the Intel i386 architecture, which is about a third of our tools.

Modules Lines Statements Object

Compiler 10 11954 8705 165880

Table 5.4: Oberon Compiler Size

On a quantitative issue, Intel object code size divided by number of statements consistently
gives a factor of 22. Intel object code is roughly 40% larger than object code for the Ceres
(National Semiconductor 32000). The ratio of number of statements to number of lines of
code is roughly 75%. But this ratio varies between 65% and 120%, indicating different coding
styles. Therefore, the number of statementsis a better measure for source code complexity.

Comparison to CALLAS

Cuno Pfister and Beat Heeb implemented a system similar to Trianus/Hades for the Algo-
tronix CAL architecture [Hee93, Pfi92]. Table 5.5 compares the back-ends of the CALLAS
and Hades systems. As can be clearly seen, the additional complexity of the XC6200 FPGA
reflects itself in the complexity of the loader and the router software of Hades. In addition,
the more complex, but also more flexible, Trianus data structure adds complexity to the algo-
rithms. The increase in the number of statements and object code is nearly a factor of 4. These
are quite high costs for the support of the supposedly moderately more complex XC6200
FPGA.

5.10.2 Memory Consumption

We measured the memory consumption of the Trianus front-end and the Hades back-end dur-
ing the compilation of the big pattern matcher (16x12) described in Chapter 6. Table 5.6 sum-
marizes the data. All numbers are in Kilobytes and were measured under Windows Oberon,
Version 2.0 from the University of Linz. The total does not take into account that some of the
memory consumed in previous stages might be recycled by the garbage collector.

5. Hades Software 103

Hades (Stats) CALLAS (Stats) Hades (Obj) CALLAS (Obj)

Mapper 442 - 10437 -
Placer 886 275 20358 5985
Router 2017 726 41818 15795
Loader 1658 407 40122 8838

Total 5003 1408 112735 30618

Table 5.5: Comparison to CALLAS

Phase KB

Lola Compilation and Expansion 947
Mapping 98
Placing 182
Routing 960

Total (without GC) 2187

Table 5.6: Memory Consumption for Compiling PatternMatch 16 x 12

The memory requirements of the tools are moderate. During expansion of the Trianus
data structure, many nodes are allocated resulting in quite substantial memory requirements
of the final data structure. The pattern matcher application contains 3048 cells, which roughly
corresponds to about 3500TriBase Nodes. Additionally, the design contains about 3000 labels
(TriBase Objects).

Most memory requirements of the Hades back-end can be attributed to the router. It allo-
cates a Lee-map for the wave expansion on three hierarchical levels for a chip of dimension
64x64. 8299 nets have to be routed and temporary storage has to be allocated.

Still, even for an application filling most of an XC6216 FPGA, the 2 MB of memory are
very moderate if compared to commercial tools. This statement is supported by the fact that
we developed and used the Hades software on a Ceres-2 with only 4 MB of main memory.
It is remarkable that a “small” and “slow” machine is sufficient to place and route a design
for which the commercially available tools require a PC with a Pentium processor with 16 or
better 32 MB of main memory (cf. Table 6.5).

5.11 Experiences with Our Programming Methodology and
Oberon

5.11.1 Defensive Programming Pays Off without the Costs

As was stated in Section 5.2, we used defensive programming techniques to develop the Hades
software. Upon first sight, checked preconditions and assertions in the program code may in-
cur high runtime overheads if they are executed frequently. Also, index checks are believed by
some programmers to slow down program execution considerably. To measure these effects,
we compiled the whole Trianus and Hades system without index and assertion checks and
compiled, placed and routed the big pattern matcher application from Table 6.5. The differ-
ence in runtime was only 5%. Normally, the effect of caching on the performance of software
is much larger than index and assertion checks.

In conclusion, it is our belief that programming with assertions pays off. We have no
quantitative measure for how much time was saved during testing, but the source of an error

5. Hades Software 104

was much more quickly localized by knowing which precondition, assertion or index check
failed, than by having to single-step through the code to know where a false calculation was
made. Therefore every programmer should enable index checks and insert assertions at crucial
points in the code, provided that the programming language has semantics that allow for index
checks (C does not!).

5.11.2 Garbage Collection

For Oberon programmers an old hat, but for programmers switching from C and C++ to Java
an enlightenment, is the availability of a garbage collector, i.e. of automatic memory reclama-
tion. An extensible system can only be developed successfully, if the programmer can allocate
memory at will and release it again simply by removing references to it.

5.11.3 Oberon-2 Language

Hades is written in Oberon-2 [MW91]. Type-bound procedures are only used in the interface
generator, to allow the programmer to extend the read and write methods with additional code.
Dynamic arrays and the read-only export are used quite extensively, especially in the support
modules and the router. Oberon-2 is an elegant language whose only downside is the lack of
genericity for defining container data structures.

5.11.4 Oberon System

The Oberon System Version 4 is our host platform. Its availability on most computers and
operating systems is beneficial to the spread and acceptance of the tools by other researchers
and developers. The Oberon System makes for a very productive programming environment
due to its fast compilation times and integrated environment. The system can be extended very
easily and new toolets (small tools) can be developed in very short time. An example of such a
toolet is the floor planner, which allows the manual placement of instances. It was developed
in an afternoon. Another example is a viewer associated with an Oberon background task.
The viewer displays information about the location of the mouse in a design, such as the name
of the label, the function of the cell or the cell coordinates. It was developed in half an hour.

A drawback of the Oberon System Version 4 is the lack of a reference implementation.
When porting our tools from one platform to another, ever so often small adjustments had to
be made.

5.12 Discussion

Hardware synthesis is a difficult problem and may never be as fast as software synthesis (i.e.
object-code generation). The layout problem alone is more difficult, as it is two-dimensional
whereas in software it is one-dimensional (placement of instructions in the instruction stream).
Hence, it might always be necessary that designers must resort to low-level descriptions of
hardware, including placement information, to achieve high performance and density. Simi-
larly, in software, programmers sometimes have to resort to assembly language to reach higher
levels of performance. To support this design style, the current Hades software provides for a
very fast design cycle and lets the user exert tight control over the design process.

As we develop good, reusable libraries, fewer and fewer gates have to be placed manually
using the layout editor. Data-path elements should be preplaced and prerouted. In the end,
only the placement of state-machines and other control logic might need manual assistance.
For this, a simulated annealing approach might be viable. For the placement of instances, a
min-cut algorithm such as the one in [Kri84] should be implemented and evaluated.

5. Hades Software 105

Once library components are used, the placer will be constrained in choosing the place-
ment for already routed instances, as it must take the routing resources used by the instance
into account. For example, an adder type using length-4 FastLANE in the vertical direc-
tion will be constrained to a specific vertical position with respect to the switches driving the
length-4 FastLANE signals. This information must be gathered prior to placement. Currently,
it is gathered prior to routing.

Another area where further improvement is possible is the inclusion of timing constraints.
The placer might use timing information to determine which gates should be close to each
other, although our simple approach already performs quite well, as it places the gates in the
order they are connected. The router might use timing constraints to sort the nets according to
their criticality.

Runtime systems and suitable languages for the development of reconfigurable coproces-
sor applications are two areas where much work is needed in the future and where considerable
improvements must be made to bring this technology into the hands of software programmers.

6 Application and Evaluation

A large body of literature exists demonstrating the usefulness of configurable hardware to ac-
celerate applications. The yearly IEEE Workshop on FPGAs for Custom Computing Machines
is the main conference on this subject.

In this chapter, we use the Hades software to develop a coprocessor application running on
the Hades reconfigurable coprocessor board. We present performance data of the Hades soft-
ware tools and put them into perspective to the commercially available tools for the XC6200
FPGA. In Appendix F, we implement a small microprocessor on the XC6200. Hades was also
used by other groups to develop libraries of arithmetic circuits and DSP algorithms. A short
overview of their work is given.

All timings in this chapter were conducted on a Dell OptiPlex XL 5120 PC, equipped with
an Intel Pentium CPU running at 120 MHz, with 256 KB of second level cache and 32 MB of
main memory. We used Windows 95 from Microsoft and Oberon for Windows V4.0-2.0 from
the University of Linz.

6.1 Applications Running in Hardware

Coprocessor applications consist of a hardware part and a software part. The software imple-
ments the control part of the application, steering the data flow to and from the reconfigurable
coprocessor. It also implements the user interface of the application, i.e. it makes the copro-
cessor accessible to the software programmer. The hardware typically implements that part of
the whole application, which accounts for most of its runtime. Good candidates for operations
to implement in hardware are inner loops or whole procedures (subroutines) being executed
many times. These operations should consist mainly of integer and bit operations and should
contain only a small amount of control logic. Hardware in general is profitably used for highly
parallel, repetitive applications of primitive operations. If an application processes a stream of
regular data, such as a pixel bitmap, and applies simple operations on it, such as convolution,
it can most likely be sped up using hardware.

To make the hardware part of an application usable and accessible to the software, a driver
must be written for it. Ideally, this driver should be generated automatically such that a soft-
ware programmer can simply invoke interface procedures to communicate with the hardware.
In some cases, however, it is necessary that the driver module be adapted and extended to spe-
cific needs. Hades eases this task in that it can automatically generate a driver module, which
abstracts from the low-level hardware details of the application. The software programmer
can then use this driver and augment it with more powerful interface procedures.

6.2 Pattern Matching Application

Pattern matching is an important application area of computers. Many applications of recon-
figurable hardware exist in the field of image recognition and classification [CAC96, Guc95,
VSC96]. These applications often run in phases, where the hardware is reconfigured between
the phases thus reusing the available silicon.

106

6. Application and Evaluation 107

One type of pattern matching is text searching [Ber93, PTS93, VBR96]. For example, a
text editor has a function for searching for a pattern in a text, most operating systems provide
a tool for searching a pattern in files (e.g. grep in Unix, Find in Oberon). And with the wide-
spread use and availability of the Internet, searching through large amounts of data such as
electronic news becomes a daily task for computer users. A text search application using a
reconfigurable coprocessor board to find relevant articles based on user profiles in the daily
news feed is presented in [GMN96].

6.2.1 Problem Statement

In the following, we build a simple pattern matcher optimized for finding one or more patterns
in a text stream composed of 8-bit characters. To reduce the space requirements and add
tolerance to the search, these 8-bit characters are mapped to 5-bit characters using the mapping
shown in Table 6.1. In hardware, this results in a reduction in area, whereas in software,
nothing can be gained.

6.2.2 Software Solutions

In text searching, it has to be determined whether one or more patterns occur in a stream of
data and if so, the patterns are to be located. For single patterns, software solutions use an
algorithm such as [BM77, CLR90] to find a pattern. If multiple patterns are to be sought, a
finite automaton can be used [ASU86, CLR90]. To implement the aforementioned mapping,
the text stream has to be preprocessed using a mapping table.

6.2.3 Hardware Solution

In hardware, a pattern is compared to a stream of data using a comparator circuit which tests
for Boolean equivalence of the bits representing the data and the pattern, respectively. Since
parallelismis easily implemented in hardware, we can detect the occurrence of one or more
patterns by implementingmultiple comparator circuits. A 3x3 pattern matcher is shown in
Figure 6.1. It has 3 patterns each of length 3. The data flow is very regular and little control
logic is needed. The text is simply streamed by the comparator circuits, which detect a match.

Grey boxes in Figure 6.1 represent loadable registers and the boxes with an equal sign
represent comparator circuits. The box with the plus sign represents an OR-gate, which de-
tects a match calculated by any one of the comparators. ThePreprocess box implements the
character mapping shown in Table 6.1. In the following, we develop the Lola code for this
application and use the Hades software iteratively to place and route the pattern matcher.

6.2.4 Overall Structure

Each 8-bit data character is first loaded into a register, then mapped to a 5-bit character using
the mapper circuit shown in Program 6.2, and finally loaded into a 5-bit data register. This
data register is compared to the corresponding pattern register, which is loaded beforehand.

In our implementation, four data characters at a time are loaded into a 32-bit wide input
register. A matching step consisting of 4 cycles is started. It loads a mapped character into the
5-bit data register and shifts the other characters by one position. After 4 such shifts, another
4 characters are loaded and shifted. The result is read back and a match in the previous 8
characters can be detected. Program 6.1 lists a pseudocode description of this process.

A more detailed description of the software part and the interface is given in Section 6.2.10.

6. Application and Evaluation 108

PatternsData

Match

Length

of

Pattern

Preprocess

Figure 6.1: Pattern Matcher

Program 6.1Control Flow as Seen From Software

load patterns
WHILE data availableDO

load 4 characters into input register
perform 4 shift steps, comparisons happen
load 4 characters into input register
perform 4 shift steps, comparisons happen
read back result
report matches in 8 previous characters

END

6. Application and Evaluation 109

6.2.5 Preprocessing

To be case insensitive our pattern matcher works with 5-bit characters. Before we put them
into the circuit we preprocess the patterns according to the mapping shown in Table 6.1. For
performance reasons, the data stream is preprocessed in the circuit itself since the source of
the data might be a network adapter in which case the data should not have to pass through the
CPU.

Char 8-bits 5-bits

A 65 1
..
Z 90 26
a 97 1
..
z 122 26
0 48 31
..
9 57 31

Rest 0

Table 6.1: Mapping of 8-Bit to 5-Bit Characters

Program 6.2 shows the logic equations implementing the mapping. We tabulated the bit
mappings manually and used a logic minimization program [Hof96] based on the Quine-
McCluskey method to find a minimal expression tree for each output bit. To reduce the result-
ing circuit, subexpressions such ast1x0xxxx were defined manually.

Figure 6.2 shows the default placement of an instance of theMapper type as obtained from
Hades. The expression trees are spread out and the resulting instance is quite big: 38 cells
in an area of 8x14 with 34% utilization. The layout is routable but can be reduced in size
manually. The input to output delay of the mapping function is 17.5 ns.

Next, we preplace all output and variable signals with the help of position assignments to
obtain the improved placement shown in Figure 6.3: 38 cells in an area of 5x15 with 51%
utilization. The delay is increased to 21 ns. A further reduction in size can only be achieved, if
we break up longer expressions into named subexpressions, which we can then preplace with
position assignments. Ideally, to have optimal control over the layout, each operator in Lola
should have a name, which can then be placed manually. However, this is too cumbersome and
not needed in most cases. Since only one instance of theMapper type exists in our application,
the layout shown in Figure 6.2 is sufficiently dense for our purpose.

6.2.6 Comparators

Figure 6.4 shows the schema of a 5-bit comparator circuit. The data bits are compared to the
pattern bits using XNOR-gates. These are linked together with an AND-gate tree, which is the
fastest way to implement a high fan-in AND-gate. The last AND-gate (e.3.0) will have a value
of one, if and only if each data bit (d.i) has the same value as its corresponding pattern bit (p.i).

Program 6.3 shows the Lola type for that comparator (x andy are the bit vectors to be
compared).

Figure 6.5 shows the placement of an instance of theComparator type. It is composed of
three arrays and the resulting placement, thanks to the array heuristic, is quite satisfactory: 9

6. Application and Evaluation 110

Program 6.2Mapping of 8-Bit to 5-Bit Characters

TYPE Mapper;
IN in: [8] BIT;
OUT out: [5] BIT;
VAR

t1x0xxxx, t1xx0xxx, t1xZZxxx,
t1xxx0xx, txxxx0ZZ, tx11xxxx,
numeric: BIT;

BEGIN
t1x0xxxx := in.6*̃ in.4;
t1xx0xxx := in.6*̃ in.3;
t1xZZxxx := t1x0xxxx+t1xx0xxx;
t1xxx0xx := in.6*̃ in.2;
txxxx0ZZ := ˜ in.2*(˜ in.1 + ˜ in.0);
tx11xxxx := in.5*in.4;
numeric :=˜ in.6*tx11xxxx*(˜ in.3 + ˜ in.2*˜ in.1);

out.0 :=˜ in.7 * ((t1xZZxxx + t1xxx0xx*˜ in.1)*in.0 + numeric);
out.1 :=˜ in.7 * ((t1xZZxxx + t1xxx0xx*˜ in.0)*in.1 + numeric);
out.2 :=˜ in.7 * (t1xZZxxx*in.2 + numeric);
out.3 :=˜ in.7 * (t1x0xxxx*in.3 + in.6*in.3*txxxx0ZZ + numeric);
out.4 :=˜ in.7 * (tx11xxxx*(˜ in.3 + ˜ in.2*˜ in.1) +

in.6*in.4*(˜ in.3 + txxxx0ZZ))
END Mapper;

Figure 6.2: Mapper Circuit without Placement Hints

6. Application and Evaluation 111

Figure 6.3: Mapper Circuit with Placement Hints

d.4

d.1

d.2

d.3

d.0

p.4

p.0

p.1

p.2

p.3

cmp.0

x.0

x.1

x.2

x.3

x.4

y.0

y.1

y.2

y.3

y.4

e.0.1

e.0.2

e.0.3

e.0.4

e.0.0 e.1.0

e.1.1

e.1.2

e.2.0

e.2.1

e.3.0

Figure 6.4: Comparator Schema

6. Application and Evaluation 112

Program 6.3Comparing Two 5-Bit Characters

TYPE Comparator(Place);
CONST N := 5; Log := LOG(2*N-1)+1;
IN x, y: [N] BIT;
OUT eql: BIT; eql = (x = y)
VAR e: [Log][N] BIT;

BEGIN
Xnor-gates
FOR i := 0 .. N-1 DO e.0.i :=̃ (x.i - y.i) END;
e.1.0 := e.0.0; first level of And-gates
FOR i := 1 .. 2 DO e.1.i := e.0[2*i-1] * e.0[2*i] END;
e.2.0 := e.1.0; second level
e.2.1 := e.1.1 * e.1.2;
e.3.0 := e.2.0 * e.2.1; third level
eql := e.3.0

END Comparator;

cells in an area of 4x5 cells with 45% utilization. The initial placement is routable and has a
delay of 12 ns.

0/8

cmp

x.0
y.0

x.1
y.1

x.2
y.2

x.3
y.3

x.4
y.4

e.0.0

e.0.1

e.0.2

e.0.3

e.0.4

e.1.0e.2.0

e.1.1

e.1.2

e.2.1

e.3.0eql

Figure 6.5: Comparator Circuit without Placement Hints

Since the comparator circuit is so central to the size and performance of our pattern
matcher, it is advantageous to optimize its layout manually. With the layout editor, a good
placement can be found quickly. It is shown in Figure 6.6: 9 cells in an area of 2x5 cells with
90% utilization. Luckily, the size of the tree structure is small enough that all AND-gates fit
into one column of the same height as the one containing the XNOR-gates. Note that one cell
remains free, which can be used to chain comparators together to form larger comparators (as
will be done subsequently).

The initial routing, shown on the left in Figure 6.6, is not optimal due to the routing
scheduling algorithm, which routes the connectione.0.0 to e.3.0 beforee.0.1 to e.1.1. A
small routing script can be used to remedy this situation. The result is shown on the right in
Figure 6.6. Note that only neighbor routing resources are used to route the type, since many

6. Application and Evaluation 113

0/8 4/8

initial

e.0.0x.0
y.0

e.0.1x.1
y.1

e.0.2x.2
y.2

e.0.3x.3
y.3

e.0.4x.4
y.4

e.1.0e.2.0

e.1.1

e.1.2

e.2.1

e.3.0eql

final

e.0.0x.0
y.0

e.0.1x.1
y.1

e.0.2x.2
y.2

e.0.3x.3
y.3

e.0.4x.4
y.4

e.1.0e.2.0

e.1.1

e.1.2

e.2.1

e.3.0eql

Figure 6.6: Comparator Circuit With Initial and Final Routing

comparators at different locations exist and the routing resources at these locations differ. The
delay of the left circuit in Figure 6.6 is 10.4 ns and the delay of the right circuit is 9.5 ns.

6.2.7 Registers

Pattern registers are implemented with buried registers. These make use of the processor
interface, a unique feature of the XC6200 FPGA. The patterns are directly loaded into the
registers without passing through I/O buffers.

The 8-bit and 5-bit data registers have a load enable signal, which is used to implement the
shift steps mentioned in Section 6.2.4. Data is loaded through the processor interface into the
32-bit (4 x 8-bit) input register. Again, no I/O buffers are needed to do that. If the data would
be copied directly from a network adapter, I/O buffers might be used to route the data to the
input register.

Program 6.4 shows the two Lola type definitions for buried and loadable registers. Note
that we could have the technology mapper implement buried registers for us, by simply declar-
ing them as global inputs (cf. Section 5.4). But we would like to define a pattern register in a
type, such that an instance of such a type represents a register of a certain bit-width.

The array placement heuristic places the registers optimally, i.e. the bits vertically on top
of each other. They are hence easily accessible through the processor interface and can be read
or written in one access cycle. Figure 6.7 shows the resulting placement of an 8-bit data input
register, a loadable 5-bit mapped data register and a 5-bit pattern register.

6.2.8 Connecting Everything

Now that the building blocks are defined, we connect them together and define the control
logic, which steers the data flow in the application. Programs 6.5 and 6.6 show the Lola
program of the final pattern match application, which implements 2 pattern matchers each of
length-4 (2x4). This application together with a software driver is used for the performance
analysis in Section 6.2.11.

The following list explains some points in the code of Programs 6.5 and 6.6. The numbers
in the list correspond to the numbers in parentheses given in the programs.

6. Application and Evaluation 114

Program 6.4Loadable and Buried Registers

register of N bits, loadable with control signal
TYPE LoadReg(N);

IN ld: BIT; d: [N] BIT;
OUT q: [N] BIT;

BEGIN
FOR i := 0 .. N-1 DO q.i := REG(ld, d.i) END

END LoadReg;

buried register of N bits, loadable with direct register write
TYPE BuriedReg(N);

OUT q: [N] BIT;
BEGIN

FOR i := 0 .. N-1 DO q.i := REG(q.i) END
END BuriedReg;

0/8

0/12

in

d.0

ld

d.1

ld

d.2

ld

d.3

ld

d.4

ld

d.5

ld

d.6

ld

d.7

ld

q.0

q.1

q.2

q.3

q.4

q.5

q.6

q.7

data

d.0

ld

d.1

ld

d.2

ld

d.3

ld

d.4

ld

q.0

q.1

q.2

q.3

q.4

pat

q.0

q.1

q.2

q.3

q.4

Figure 6.7: Data and Pattern Registers

6. Application and Evaluation 115

Program 6.5Complete Pattern Matcher I

MODULE PatternMatch;
type definitions as shown in Programs 6.2, 6.3 and 6.4

CONST
DataSize := 5; width of pattern data
PatternSize := 4; pattern size
NofPatterns := 2; nof parallel comparators
ResultSize := 8; length of result vector

VAR
input3: BuriedReg(8); uppermost input register
input: [3] LoadReg(8); lower input registers, loadable
in: [32] BIT; input vector (1)
map: Mapper; map incoming data
the data stream we match against
data: [PatternSize] LoadReg(DataSize);
the patterns we look for
pat: [NofPatterns][PatternSize] BuriedReg(DataSize);
the comparators
cmp: [NofPatterns][PatternSize] Comparator;
eql.i.0 == pattern i matches (2)
eql: [NofPatterns][PatternSize] BIT;
patMatch: [NofPatterns] BIT;
match: BIT; match == any pattern matches
store result of previous match (3)
queue: [ResultSize-1] LoadReg(1);
result: [ResultSize] BIT; result vector (4)
shiftReg: [32] BIT; control logic state machine
shift: BIT; control bit for shifting

BEGIN
control logic: (5)
Start shifting by writing ’1 into shiftReg.
Shift for 4 clock cycles by writing ’1, ’1, ’1, ’1 into shiftReg, then stop.
Insert zeroes in shiftReg to allow for longer delays in circuit.
E.g. shiftReg := ’1, ’0, ’1, ’0, ’1, ’0, ’1 => every second clock cycle
shifting is enabled

shiftReg.31 := REG(’0);
FOR i := 0 .. 30 DO shiftReg.i := REG(shiftReg[i+1]) END;
shift := shiftReg.0;

continued in Program 6.6

6. Application and Evaluation 116

Program 6.6Complete Pattern Matcher II

continued from Program 6.5

input register, direct memory write from host
input3(); input.2(shift, input3.q);
shift characters down
FOR i := 0 .. 1 DO input.i(shift, input[i+1].q) END;

map(input.0.q); strip input characters to 5 bits

stream of input data
data[PatternSize-1](shift, map.out);
shift characters down
FOR i := 0 .. PatternSize-2 DO data.i(shift, data[i+1].q) END;

instantiate pattern registers

FOR j := 0 .. NofPatterns-1 DO pattern matchers
FOR i := 0 .. PatternSize-2 DO

compare data with pattern, equal chain
cmp.j.i(data.i.q, pat.j.i.q); eql.j.i := eql.j[i+1] * cmp.j.i.eql

END;
cmp.j[PatternSize-1](data[PatternSize-1].q, pat.j[PatternSize-1].q);
start eql chain
eql.j[PatternSize-1] := cmp.j[PatternSize-1].eql

END;

patMatch.0 := eql.0.0;
FOR i := 1 .. NofPatterns-1 DO Or-gate

patMatch.i := eql.i.0 + patMatch[i-1]
END;
match := patMatch[NofPatterns-1]; Does any pattern match?

result queue
queue.0(shift, [match]);
FOR i := 1 .. ResultSize-2 DO queue.i(shift, queue[i-1].q) END

END PatternMatch.

6. Application and Evaluation 117

1. Variablein is only needed to make the variablesinput3.q andinput.0.q .. input.2.q acces-
sible under one name (cf. Section 6.2.10).

2. eql represents the AND-gates that are used to link individual character comparators to-
gether to form a comparator of sizePatternSize. Such an AND-chain is started at the
highest character and flows down to the lowest character.

3. A result vector in the form of a FIFO queue is used to store the results of comparisons.
This is an optimization to avoid polling thematch variable by the software driver.

4. Variableresult is only needed to make the variablespatMatch[NofPatterns-1]andqueue.-
0.q .. queue[ResultSize-1].q accessible under one name (cf. Section 6.2.10).

5. A shift register suffices to implement the control logic of the pattern matcher.shift, the
lowest bit of the register, is connected to the load enable signals of the various registers.
A one in the lowest bit of the shift register causes the data stream to advance by one
position. Between ones, zeroes can be inserted if additional time is needed between
shift steps to propagate signals.

The Hades placer produces the layout shown in Figure 6.8. Note the long chain of registers
in the lower right. This is the shift register, which is placed horizontally due to the fact that
the lower register reads the output of the upper register. This effect on placement was already
shown and explained in Figure 5.14 of Section 5.5.7. We see that the instances are placed
close together and hence the layout is not completely routable. As is shown in Table 6.3, this
layout results in 38 unrouted nets.

Figure 6.8: Pattern Matcher without Placement Hints

Ideally, the pattern registers should be placed right next to the comparators. Also, since
the data registers are read by the comparators, they should be placed such that the same bit of

6. Application and Evaluation 118

the register and the comparator lie in the same row. The AND-gates of theeql chain should
be placed within the comparators as indicated in Figure 6.6. The layout of Figure 6.8 is
therefore optimized manually and the Lola code is augmented with position statements using
the back annotation capability described in Section 5.5.8. Based on this code, the Hades tools
produce the layout shown in Figure 6.9: To the left, there is a block containing the shift register
(leftmost cells), the mapper (big block on top) and the input register (to the right of the shift
register). Further to the right are the data registers. Then, the patterns and comparators follow,
which are packed together optimally. The AND-gate of theeql chain is located in the lower
right corner of each comparator. The result vector appears on the right.

Figure 6.9: Pattern Matcher with Placement Hints

Note that all registers needed by the software interface have the same pitch (distance be-
tween bits) and start in the same row. This ensures that the map register only has to be set once
for accessing these registers (cf. Section 6.2.10). The worst case delay for the critical path of
this circuit is 45 ns; the path runs from theinput register through the mapper circuit to thedata
register. Our Hades coprocessor is clocked with the Ceres clock at 25 MHz, therefore we need
two cycles (80 ns) to meet this timing constraint. The shift register of the control logic should
therefore be loaded with the pattern 1, 0, 1, 0, 1, 0, 1.

6.2.9 Large Pattern Matcher

The Lola code is written in a way such that by changing the constantsNofPatterns andPat-
ternSize, we can produce a large pattern matcher circuit with 16 patterns each of length 12.
The fully placed and routed layout is shown in Figure 6.10. Its characteristic data are listed in
Table 6.5 in the top left corner.

The bottom row in Figure 6.10 contains the OR-gates that are used to form thematch
variable, which indicates if any of the patterns matched. Since the last OR-gate represents

6. Application and Evaluation 119

Figure 6.10: Large Pattern Matcher with Placement Hints

6. Application and Evaluation 120

the first bit of the result vector, it is placed below the result FIFO queue in the rightmost
column. The critical path through this circuit is 137 ns. It runs from adata register through
the comparator, theeql chain and the OR-gates to theresult queue. Clearly, such a delay is
unacceptable, although it still results in an aggregated performance of 1.4 billion character-
comparisons per second (109/137 * 16 * 12). Pipelining could be used to lower the critical
path of this circuit. Even so, the 7 MHz throughput rate of the circuit would suffice when
reading data from a disk.

6.2.10 Software Interface

To make a hardware application accessible from software, a driver module is needed. Using
the automatic software interface generator available in Hades, a programmer can construct a
driver module quickly (cf. Section 5.8). Programs 6.7 and 6.8 list the module produced by the
Hades interface generator for the 2x4 pattern matcher shown in Figure 6.9.

The two procedures marked with (1) and (2) were written by the programmer to ease the
task of downloading the patterns. Note that instead of implementing the mapping table for
the patterns in software, we simply use the available mapping hardware in the coprocessor
application to map the pattern characters to their 5-bit values.

If needed, the software programmer can edit the generated code, for example, to change
the interface types ofshiftReg and result to a set. The impact of this change can be seen
in Program 6.9, which lists the search procedure using the interface to communicate with
the hardware. The precondition ensures that the registers have the same pitch and the same
vertical position. The application then downloads the patterns using the utility procedure from
the interface module. It sets the map register and initializes the shift register interface object.
The stored value causes the circuit to take two clock cycles per character. Now, text can be
read from disk and written into thein register. A write into theshiftReg register causes 4 shift
steps. This process is repeated for the next 4 characters. Finally, theresult vector can be read
and the matching positions can be reported.

6.2.11 Performance

What is the speed limiting factor of a pattern matcher application? For the simple case of
searching through a text it is most likely the transfer rate from disk. For modern PCs, this
transfer rate is between 3 and 8 MB/s. The 2x4 pattern matcher has a critical path of 45 ns,
hence it could support a throughput of 20 MB/s. The large pattern matcher with a critical path
of 137 ns could still support a throughput of 7 MB/s. The hardware part of the pattern match
application would therefore be fast enough to support the disk transfer rate of today’s PCs.

On the PC the Oberon System achieves a disk transfer rate of 4370 KB/s when using block
reads and 3204 KB/s when using words reads (4 characters at a time).

To evaluate the performance a user experiences, we modified theFind program of the
Oberon System, which is used to find occurrences of a single pattern in a set of files. To
avoid file directory operations we merged the source code of the Trianus and Hades systems,
which constitute a total of 1.1 MB, into one file. We measured the time to search the word
“MODU” in this file. It occurs 659 times. The software solution using the Boyer-Moore
algorithm achieves a throughput of 3055 KB/s. It transfers disk data using block reads and
comes to within 70% of the disk read speed. A naive string search algorithm has a throughput
of 1358 KB/s. It too transfers disk data using block reads. This indicates that the Boyer-Moore
algorithm can skip over a large number of characters, eliminating unnecessary tests. In fact,
for the pattern “MODU” 98.5% of the comparisons fail on the first compared character.

The software/hardware solution shown in Program 6.9 achieves a throughput of 712 KB/s.
Thus, it is 4.3 timesslower than Boyer-Moore. To see if this is mainly due to reading data
word-wise, we used block transfers. With a performance of 756 KB/s the increase was only

6. Application and Evaluation 121

Program 6.7PatternMatch Software Interface I

MODULE PatternMatchInt;

IMPORT HI := HadesInterface;

VAR
in*: HI.LIntDesc;
result*: HI.CharDesc;
shiftReg*: HI.LIntDesc;
pat*: ARRAY 2, 4 OF HI.CharDesc;
data*: ARRAY 4 OF HI.CharDesc;

written by programmer (1)
PROCEDUREPutPat*(i: INTEGER; pattern: ARRAY OF CHAR);

VAR j: INTEGER;
BEGIN set pattern i

FOR j := 0 TO 3 DO
write character into input register
in.val := ORD(pattern[j]); HI.SetMap(in); in.Write;
shift once -> input register is mapped into data register 3
HI.SetMap(shiftReg); shiftReg.val := 1; shiftReg.Write;
read mapped value from data register 3
HI.SetMap(data[3]); data[3].Read;
load mapped value into pattern register
HI.SetMap(pat[i, j]);
pat[i, j].val := CHR(ORD(data[3].val) MOD 32);
pat[i, j].Write

END
END PutPat;

written by programmer (2)
PROCEDUREIgnorePat*(i: INTEGER);

VAR j: INTEGER;
BEGIN

load pattern i with unused pattern (not occurring characters)
FOR j := 0 TO 3 DO

pat[i, j].val := IgnoreChar; HI.SetMap(pat[i, j]); pat[i, j].Write
END

END IgnorePat;

continued in Program 6.8

6. Application and Evaluation 122

Program 6.8PatternMatch Software Interface II

continued from Program 6.7

automatically generated
PROCEDUREInit *;
BEGIN

HI.Load(”PatternMatch.XC6Bits”);load bitstream
IF HI.res # HI.Done THEN error processing
ELSE

HI.map[0] :=f1..31g/f0..31g; HI.map[1] :=f0g/f0..31g;
HI.InitDescriptor(in, ”in”, HI.map, 4);
in.val := 0;

HI.map[0] :=f1..8g/f0..31g; HI.map[1] :=fg/f0..31g;
HI.InitDescriptor(result, ”result”, HI.map, 17);
result.val := 0X;

HI.map[0] :=f1..31g/f0..31g; HI.map[1] :=f0g/f0..31g;
HI.InitDescriptor(shiftReg, ”shiftReg”, HI.map, 0);
shiftReg.val := 0;

HI.map[0] :=f1..5g/f0..31g; HI.map[1] :=fg/f0..31g;
HI.InitDescriptor(pat[0, 0], ”pat00”, HI.map, 11);
pat[0, 0].val := 0X;

similar for remaining patterns

HI.map[0] :=f1..5g/f0..31g; HI.map[1] :=fg/f0..31g;
HI.InitDescriptor(data[0], ”data0”, HI.map, 7);
data[0].val := 0X;

similar for remaining data

unneeded interface objects manually removed
END

END Init;

BEGIN
Init

END PatternMatchInt.

6. Application and Evaluation 123

Program 6.9PatternMatch Application

PM = PatternMatchInt

PROCEDURE Search(r: Files.Rider; pat: ARRAY OF ARRAY OF CHAR);
VAR pos: LONGINT; i, j: INTEGER;

BEGIN
ensure that setting of map register via PM.in
works for other interfaces as well
ASSERT(HI.SubMap(PM.shiftReg, PM.in)

& HI.SubMap(PM.result, PM.in), 100);
i := 0; load the patterns
WHILE i < LEN(pat, 0) DO PM.PutPat(i, pat[i]); INC(i) END;
WHILE i < LEN(HI.pat, 0) DO PM.IgnorePat(i); INC(i) END;

HI.SetMap(PM.in);
PM.shiftReg.val :=f0, 2, 4, 6g; only every second clock cycle
WHILE ˜ r.eof DO

read 4 characters, store them into input register, shift 4 times
Files.ReadBytes(r, PM.in.val, 4); PM.in.Write; PM.shiftReg.Write;
read 4 characters, store them into input register, shift 4 times
Files.ReadBytes(r, PM.in.val, 4); PM.in.Write; PM.shiftReg.Write;
read back result
PM.result.Read;
IF PM.result.val*f0..7g # fg THEN found something in prev 8 characters

report position based on set bits
in PM.result.val and file position

END
END

END Search;

6. Application and Evaluation 124

marginal. Additionally, we eliminated the overhead caused by calling the methods of the
interface objects by inlining the coprocessor communication code into the search loop. The
resulting throughput was still only 950 KB/s. Although this value is 33% better than the
solution using interface objects, it is still 3.2 times slower than Boyer-Moore. If we search for
a pattern occurring frequently (4 white space characters), which does not allow long skips, the
throughput of Boyer-Moore drops to 1828 KB/s while the hardware solution still has the same
throughput.

When we search formultiple patternsin the text using the hardware solution, we achieve
thesame throughputas we can make use of the parallelism available in hardware.

Table 6.2 summarizes the throughput values for pattern “MODU” and also lists the values
obtained on the Ceres-2. There, disk read speed is very slow and both, Boyer-Moore and the
hardware solution with inlined communication, are bound by the disk read speed.

PC Ceres

Disk: Block Read 4370 123
Disk: Word Read 3204 42
Naive 1358 39
Boyer-Moore 3055 108
PatternMatch 712 40

Block Read 756 45
Block Read + Inline 950 108

Table 6.2: Searching “MODU” (Throughput in KB/s)

Communication Bottleneck

Why is the hardware solution so slow? The main problem is the relatively high cost of com-
munication. With the current software interface, an indirect procedure call is used (method) to
transfer a value to and from the coprocessor. This is the cost that has to be paid to support ex-
tensibility and versatility of the interface during development. During each access, a method
call and two procedure calls are invoked. Additionally, one of the procedure calls checks its
arguments for validity (precondition).

With the Hades coprocessor board for the Ceres-2, the final procedure call accesses the
board at the same cost as normal memory (cf. Section 4.5.1). With a prototype PCI-board for
the PC [LSC96], the final procedure call first stores the destination address into a latch on the
PCI-board and then accesses data on the board. Hence, accessing the PCI-board is at least
twice as expensive as accessing normal memory. Additionally, since IN and OUT commands
of the Intel i386 CPU are used, which have latencies of 20 cycles, accessing the board costs at
least 40 cycles. Compared to the 6 cycles on the Ceres-2, this is a relative difference of more
than a factor of 6.

If we inline the communication code in the main search loop, we can achieve the same
speed on the Ceres-2 as with Boyer-Moore. Hence, on the Ceres-2, the method call overhead
is the reason for the slow performance of the initial solution. On the PC, although inlining
increases throughput by 33%, the hardware solution is still very slow compared to the Boyer-
Moore algorithm. We anxiously await the new PCI-board [VCC97] together with appropriate
driver software, which lets us access the board using direct memory accesses.

6. Application and Evaluation 125

6.2.12 Improvements

Up to now, we have only made use of the processor interface to store the pattern registers into
the circuit without having to connect the registers to I/O buffers. We have not made use of the
fast reconfiguration speed of the XC6200 FPGA. In fact, any memory location in the XC6200
can be altered just as quickly as the user registers. Therefore, we studied the possibility of
improving the performance and reducing the size requirements of the comparator circuits by
applying this feature.

Making Use of Reconfigurability

In Figure 6.4, the basic structure of a 5-bit comparator was shown. The data and the pattern
registers are compared using an XNOR-gate, which yields one, if both inputs are the same.
Note that the value in the pattern register does not change. Therefore, we can propagate this
constant value through the XNOR-gate and replace it with a buffer or an inverter. Figure 6.11
shows the two resulting circuits (shown on the right), when a constant zero or a constant one
is present at one of the inputs of an XNOR-gate (shown on the left).

normal0

data

pattern

eql

normal1

data

pattern

eql

fused0

data

eql

fused1

data

eql

Figure 6.11: Constant Propagation

We can implement these negations with no extra cost in the XC6200 cell and can therefore
implement a two-bit comparator circuit using a single AND-gate with appropriate negations on
its inputs. Once the pattern is known, the buffer or inverter function in front of the AND-gate
can be programmed directly into the cell. Figure 6.12 shows the comparator from Figure 6.6
together with a pattern register on the left and the same comparator after constant propagation
on the right. The number of cells and the space required to implement a 5-bit comparator is
reduced by a factor of three.

The original comparator had a delay of 9.5 ns, while the compact comparator’s delay is
5.7 ns. This is an improvement of just 3.8 ns, but the size advantage of the compact comparator
is drastic. While the bounding box of the 16x12 pattern matcher shown in Figure 6.10 is 60x61
cells, the bounding box of the compact version is just 29x61 cells.

Pipelining

To reduce the delay for large pattern matchers, one can introduce pipeline registers in the
comparator’seql chain. This approach, however, would require additional data registers to

6. Application and Evaluation 126

0/0 4/0

0/4 4/4

pat

q.0

q.1

q.2

q.3

q.4

normal

x.0

x.2

x.3

x.4
y.4

y.3

y.2

x.1
y.1

y.0

e.0.1

e.0.2

e.0.3

e.0.4

e.0.0

e.1.2

e.1.1

e.2.1

e.3.0

fused

x.3
x.4

e.1.2

x.1
x.2

e.1.1

e.2.1

e.3.0
x.0

Figure 6.12: Conventional and Fused Comparators

compensate for the additional delay in theeql chain. By using an AND-gatetree instead of
a chain, we can omit these delay registers. This way, the critical path for the 16x12 pattern
matcher can be reduced from 137 ns to 45 ns, which again is caused by the mapper circuit.

6.2.13 Discussion

The pattern match application presented in this section was a proof-of-concept application.
Performance of the circuit itself is quite good even though the performance is not seen by the
user. One reason is the inefficiency of the automatically generated interface. In the future, we
intend to support the generation ofinlinable interface procedures. In Oberon, this is possible
through the use ofcode procedures. One drawback is that the interface generator becomes
target machine specific. The gain in performance justifies this, however. Another reason for
the inefficiency is the lack of a memory-type interface on the PCI-card. The availability of the
necessary driver software, however, is only a matter of time.

6.3 Comparison to XACT step Series 6000

In this section, we compare the (semi-)automatic generation of the pattern matchers using the
Hades software from Chapter 5 against the XACT step 6000 software, Version 0.3.5 from
Xilinx Development Corporation, Scotland (simply called XACT in the following). We grate-
fully acknowledge the permission to perform this evaluation. We do not compare Trianus to
commercial front-end tools, i.e. HDL compilers or schematic entry systems, as none were
available to us. We want to point out, however, that VHDL compilers have reported runtimes
in the order of minutes to hours to compile small modules of the size of the PatternMatch
application [Woo96a, WLH97]. These tools are three to fourorders of magnitudeslower than
the Lola compiler with the Trianus back-end.

The files used by XACT were produced by Hades using the CFG-file converter tool. It
generates design files in the internal file-format used by XACT to store designs on disk.

6. Application and Evaluation 127

6.3.1 Small Pattern Matcher without Hints

The first experiment is the automatic placement and routing of the pattern matcher developed
for the Hades reconfigurable coprocessor. It has two parallel pattern matchers, each consisting
of four 5-bit characters. It was chosen as a typical example of a coprocessor application with
a regular datapath (data and pattern registers, comparators), some random logic (mapper) and
little control logic (shift-step register). Most often, such a small design is used to determine
the placement hints for the data path part, which are then put into the Lola code. It is therefore
mandatory that the design cycle is fast, as many iterations are needed to find a satisfactory
placement, which is also routable.

Table 6.3 summarizes the results obtained. We used various options in XACT for auto-
matic placement and routing. A typical user may just use the default options supplied by the
tools, which are: high effort, no type based routing, use of Magic routing resources.

248 Cells and Hades7 XACT XACT XACT XACT
779 Nets low8 medium8 high8 trans9

Compile 0.1 s - - - -
Reading Design Files1 - 1 s 1 s 1 s 1 s
Map < 0.1 s - - - -
Place 0.1 s 5.8 s 17.6 s 29.4 s 47.5 s
Bounding Box 56 x 22 18 x 18 13 x 63 13 x 54 13 x 55
Route

Without Magic2 - 18.5 s 173.9 s 56.6 s 54.4 s
Unroutes3 - 133 31 43 33

Prerouted Types4 7.5 s 17.8 s 112.8 s 55.9 s 93.1 s
Unroutes3 38 136 57 43 24

With Magic2 - 24.9 s 162.4 s 101.1 s 53.5 s
Unroutes3 - 93 12 13 5

Prerouted Types4 - 27.2 s 97.1 s 98. 9 s 57.3 s
Unroutes3 - 86 10 13 5

Total (M+P+R)5 7.6 s 33 s 114.7 s 128.3 s 101 s
Speedup of Hades6 4.3 15.1 17.1 13.3

Table 6.3: Pattern Matcher without Hints: 2 Patterns of 4 Characters Each

The following list contains explanations for the corresponding labels in Table 6.3.

1. This row lists the time needed by XACT to read the design files, which were produced
by Hades. The files are in the same format as the ones used by XACT itself. Hence, the
delay encountered would be the same if a different tool was used to produce the files,
such as a commercial schematics editor or an HDL compiler.

2. The Hades router does not support the “Magic” routing resources (cf. Section 2.3.2 and
Section 5.6). The times for Hades are hence listed in the “Without Magic” rows. As
XACT has an option to allow or disallow the use of the Magic resources, we list the
times for both cases.

3. This row lists the number of unrouted nets, i.e. connections for which the router failed
to find a path.

4. Hades preroutes all types by default. All instances of the same type have the same
routing. In XACT, the user can preroute the types, i.e. enforce the same routing on all
instances of that type. In this row, we list the routing results when types are prerouted.

6. Application and Evaluation 128

5. This row lists the sum of map, place and route times. In each column, the best route
time is taken, indicated in boldface. Best means the lowest time with the lowest number
of unrouted nets.

6. This row lists the speedup obtained when Hades is used instead of XACT.

7. The Hades column lists the time for Lola compilation and the generation of the Trianus
data structure from it. Only one route time is listed, as Hades always uses type-based
routing and does not support the Magic routing resource.

8. XACT has an “effort” option used during placement. “Low” stands for little effort and
fast run time, “high” stands for high effort and long run time. As can be seen from the
size of the bounding box, the placer packs the cells as closely as possible. It makes no
attempt at placing the registers next to the point of usage. Consequently, the number of
unrouted nets is very high for all routing options we tried. The routing rectangle used
is that of the bounding box in this case. If a larger rectangle is given, the routing time
increases dramatically.

9. “High” uses the highest placement effort and “trans” indicates, that instances of the
same type (comparators in our case) may be transformed, i.e. they do not all have to
have the same placement as their type.

Evaluation

Hades stands out with exceptionally fast compile, map and place times (less than a second).
The router is very quick as well. The resulting placement was already shown in Figure 6.8.
Not surprisingly, it is not routable (38 unrouted nets).

XACT is slower by a factor of 5 to 12 with comparable results. Higher placement efforts
generally result in better routable designs. But even using the highest placement effort and
allowing for the transformation of instances still results in an unroutable design. By using two
ripup and reroute steps on that design, however, the design can be routed successfully. The
mapper circuit of Figure 6.2 is placed within 5x12 cells as opposed to 8x14 cells by Hades. In
this case, the stochastic placement algorithm results in a compact placement.

It is noteworthy that for XACT no clear recommendation can be given on whether to use
type-based routing or not. Also, for multiple runs using the same option, the stochastic nature
of the placement algorithm becomes apparent as the resulting routing times varies by as much
as 400%. The numbers listed in Table 6.3 indicate typical run times, i.e. run times a user most
likely experiences. It might be possible that a route completes 4 times faster (as was the case
during testing), but there is no clear recipe to achieve that.

For some placements, prerouting the types results in faster routing (“medium”), and for
others it slows down routing (“high trans”). The use of the Magic routing resources, however,
is recommended, as it always reduces the number of unrouted nets. It can have a negative
effect on the routing time, though.

None of the placements produced by XACT would have been usable for an RC application
because registers in an array were arranged in a circle and could not have been accessed
efficiently using the processor interface.

6.3.2 Small Pattern Matcher with Hints

In the second experiment, the input to the placement and routing algorithm was the Lola code
annotated with placement hints. Essentially, placement is done by hand in the form of Lola
position statements, thus only the router has to perform “real” work. Table 6.4 summarizes the
results. As the placement was already performed for all cells except for the expression trees
of the mapper, we used the default placement option for XACT, which was “high”. A run

6. Application and Evaluation 129

with “low” did not improve the runtime of the placement phase. To see how much workstation
technology has improved in 8 years, we conducted the experiment also on Ceres-2. It features
a National Semiconductor 32532 CPU clocked at 25 MHz and was developed in 1987. The
PC was purchased in 1995, i.e. 8 years of technological improvement lie between the two
machines.

248 Cells and 779 Nets Hades Hades on Ceres XACT

Compile 0.1 s 1.5 s -
Reading Design Files - - 1.2 s
Map < 0.1 s 0.3 s -
Place 0.1 s 0.7 s 2.3 s
Bounding Box 18 x 47 18 x 47 18 x 45
Route

Without Magic - - 41.6 s
Unroutes - - 12

Prerouted Types 1.9 s 26.6 s 42.1 s
Unroutes 0 0 12

With Magic - - 41.8 s
Unroutes - - 0

Prerouted Types - - 39.8 s
Unroutes - - 0

Total (M+P+R) 2 s 29.1 s 42.1 s
Speedup of Hades 14.6 21.1

Table 6.4: Pattern Matcher with Hints: 2 Patterns of 4 Characters Each

Evaluation

As can be seen, Hades performs very well compared to XACT and it routes the design without
retries or manually prerouting certain nets, and without using Magic routing resources. XACT
succeeds on the first try only when using the Magic routing resources. Note that using type-
based routing does not improve the result much. Hades has a compile, place and route design
cycle that is a factor of 20 (!) faster than place and route using the Xilinx tools. In fact, Hades
completes the design in the same time as XACT places a preplaced netlist (i.e. no work by
the placer has to be done except for placing the mapper circuit and checking the validity of
the placement hints). Even on the “slow” Ceres-2, the design is completed faster than on the
PC using XACT. This is a somewhat sad result as it indicates that 8 years of technological
advancement is annihilated by software. This is a clear case for the applicability ofReiser’s
law, which says that software is getting slower faster, than hardware is getting faster.

A factor of 20 makes a qualitative difference in the usage of the tools. If we include
VHDL compilation times, this factor increases to about 100 to 1000, depending on the VHDL
compiler used. Note that the turnaround time with XACT is below one minute, which should
therefore be considered as fast, but when the user has to perform several iterations to find a
routable placement, a turnaround time of 2 seconds is much better than one of 40 seconds.
Such a fast design cycle increases productivity and reduces the time needed to find a satisfac-
tory placement.

6. Application and Evaluation 130

6.3.3 Large Pattern Matcher with Hints

In our final experiment, a big instance of the pattern matcher is generated. Table 6.5 lists the
result for a pattern matcher with 16 patterns, each of which has a length of 12 characters. This
results in a design with 3048 cells, filling most of the available space on a XC6216 FPGA
(83% utilization within the bounding box).

3048 Cells and 8299 Nets Hades Hades on Ceres XACT 1 XACT 2

Compile 2.4 s 21.0 s - -
Reading Design Files - - 108.9 s 108.9 s
Map 0.5 s 3.5 s - -
Place 0.7 s 5.2 s 22.7 s 21.1 s
Bounding Box 60 x 61 60 x 61 60 x 61 60 x 61
Route

Without Magic - - 198.8 s 192.3 s
Unroutes - - 2 2

Prerouted Types 20.8 s 158.6 s 396 s 382.1 s
Unroutes 0 0 2 2

With Magic - - 145.9 s 318.3 s
Unroutes - - 0 0

Prerouted Types - - 292.1 s 274.6 s
Unroutes - - 0 0

Total (M+P+R) 22.0 s 188.3 s 168.6 s 295.7 s
Speedup of Hades 8.6 7.7 13.4

Table 6.5: Pattern Matcher with Hints: 16 Patterns of 12 Characters Each

Evaluation

Again, Hades is very fast, a factor of 8 faster than XACT. We made several runs using XACT
and two typical ones are listed. They only differ in the placement of the mapper circuit, which
is non-deterministic. The effect on routing time is quite drastic, though. The second run takes
twice as long as the first. Interestingly, prerouting the comparator type results in much slower
routing speed in the first case and faster routing speed in the second case. As was seen earlier,
routing only succeeds if the Magic routing resource is allowed, so it truly deserves its name,
at least in combination with XACT. The speed of Hades on the Ceres-2 is still on par with
XACT on the PC.

6.3.4 Discussion

When faced with choosing CAD tools for an FPGA, users typically have only one choice,
namely the tools provided by the vendor of the FPGA. To satisfy all possible demands users
might have, vendors provide tools with a plethora of features and options. However, they often
neglect the quality of the underlying core algorithms, which perform the real work in CAD
tools.

The above observation also holds true for the new XACT step 6000 tools for the XC6200
FPGA. Three different placement options with more suboptions are provided, with which a
user can influence the quality of the resulting placement. As our experiment in Table 6.3
showed, even using the highest effort and allowing for transformations of the types does not
result in a routable design on the first try. And after several ripup and reroute cycles, the

6. Application and Evaluation 131

resulting design could still not be used as a coprocessor application. Hence, the user has to
give placement hints, which have to be back-annotated to the HDL source code or the schema.

Since XACT uses among others a simulated annealing algorithm for placement, the quality
of the produced result can vary drastically. The router sometimes runs slower, sometimes
much faster and the user might just be lucky and get a routable design, or he or she must
iterate ten times and try out different options to achieve a good result. This is a very time-
consuming method to develop a design. We believe that direct user control is better, since the
produced result is the one expected.

The XACT router can be influenced in several ways as well. Normally, of course, users
will enable all routing resources to ensure the successful routing of a design, but it is not at all
clear if types should be prerouted or not. For certain designs, it results in faster routing with
higher quality (less unrouted nets), but for other designs, it can have the opposite effect. It
seems that the user is only left with a trial-and-error approach, which is very time-consuming
if the design cycle time is in the range of minutes.

The main advantage of our approach isspeed. Using Hades, a user canexplore the design
spacemuch more quickly. It becomes possible to give placement hints in the design descrip-
tion and see the effect of it half a minute later. This enables a completely different style of
constructing hardware, as itallows the user’s knowledge about the design to enter the design
cyclemuch more easily. The result is, we believe, that thedesign is finished in less total time
than using smarter but slower tools.

6.4 Hades in the World

The Trianus and Hades systems are publicly available (cf. Appendix G). Two groups outside
the Institute for Computer Systems used Hades in the past to design circuits for the XC6200
FPGA. Their work is presented subsequently. Virtual Computer Corporation will distribute
the Trianus and Hades system with their XC6216 based PCI-board as an alternative to the
Xilinx tools [VCC97].

6.4.1 Using Iris and Hades for DSP Algorithms

The DSP laboratory of Queen’s University, Belfast coupled Hades to their Iris synthesis frame-
work [Tra95, TWM95, TW96]. Iris works on the building block philosophy where the de-
signer can define digital signal processing blocks and perform synthesis on these circuits.
At first glance, this methodology may not appear attractive but DSP designers typically like
to mix and match circuits, using different number representations and clever circuit design
techniques to achieve efficient FPGA solutions. Iris achieves this by enabling the extraction
of parameterized expressions from complex VLSI processing elements, and using these ex-
pressions to achieve functionally correct solutions for circuits built from these processors.
Designers can quickly create and evaluate architectures that utilize existing hardware blocks.

Previously, Iris generated structural, parameterized VHDL code, which was then synthe-
sized using the Synopsys VHDL compiler [Syn92]. Compilation times were on the order of
hours. Iris has then been closely integrated with Hades resulting in a powerful system ca-
pable of quickly investigating an FPGA implementation. This integration was achieved by
developing a Lola interface, which allows Iris to produce Lola code for the algorithm to be
realized. The systems are well matched as there is considerable structure within Iris which
Hades can preserve and quickly translate into a layout. This allows a different design strategy
to be employed in that it removes the designer from the low level design flow. For example, if
the designer finds the required target performance has not been met at the circuit layout level,
he or she can go back to Iris and apply some of the many circuit transformations available.
The option of adding pipelining delays is particularly well-suited for FPGA designs, as it can

6. Application and Evaluation 132

sometimes be implemented at no extra cost. The key issue is that circuit optimization is being
performed at the algorithmic and architectural level, which is less consuming than varying
placement and routing at the FPGA level. The resulting system is presented in more detail in
[WLH97].

6.4.2 Developing Arithmetic Circuits for the XC6200

During a term project at the Institute for Integrated Systems at ETH Z¨urich, P. Müller imple-
mented various adder structures for the XC6200 FPGA. He described the adders in Lola and
then used Hades to place and route the designs. Since adders are fundamental circuits which
must be optimally placed, hints were used to achieve good placements. However, it was pos-
sible to write the Lola code in a parameterized fashion, such that adders of arbitrary sizes can
be defined. The router was used interactively and often single nets were prerouted to guide the
routing of subsequent nets. A 32-bit carry-increment adder [ZK97] with a delay of 39 ns and
a pipelined ripple-carry adder with a delay of 10 ns were built. More details can be found in
[Mul97].

6.5 Possible Future Applications

In this section, we present some possible future applications of the Hades RC board or variants
of it. Many applications found in the literature could and should be implemented on the Hades
RC board to evaluate its architecture and also the architecture of the XC6200 FPGA. They are
not discussed in this section.

6.5.1 Switcherland Reconfigurable Coprocessor Node

One interesting application of an XC6200-based coprocessor board would be its incorpora-
tion into a network such as Switcherland [OE95]. The throughput of Switcherland is about
20 MB/s, which is well matched to the processing speed of an RC. A pipelined version of
the pattern match application from Section 6.2 could be used to filter a data stream and detect
certain patterns in packets passing by, for instance to gather statistical data. A packet can be
processed by simply routing it via the coprocessor board instead of directly to its destination.
Therefore, the presence of an RC in the network is completely transparent to an application.

6.5.2 Guard Evaluator for Active Oberon

In Active Oberon, tasks are synchronized using guards, which are evaluated by the scheduler
[DR97, Gut97]. If a guard is asserted, a task can resume execution. This guard evaluation
step can be quite costly when the guards depend on global variables of the system. One
way to speed up this evaluation process is by using a second processor in a multi-processor
system. Another way would be to use an RC board which has access to main memory. The
guards could then be evaluated by the coprocessor and the scheduler running on the CPU could
simply test a bit vector to determine which guard is asserted.

6.5.3 System Monitoring

An RC board, which has access to the system bus, can monitor the computer system and gather
statistical information about bus traffic. This can be useful to analyze system performance and
to find out, where an application spends most of its time. At DEC SRC, for evaluation purposes
a PCI Pamette [Sha96] is used to generate and monitor traffic on the PCI bus.

6. Application and Evaluation 133

6.5.4 Support for Arbitrary Precision Integers

To speed up calculations with arbitrary precision integers, an RC board can be used to acceler-
ate addition and especially multiplication operations. The PAM group used FPGAs to speed up
long integer multiplication and implemented an RSA algorithm which held the speed record
for a long time [VBR96].

6.6 Discussion

Our own experience and experiences from other groups with Lola, Trianus and Hades give
reason to believe that we have constructed a usable and reliable system to define and imple-
ment RC applications. More work is needed to find out what kinds of applications are suitable
for RCs, i.e. a taxonomy is needed for quickly determining the applicability of RCs on a given
problem. We need more experience with building actual applications, especially to see what
support is needed in the runtime system to make this technology usable for software program-
mers.

Lola is quite good for describing datapaths, i.e. regular logic, but descriptions of random
logic and state machines tend to be illegible (cf. Program 6.2 and Section F). Tabular methods
or truth tables might be better suited for this. A simple translator could be written to generate
Lola code from such tables. The XC layout editor of Trianus has proven its value for experi-
menting with placement during the construction of an RC application. The speed of the tools
is excellent and allows for an efficient, effective and iterative design cycle.

7 Related Work

The idea of using FPGAs to build reconfigurable computers must occur to every engineer who
hears about FPGAs for the first time. It is a compelling idea and seems to have many ad-
vantages and promises great speedups over conventional software running on general purpose
CPUs. When confronted with reality, however, euphoria quickly turns into disillusionment.
The reason is the difficulty of programming such a system.

In this chapter, we present and discuss selected projects that are related to our work, either
on the hardware side or on the software side. Both issues have received and still receive a great
deal of attention by the research community and by commercial companies. For each project
listed, we discuss the hardware involved (if any) and the software to program this hardware.

The list is not exhaustive, but presents one or two exponents of a particular approach to
reconfigurable coprocessors and related synthesis software. If a project is not listed here, it
does not mean that it is not relevant. The wealth of such projects simply makes a complete
listing impractical. Steve Guccione’s WWW list of custom computing machines lists over 50
entries and is growing steadily [Guc94].

7.1 Custom Computers

The first category we discuss is that ofcustom computers. We define a custom computer to
consist ofseveralFPGAs with attached RAM. Custom computers, in contrast to reconfig-
urable coprocessors, typically use a host computer only for data management (i.e. input and
output). Custom computers are used to implementlarge applicationsin hardware.

7.1.1 Programmable Active Memories

One of the first custom computers was implemented at the Paris Research Laboratory of Dig-
ital Equipment Corp. [BRV89]. The pioneering work of the PRL group in the late 80s and
early 90s culminated in a paper first published in 1993, titled “Programmable Active Memo-
ries: Reconfigurable Systems Come of Age” [VBR96]. This group had extensive experience
implementing successful, high performance applications on their custom computer.

Perle-1 is the successor project to Perle-0 and consists of an array of 4x4 XC3090 FPGAs
from Xilinx, representing about 100K logic gates. Attached to each side of that array is 1 MB
of SRAM, for a total of 4 MB of local storage. The host computer is a DEC 3000 workstation
with a TURBOchannel bus interface capable of delivering 100 MB/s.

Software

Applications are described in Modula-2, Lisp or C++ using proprietary tools. Placement is
done by hand, or rather program statements. Partitioning the design onto the 16 available
FPGAs is also done by hand. The commercial tools are only used to route the netlists of
individual FPGAs and to generate the configuration bitstreams. We estimate the turnaround
time of the tools to be in the range of tens of minutes.

134

7. Related Work 135

7.1.2 Splash

Developed at the Supercomputing Research Center in Maryland, the Splash 1 and Splash 2
custom computers were among the earliest systems of their kind [GHK90, ABD92]. Splash 2
consists of up to 16 boards, each containing 16 Xilinx XC4010 FPGAs for computation, for a
total of 2.5 million logic gate equivalents. The FPGAs are connected to each other via a serial
path and to a 16x16 crossbar switch. In addition, each FPGA has access to 512 KB of SRAM.
The host computer is a Sun SPARC-2. Data can be moved to and from Splash 2 at a rate of
50 MB/s.

Software

VHDL is used to write applications. Partitioning a design onto the multiple FPGAs is done
manually. With a maximum of 256 FPGAs used for computation and 16 for communication,
this is not a practical approach. Logic synthesis tools from Synopsys Inc. [Syn92] are used
to compile the VHDL code into netlists. The Xilinx tools (ppr) are used to compile the final
configuration bitstream. We have no reported performance numbers on compilation speed, but
from discussions with other researchers, VHDL compilation is in the range of tens to hundreds
of minutes and ppr is known to have long runtimes [Fie95]. We expect, therefore, that layout
synthesis for Splash 2 is a rather lengthy process, allowing for only a few design iterations per
day.

7.1.3 Teramac

Teramac [ACC95, ACC96, CAC96] of the Hewlett-Packard Laboratories in Palo Alto, Cali-
fornia consists of 16 boards with a total of 1728 custom FPGAs (PLASMA) and 512 MB of
RAM (64 independent 32-bit wide banks). The system provides at least the equivalent of 1
million logic gates. The most important advantage of the PLASMA FPGA is that it has abun-
dant routing resources which allow for fully automatic placement and routing tools. Designs
typically have clock rates of under 1 MHz. Communication with a host computer occurs via a
SCSI interface and is thus limited to relatively low speeds.

Software

Interestingly, the group developed their own FPGA because the place and route tools for com-
mercially available FPGAs had unacceptable execution times for a custom computing ma-
chine. PLASMA is rich in routing resources and layout synthesis is very fast, 3 seconds per
FPGA. Compilation of a volume-visualization design consisting of a quarter million gates re-
quires 30 minutes. This design would require about 25 XC4010 chips, foreachof which the
place and route time using commercial tools would be in that time frame. Synthesis, partition-
ing, placement and routing arefully automaticand hence the long compilation time for the
whole application is acceptable.

7.2 Reconfigurable Coprocessors

This class of FPGA-based computers covers smaller devices, which are used in close cooper-
ation with a host computer. Our Hades RC falls into this category.

7.2.1 Chameleon

Built in 1992 at ETH Zürich, Chameleon is a workstation using Algotronix CAL FPGAs and
a MIPS CPU [HP92, Hee93]. One CAL chip is used to implement the control logic of the

7. Related Work 136

workstation, such as the keyboard and mouse interface, the video controller and the network
interface. A 2x3 array of CAL chips is used to implement a custom computer. No local
memory is attached to the FPGAs, but the main memory of the host computer can be used via
the processor. Data transfers are relatively slow, as no DMA is supported.

Software

Applications are described in the Debora HDL [Hee93]. The CALLAS layout synthesis soft-
ware is used to generate layouts. Manual improvement of the placement is necessary, but no
position hints in the HDL are allowed. Instead, a match tool is used to propagate information
from a previously generated layout into a new one. The tools are very fast and design cycles
in the order of tens of seconds to minutes are attainable. The fact that the control logic of
Chameleon is described and synthesized using Debora and CALLAS proves the usefulness of
the tools. CALLAS was a constant source of inspiration during the development of Hades.
Hades’ size is compared to that of CALLAS in Section 5.10.

7.2.2 PCI-Pamette

A smaller Programmable Active Memory machine, called PCI-Pamette, was developed at
Digital’s Systems Research Center in Palo Alto, California and is the third generation of the
Perle family [Sha96]. The Pamette is a PCI-board featuring 4 Xilinx XC4010E FPGAs and 2
banks of SRAM, each with 128 KB. A fifth XC4010E implements the PCI interface, which
allows for data throughputs close to the theoretical maximum of 133 MB/s. The board is used
as a flexible, programmable I/O device, for instance, as a real-time data acquisition interface.

Software

The Pamette is programmed with the same software methodology as the Perle machines from
DEC PRL. Commercial tools are used for routing and design cycles typically lie in the range
of tens of minutes.

7.2.3 VCC’s Reconfigurable Processing Unit

Virtual Computer Corp. manufactures a PCI board hosting a Xilinx XC6216 FPGA used as
a reconfigurable coprocessor and a Xilinx XC4013E FPGA implementing the PCI interface
[VCC97]. The card has two banks of SRAM, each with 256 KB.

Software

Design software for that board includes our Trianus/Hades system, as well as the Xilinx XACT
step series 6000 and a relatively fast VHDL compiler.

7.3 Reconfigurable Processors

A different approach to custom computing is taken by research groups who investigate the
combination of FPGAs with CPU cores. Most of these projects were started only recently and
few results are available. None of these projects have reported a working implementation. The
potential seems to be very promising, however.

7. Related Work 137

7.3.1 PRISC

One of the earliest work in this field is PRISC (Programmable Instruction Set Computer)
from Harvard University, Cambridge, Massachusetts [Raz94, RS94]. It consists of a CPU
augmented with a programmable function unit (PFU), which has the equivalent die area of
1 KB of cache memory. A compiler exists, which analyzes the source code for operations
that could be implemented in the PFU. A CPU with one PFU executes the SPEC integer
benchmarks 22% faster. No compilation times are reported.

7.3.2 BRASS

The Berkeley Reconfigurable Architectures, Systems and Software [BRA96] project from
the University of California, Berkeley, consists of a reconfigurable CPU and a C compiler
generating configurations for it (similar to PRISC). The project was started in 1996 and no
concrete results have been presented yet. The hardware consists of the Garp processor, which
contains a MIPS-II core and an FPGA optimized for datapath applications. A modified C
compiler is used to generate code and configuration bitstreams for Garp. Logic and layout
synthesis is oriented towards datapaths in that it tries to preserve the hierarchical and structural
information available in the design description. One of the project’s goals is to have fast tools.

7.3.3 MATRIX

MATRIX [MD96, DeH96] from the Massachusetts Institute of Technology, Cambridge, is an
array of programmable functional units operating on 8-bit operands and a dynamically pro-
grammable connection network. Data flow inside MATRIX can be steered by the application
itself and instructions for the functional units can flow alongside the data. The architecture
can be used to implement systolic arrays, VLIW processors, microcoded processors or any
combination thereof. No compiler exists yet.

7.3.4 RaPiD

RaPiD from the University of Washington, Seattle, implements a reconfigurable, pipelined
data path. Similar to MATRIX, it has programmable functional units, but not an equally
flexible connection network. It is optimized for systolic array operations. The functional
units have floating point capability (an ALU and a multiplier). The connection network is
augmented with pipeline registers, leading to efficient, small systolic array structures. No
compiler exists yet.

7.4 High-Level Hardware Description

Currently, there are three widely used ways to describe an application on a reconfigurable co-
processor or a custom computer. One uses schematic entry, one uses a hardware description
language and one uses a program written in a general-purpose high-level programming lan-
guage to produce the netlist representing the application. All three approaches are used by at
least one of the presented projects in Sections 7.1 and 7.2. A fourth approach becoming more
and more popular is compiling a high-level language directly into hardware, as is done in the
projects in Section 7.3 and in the following ones.

7.4.1 PRISM

PRISM and PRISM-II [AS93, WAL93] from Brown University, Providence, Rhode Island,
are large compiler systems that analyze C source code to find code sequences suitable to be

7. Related Work 138

synthesized into hardware. The partitioning unit is a C function. The compiler produces
VHDL code. The PRISM-II hardware consists of three Xilinx XC4010 and an AMD 29050
RISC CPU. The advantage of PRISM is that normal C programs not written specifically for
a hardware implementation can profit from hardware acceleration. The disadvantage is that
this speedup comes at a high cost in terms of long compilation times. Reported figures for
compilation of small programs are in the minute range, not including synthesis of VHDL and
place and route using commercial tools.

7.4.2 Transmogrifier-C

Transmogrifier is a custom computer from the University of Toronto, Ontario. To program
applications, a C compiler was developed which maps C statements and expressions onto
hardware [Gal95]. Only a subset of the C language is supported. In this project, C is used as
a hardware description language. There are special semantics for each construct. The main
advantage of this approach should be that a programmer does not have to learn a new language
to describe the hardware. We consider this as mistaken, since the same language has different
semantics depending on the context in which it is used.

7.4.3 nlc/Spyder

A similar approach as in Transmogrifier-C is taken in the “nlc” project from EPF Lausanne,
Switzerland [Ise96, IS95]. A C++ compiler was developed for generating netlists from C++
programs. One goal of this project was to support simulation as well as synthesis. That is, the
same C++ code can be compiled using a normal compiler to obtain an executable simulation
of the hardware design. Commercial tools are used to perform layout synthesis.

7.5 The Need for Better Tools

Most of the described systems sooner or later require the use of commercial place and route
tools to produce the final layout of a design. This is mainly due to the fact that the bitstream
format for the used FPGAs was not available. Hence, these systems suffer from limited inter-
activity, long run times and practically no integration (cf. Section 5.1.4). Some groups would
implement their own tools, if the bitstream format was made public.

Many groups report on the need to give manual hints to successfully place and route dense
designs. The Teramac group successfully implemented a custom computer with fully auto-
matic synthesis tools. The cost for this was the development of a new, routing-rich FPGA. For
groups without this kind of resources, fast, interactive, integrated tools like the Trianus and
Hades system provide a better way to achieve dense layouts quickly.

8 Summary, Conclusions and
Outlook

8.1 What has been Accomplished?

A project covering both disciplines of computer science and computer engineering is very
interesting and challenging. In this thesis we described the development of bothhardwareand
softwareto build a completesystemcalledHades. A reconfigurable coprocessor based on the
new Xilinx XC6200 FPGA architecture was developed, along with associated layout synthesis
tools (place and route) and a rudimentary runtime system for coprocessor applications. No new
algorithms were developed, no novel approaches in hardware design were invented. We made
use of the available knowledge of algorithms and of the novel features the hardware provided,
and combined these into ausable, efficient, reliable and small systemfor experimenting and
implementing algorithms on a reconfigurable coprocessor.

8.2 Hades Hardware

The Hades hardware consists of areconfigurable coprocessor boardcontaining the new Xilinx
XC6200 FPGA. The board is designed for the Ceres-2 workstation. It implements amemory
card interfacesuch that communication with the board uses thesame protocoland has the
same latency as normal DRAM memory. The configuration memory and cell states of the
XC6200 FPGA are accessible via this interface as well. It is hence possible to use normal
memory operations to read and write register values. On the board, local SRAM is used for
fast storage of intermediate data. The board is integrated via its memory interface into the host
operating system, which makes it easily and transparently accessible from within application
code.

8.3 Hades Software

The Hades software implements a layout synthesis back-end for the Trianus framework. It
consists of atechnology mapper, a constructive, deterministic placement algorithm, a maze-
runningrouting algorithm, a configuration bitstream generator, a driver for the Hades hard-
ware and aninterface generatorto make a hardware design accessible to software.

For the same input, the placer produces the same layout. It places arrays constructively
and almost always optimally. Expression trees are placed in a way to make them routable. The
placer uses space generously and relies on hints given by the designer to achieve a satisfactory
result.

The router uses a maze-running routing algorithm, which can be influenced in several
ways. The shape of wave expansion, the routing resources used and the sequence in which
nets are routed can be set. The router is scriptable, automating these tasks in an iterative design
cycle.

The place and routesoftware preserve and make use of the hierarchical informationpro-
vided by the Trianus front-end. The software operates type-based, that is, it places and routes

139

8. Summary, Conclusions and Outlook 140

the (proto)type of a circuit and then propagates this information to all components of that type
in the design.

The synthesis tools support afast, interactive and iterative design cycle. Hints in the Lola
HDL description of a design can be used by the user to influence the produced result. The
design cycle, starting with compiling Lola HDL code and ending with a finished layout, is
very fast and usually takes under one minute on a Pentium-class PC. Compared to commercial
tools, the Trianus/Hades software is a factor of 2 smaller, implements nearly the same func-
tionality, requires at least a factor of 2 less memory and produces the result faster by a factor
of 10 (this does not include HDL compilation by commercial tools).

8.4 Lola and Trianus

Lola is a simple, easy to learn hardware description language for describing digital circuits on
a structural level. Position statements are very useful to guide a placement algorithm to obtain
a good layout. Datapaths can be described concisely and the inclusion of hierarchy is essential
for tackling large designs.

Trianus is a fast, robust, device independent framework for FPGA circuit design offering
a general, yet simple data structure that is efficiently and comfortably altered using a flexible
iteration mechanism. It supports and maintains the hierarchical information available in Lola
and provides algorithms for manipulating the data structure respecting the hierarchy. The
layout editor for the XC6200 can be used to optimize a circuit layout by hand and features fast
view updates.

8.5 Conclusions

The Hades hardware implements a memory-card interface to a reconfigurable coprocessor.
Such an interface is essential to implement a low-latency communication path from the host
CPU to the application running on the reconfigurable coprocessor.

The Hades software tools make use of the type information and operate type-based, i.e.
they operate on the (proto)type of a circuit and propagate the produced result to all instances
of that type. The advantages of this approach are as follows:

• Synthesis results are predictable, as all instances (components) of a certain type have
the same placement and the same routing.

• The results are produced quickly, since the algorithms have to perform the work only
once and can then propagate the information.

• The algorithms scale to larger devices. When the complexity of a design increases, it
will have more levels of hierarchy but not necessarily more components per hierarchy.
When FPGA devices get bigger, the runtime of type-based tools therefore increases only
linearly and not quadratically.

Automatically generated interfaces make accesses to the hardware easier and safer. They
relieve the software programmer from knowing intricate details of the hardware implementa-
tion. Further, the designer of the hardware application is encouraged to produce a high-level
interface to the application, since the necessary components are produced automatically.

Manual intervention during layout synthesis is still state of the art. Hades supports a fast
and interactive design cycle and lets the designer’s knowledge enter this cycle.

Interactive and incremental tools result in designs with the same or better quality than
automatically generated designs in the same or less time.

8. Summary, Conclusions and Outlook 141

A fast, easily usable interface to the reconfigurable coprocessor is essential for the per-
formance of algorithms executed by it. In our opinion, reconfigurable computing has a great
potential. However, more work on interface issues is needed and libraries of whole algorithms
are to be built.

8.6 Outlook

We never knew as much about the subject of this thesis as now, at the end of the project.
Therefore, we now know what we should have done differently and what worked out well.
The following sections give some ideas on what could be done differently.

8.6.1 Hardware

As was seen in Chapter 6, the most pressing issue in the design of a reconfigurable coprocessor
is the communication speed between the CPU and the FPGA. The Hades board has a memory
card interface and has a relative speed advantage over the PCI-board of a factor of 6. How-
ever, the Hades board was developed for obsolete host hardware. An Alpha CPU from Digital
Equipment Corporation can be clocked at 500 MHz and can issue 2 instructions per cycle.
During an access to the FPGA over the 33 MHz PCI-bus, which takes an optimistic 60 ns,
the Alpha could issue, in theory, 60 64-bit instructions. Hence, either the latency of commu-
nication must be improved drastically, or reconfigurableco-processors make only sense with
slower CPUs, which are hard to come by these days.

In the future, we see several possibilities for improving the communication speed and
reducing the latency:

• An RC could be mounted on a memory card and attached directly to the fast local
memory bus of the CPU (as is done on Ceres), as opposed to the system bus (as is done
on PCI).

• The RC could be attached to the CPU via a coprocessor interface.

• The FPGA could be moved directly onto the CPU die and incorporated into the data
path of the CPU [BRA96, DeH96, ECF96, Raz94].

8.6.2 Software

It seems that due to its very nature,software is never finished. We see several opportunities
for improving the software in Hades.

Placer

Although the deterministic placement algorithm currently used in Hades is very fast, the pro-
duced results must be improved manually. Slower, but smarter algorithms should be evaluated
to improve the placement within types and the placement of instances. For random logic, a
stochastic algorithm could be used, for arrays, the approach used in the Hades placer gives
good results, and for placing whole instances, a min-cut approach could be used.

Router

The routing algorithm is currently the bottleneck in the Hades software design cycle. It could
be improved by implementing separate algorithms for special routing cases such as straight
or L-shaped connections. The speed of wave-expansion of the maze-running algorithm could
be improved by letting the wave spread from both ends (from the single target and from all

8. Summary, Conclusions and Outlook 142

source points) [DM95]. Currently, the router treats multi-point nets as several two-point nets.
Research results [BKV96] show that a special treatment of multi-point nets can be advanta-
geous.

Timing and Automatic Retiming

In general, layout synthesis tools should incorporate timing information to make better deci-
sions about the placement of cells and the routing of nets.

An algorithm for the automatic retiming (insertion of pipeline registers) could be useful
during the evaluation of a circuit’s performance. Approaches such as [LSC96] and [Tra95]
show promising results.

8.6.3 Hardware/Software Co-Design Issues

A topic not covered and not even mentioned in this thesis except in this section is hard-
ware/software co-design. This is a very active area of research and promises a new way of
designing electronic systems. Design partitioning is done either automatically [Bli96] or by
the designer, but with extensive tool support. This thesis provides means to describe the hard-
ware part bottom-up and provides a sufficiently high-level abstraction of the hardware to the
software programmer. However, there is no methodology or tool supporting the partitioning
of an application, i.e. to tell what should be realized in hardware and what in software.

A Syntax of Lola

The following is a definition of the syntax of the Lola hardware description language. It is
given in EBNF notation (extended Backus-Naur form).

Identifier = LetterfLetter| Digitg [“ ’ ”].
Integer = DigitfDigitg.
LogicValue = “’0” | “’1”.

BasicType = “BIT” | “TS” | “OC”.
SimpleType = BasicType| Identifier [“(” ExpressionList “)”].
ExpressionList = Expressionf“,” Expressiong.

Type = f “[” Expression “]” g SimpleType.
ConstDeclaration = Identifier “:=” Expression “;”.
VarDeclaration = IdList “:” Type “;”.
IdList = Identifierf“,” Identifierg.

Selector = f“.” Identifier | “.” Integer |
“[” Expression [“..” Expression] “]”g.

Factor = Identifier Selector| LogicValue| Integer|
“ ˜ ” Factor| “(” Expression “)” |
“MUX” “(” Expression “:” Expression
“,” Expression “)” |
“SR” “(” Expression “,” Expression “)”|
“LATCH” “(” Expression “,” Expression “)” |
“REG” “(” [Expression “:”][Expression “,”]
Expression “)” .

Term = Factorf(“*” | “/” | “DIV” | “MOD” | “ ˆ”) Factorg.
Expression = Termf(“+” | “-”) Termg.

Assignment = Identifier Selector “:=” [Condition “|”] Expression.
Condition = Expression.
Relation = Expression (“=”| “#” | “<” | “<=” |

“>” | “>=”) Expression.

143

A. Syntax of Lola 144

IfStatement = “IF” Relation “THEN” StatSequence
f“ELSIF” Relation “THEN” StatSequenceg
[“ELSE” StatSequence]
“END” .

ForStatement = “FOR” Identifier “:=” Expression “..” Expression
“DO” StatSequence “END” .

UnitAssignment = Identifier Selector “(” ParameterList “)”.
ParameterList = Expression| Constructor.
Constructor = “[” Expressionf“,” Expressiong “]” .
PosAssignment = Identifier Selector “::” Position.
Position = Expressionf“,” Expressiong |

“[” Position f“;” Positiong “]” .
Statement = [Assignment| UnitAssignment| PosAssignment|

IfStatement| ForStatement].
StatSequence = Statementf“;” Statementg.

InType = f“[” Expression “]”g “BIT”.
InOutType = f“[” Expression “]”g (“TS” | “OC”).
OutType = f“[” Expression “]”g (“BIT” | “TS” | “OC”).
TypeDeclaration = “TYPE” Identifier [“*”] [“(” IdList “)”] “;”

[“CONST” fConstDeclarationg]
[“IN” fIdList “:” InType “;” g]
[“INOUT” fIdList “:” InOutType “;” g]
[“OUT” fIdList “:” OutType “;” g]
[“VAR” fVarDeclarationg]
[“BEGIN” [StatSequence]
“END” Identifier.

ImportList = “IMPORT” Identifierf“,” Identifierg “;” .
Module = “MODULE” Identifier “;” [ImportList]

fTypeDeclaration “;”g
[“CONST” fConstDeclarationg]
[“IN” fIdList “:” InType “;” g]
[“INOUT” fIdList “:” InOutType “;” g]
[“OUT” fIdList “:” OutType “;” g]
[“VAR” fVarDeclarationg]
[“CLOCK” Expression “;”]
[“BEGIN” StatSequence]
“END” Identifier “.” .

B Schema of Hades Coprocessor
Board

145

B. Schema of Hades Coprocessor Board 146

Figure B.1: Schema of Hades RC Board

C Photograph of Hades
Coprocessor Board

Figure C.1: Photograph of Hades RC Board

147

D Components for a Hades Board

1 XC6216 FPGA, PGA 299
1 PGA Socket 299 pin

8 SRAM 64K x 4 bit with output enable, 15 ns, DIP-28 300 mil
Motorola MCM 6209C P15

8 DIP-28 300mil socket with 100 nF capacitor

3 22V10, 7.5 ns speed grade, DIP-24 300 mil
Lattice GAL22V10B-7LP

3 DIP-24 300 mil socket with 100 nF capacitor

2 A(L)S541-J Octal buffer and line driver with 3-state output
4 A(L)S645-J Octal bus transceiver with 3-state output
1 A(L)S679-J 12-bit address comparator

7 DIP-20 300 mil socket with 100 nF capacitor

1 40 MHz oscillator

2 330 Ohm resistor
2 270 Ohm resistor
4 10 kOhm resistor

6 8 resistors in a DIP-16 300 mil
6 DIP-16 300 mil socket

148

D. Components for a Hades Board 149

4 0.22µF capacitor
18 100 nF capacitor (if sockets with capacitors are not available)
1 47µF capacitor

2 96-pin Euroconnector (male) angled
1 96-pin Euroconnector (female) straight
1 32-pin connector (male, 100 mil pitch)
1 4-bit DIP switch

E Hades RC Board Decoder

The following three programs list in full the Lola code for the PALs implementing the con-
trol interface on the Hades RC board. The first program (DecoderXCCtrl) lists the code for
the XC6216 control PAL, the second (DecoderRAMCtrl) lists the code for the SRAM access
controller and the third (DecoderXCRW) lists the code for the communication port controller.

150

E. Hades RC Board Decoder 151

TYPE DecoderXCCtrl; (* implemented in a PAL22V10, U8 *)
IN

Clk: BIT;
BoardAdr’: BIT; (* board is selected *)
A19, A18, A4, A3, A2: BIT; (* address lines needed for decoding *)

CPURW’, CPUDS’: BIT; (* CPU: read/write, data strobe *)
RESET’: BIT; (* master reset *)

OUT
XCCS’, XCOE’: BIT; (* XC: is selected, may drive pins *)
XCAOE’, XCDOE’: BIT; (* XC: may drive A/D buses *)
XCReset’, XCGClr: BIT; (* XC: reset, global clear *)
CPUAEN’, CPUDEN’: BIT; (* CPU drives the A/D-bus *)
XCStep: BIT; (* single stepping *)

VAR
select, write, XCSel, RAMSel, PortSel: BIT;
oe: BIT; (* register *)

BEGIN
select :=̃ CPUDS’ * ˜ BoardAdr’;
write := select *̃ CPURW’;

XCSel := select *̃ A19 * ˜ A18; (* 00’xxx *)
RAMSel := select *̃ A19 * A18; (* 01’xxx *)
PortSel := select * A19 * A18 *̃ A4; (* 11’0xx *)

XCCS’ := ˜ XCSel;
(* 10’000 disable, 10’001 enable OE’ *)
oe := REG(write * A19 *˜ A18 * ˜ A4 * ˜ A3, A2));
XCOE’ := ˜ oe;

(* 10’010 *)
XCReset’ :=˜ (write * A19 * ˜ A18 * ˜ A4 * A3 * ˜ A2) * RESET’;
(* 10’011 *)
XCGClr := write * A19 * ˜ A18 * ˜ A4 * A3 * A2;
(* 10’100, generate one clock pulse, high -> low -> high *)
XCStep :=˜ (write * A19 * ˜ A18 * A4 * ˜ A3 * ˜ A2);

(* CPU uses data bus *)
CPUDEN’ := ˜ (XCSel + RAMSel + PortSel);
(* CPU drives address bus *)
CPUAEN’ := ˜ (XCSel + RAMSel);

(* XC may drive data bus *)
XCDOE’ := ˜ (oe * ˜ XCSel * ˜ RAMSel * ˜ (PortSel *˜ CPURW’));
(* XC may drive address bus *)
XCAOE’ := ˜ (oe * ˜ XCSel * ˜ RAMSel)

END DecoderXCCtrl;

E. Hades RC Board Decoder 152

TYPE DecoderRAMCtrl; (* implemented in a PAL22V10, U10 *)
IN

Clk: BIT;
BoardAdr’: BIT; (* board is selected *)
(* address lines needed for decoding *)
A19: BIT;
A18: BIT;
CPURW’: BIT; (* CPU: read/write *)
CPUDS’: BIT; (* CPU: data strobe *)
CPUBE’: [4] BIT; (* CPU: byte enables 0..3 *)
XCRAMCE’: BIT; (* XC: selects SRAM *)
XCRAMOE’: BIT; (* XC: reads SRAM *)
XCRAMWE’: [4] BIT; (* XC: write enables 0..3 for SRAM *)

OUT
RAMOE’: BIT; (* RAM: read enable *)
RAMCE’: BIT; (* RAM: chip enable *)
RAMWE’: [4] BIT; (* RAM: write enable 0..3 *)

VAR
XCSel, RAMSel, PortSel: BIT;
select: BIT;

BEGIN
select :=̃ CPUDS’ * ˜ BoardAdr’;

XCSel := select *̃ A19 * ˜ A18; (* 00’xxx *)
RAMSel := select *̃ A19 * A18; (* 01’xxx *)
PortSel := select * A19 * A18; (* 11’xxx *)

(* for RAM access: XC is NOT selected and
CPU selects RAM and reads/writes
or CPU doesn’t select RAM and XC reads/writes *)

RAMCE’ := ˜ (˜ XCSel * (RAMSel + (̃ PortSel *˜ XCRAMCE’)));
RAMOE’ := ˜ (˜ XCSel * ((RAMSel * CPURW’) +

(˜ RAMSel * ˜ PortSel *˜ XCRAMOE’)));
FOR i := 0..3 DO

RAMWE’.i := ˜ (˜ XCSel * ((RAMSel * ˜ CPUBE’.i * ˜ CPURW’)
+ (˜ RAMSel * ˜ PortSel *˜ XCRAMWE’.i)))

END
END DecoderRAMCtrl;

E. Hades RC Board Decoder 153

TYPE DecoderXCRW; (* implemented in a PAL22V10, U9 *)
IN

Clk: BIT;
BoardAdr’: BIT; (* board is selected *)
(* address lines needed for decoding *)
A19, A18, A4, A3, A2: BIT;
CPURW’: BIT; (* CPU: read/write *)
CPUDS’: BIT; (* CPU: data strobe *)
XCBusy: BIT; (* XC: busy flag *)
CPUD0In: BIT; (* CPU: D.0 input *)

INOUT CPUD0: TS; (* CPU: D.0 tri-state output *)
OUT

XCRD: [4] BIT; (* XC: decoded read signals 0..3 *)
XCWR’: [4] BIT; (* XC: decoded read/write signals 0..3 *)
XCGo: BIT; (* XC: go flag *)

VAR
select, XCSel, RAMSel, PortSel, ComSel: BIT;
Port: [4] BIT;
busy: BIT; (* register *)

BEGIN
select :=̃ CPUDS’ * ˜ BoardAdr’;
XCSel := select *̃ A19 * ˜ A18; (* 00’xxx *)
RAMSel := select *̃ A19 * A18; (* 01’xxx *)
(* 10’101 *)
ComSel := select * A19 *̃ A18 * A4 * ˜ A3 * A2;
(* 11’0xx *)
PortSel := select * A19 * A18 *̃ A4;

Port.0 := PortSel *̃ A3 * ˜ A2; (* 11’000 *)
Port.1 := PortSel *̃ A3 * A2; (* 11’001 *)
Port.2 := PortSel * A3 *̃ A2; (* 11’010 *)
Port.3 := PortSel * A3 * A2; (* 11’011 *)
FOR i := 0..3 DO

XCRD.i := Port.i * CPURW’;
XCWR’.i := ˜ (Port.i * ˜ CPURW’)

END;

XCGo := REG(MUX(ComSel *̃ CPURW’: XCGo, CPUD0In));
busy := REG(MUX(ComSel * CPURW’: busy, XCBusy));
CPUD0 := ComSel * CPURW’| busy

END DecoderXCRW;

F Wotan Microprocessor

F.1 Architecture and Principle of Operation

F.1.1 Overview

Wotan is a small microprocessor designed by N. Wirth. It contains a 24-bit wide data path,
realized as 24 ALU slices, and a 16-bit wide address path. The data path contains 8 registers
and has support for a multiply/divide step. Figure F.1 shows the floorplan of Wotan, which is
implemented by the layout shown in Figure F.8.

Data

Bus

Instruction

Register

Address

Bus

Decode

Decode

Shifter /

Mul / Div Step

Reg.0 Reg.7 Add / Sub / Neg /

Logical Operations

Program Counter /

Address Generator

ALU

Figure F.1: Floorplan of Wotan Microprocessor

F.1.2 Arithmetic Logic Unit

The register file consists of 8 registers, each 24-bits wide (Reg.0 .. Reg.7 in Figure F.1).
On a XC6216 there is not enough room to accommodate 32-bit wide registers in addition to
the decoding circuitry. The registers can be loaded with a value coming from the data bus,
the instruction register or the program counter. Operations on the registers include addition,
subtraction, shifting, and, or, exclusive-or, negation and support for multiplication and division

154

F. Wotan Microprocessor 155

steps. Since the XC6200 architecture does not have tri-state buses inside the chip, reading and
writing the register file is accomplished through a series of multiplexers. One slice of three
registers is shown in Figure F.2. Data lines run horizontally and control lines run vertically.
The multiplexers’ select lines are driven by control lines from the decoding circuitry above
and below the ALU. They determine, which register is allowed to write its value to thex or y
“bus”.

12/28

xs.2

R.1

x
xin

wrX

d
din

loadD

y
yin

wrY

en.2

ys.2

xs.3

R.2

x
xin

wrX

d
din

loadD

y
yin

wrY

en.3

ys.3

xs.4

R.3

x
xin

wrX

d
din

loadD

y
yin

wrY

en.4

ys.4

Figure F.2: Register Slice

The layout of one complete ALU slice is shown in Figure F.7. A data flow diagram of the
ALU is shown in Figure F.3. An ALU instruction has two source (x, y) and one destination
register (z).

d / 0 / R1..R7

x

d / R0..R7 / imm

y

ALU

R0..R7

select x

operand

select y

operand

select z

operand

Figure F.3: Data Flow

F.1.3 Control Unit

The control unit, consisting of the program counter and address generator circuitry, is 16-bits
wide and is used to address external memory. The address used in a particular step is either the
value of the program counter (for fetching the next instruction), the value from the instruction
register (for jumps) or the value from the ALU (for return jumps). Figure F.4 shows two bits of
the control unit. The program counter is shown on the left and the multiplexers for the address
selection are shown on the right.

F.1.4 Decoders and Instructions

Control signals for the various multiplexers in the ALU and the program counter are generated
by the decoding circuits below and above the ALU and the control unit. The decoding circuitry
takes as inputs the instruction register holding the current instruction. Wotan implements the

F. Wotan Microprocessor 156

28/12

cu.4

pc
ci

co
ci

a

a0
ir

z

as0

as1

cu.5

pc
ci

co
ci

a

a0
ir

z

as0

as1

Figure F.4: Control Unit Slice

instructions shown in Table F.1. Rows with an “i” indicate instructions with or without an
immediate operand and rows with an “n” indicate instructions which do or do not negate one
operand.

F.1.5 Sequencer

The state machine controlling the operation of the microprocessor has three phases (states)
shown in Figure F.5. In phase 0 (ph0’), ALU instructions and branches are executed and a new
instruction is loaded into the instruction register (fetch). If the current instruction is a load or
a store instruction it is executed in phase 1 (ph1), during which memory is accessed. After
phase 1, a new instruction is loaded in phase 2 (ph2).

ph0'

Fetch &

Execute

ph1

Access

Memory

ph2

Fetch

not Load/Store

instruction Load/Store

instruction

Figure F.5: State Machine

F.2 Lola Code

In the following, the complete Lola HDL description of Wotan together with placement code
and more detailed explanations are given.

The ALU consists of 24 bit-slices. Each slice contains an ALU with 2 inputsx andy and
outputz. The inputs come from the 8 registers. The first registerR0 is special, the others

F. Wotan Microprocessor 157

Instruction IR.23 .. IR.18

ADD 0i 0n00
AND 0i 0n01
OR 0i 0n10
XOR 0i 0n11
SHL 0i 1n00
SHR 0i 1n01

LD 10 0nxx
ST 10 1nxx

BR 11 1000
BEQ 11 0001
BNE 11 1001
BLT 11 0010
BGE 11 1010
BLE 11 0011
BGT 11 1011
BCS 11 0100
BCC 11 1100
BSR 11 0110
RET 11 0111

Table F.1: Wotan Instructions

are implemented asRegCells with two output muxes. Figure F.6 shows the input, output and
control signals of one ALU-slice.

ALU Slice

D

IR

zo

zi

sd

so

z

Y

`

control signals

r

hd

PC

rso

su hu ci

co

Figure F.6: ALU Slice Signals

RegCell: din = data input to registerd from input bus;loadD = register load enable;xin, yin
= input to output muxes;wrX, wrY: output mux selectors, 0 = passxin, yin input tox, y output,
1 = feed register value tox, y.

The register inputdin flows through a mux controlled byds (data select), selecting either
the ALU output or input from memory (D), yielding so, and then through a shift mux con-
trolled byshen. shen = shift enable;shd = shift down;sd, su = shift mux inputs from next
higher or lower bit-slice. The outputd of the shift mux goes to the registers.

A second shift path is used for multiply and divide instructions, in which register 0r plays
an exceptional role: The second shift-mux has inputshd andhu for shifting up or down.

The ALU part implements inversion, exclusive and inclusive OR, and AND. Controls are:
neg: complementy input;xor: select XOR; or: select OR; and: select AND.

F. Wotan Microprocessor 158

The y input is selected to be either the register outputy (calledY) or to come from the
IR-register (immediate operand).

ci andco are the carries, andzi andzo the chain of AND-gates to determine whether all
ALU outputs are zero. A multiplexer at the ALU-output allows to feed in the PC-value (for
branch-subroutine).

The control unit consists of 16 PC-slices. Each slice contains a bit of the PC register and
two muxes. The address output used to address memory is determined by the selectorsas1
andas0 as shown in Table F.2. The control unit also contains the program counter. Its next
value is also shown in Table F.2.

as1/as0 Adr Out PC

0x PC PC+1
10 IR IR (call)
11 ALU.z ALU.z (return)

Table F.2: Control Unit

F. Wotan Microprocessor 159

MODULE Wotan;
(* register d and simulated register buses x, y *)
TYPE RegCell(Place);

(* data in, x/y bus in, load register, write bus x/y *)
IN din, xin, yin, loadD, wrX, wrY: BIT;
OUT x, y: BIT; (* x/y bus *)
VAR d: BIT; (* register *)

BEGIN
d := REG(loadD, din);
x := MUX(wrX: xin, d); (* conditionally write d to x bus *)
y := MUX(wrY: yin, d); (* conditionally write d to y bus *)

IF Place = 1 THEN d :: 1, 0; x :: 0, 0; y :: 1, 1 END
END RegCell;

(* alu bit slice with 8 registers *)
TYPE ALUslice(Place);

CONST Regs := 8; (* 8 registers *)
IN

din, ir, pc: BIT; (* data in, inst. reg, prog. counter *)
su, sd, hu, hd: BIT; (* shift data up/dn, mult/div up/dn *)

ci, zi: BIT; (* carry in, zero in *)
(* data select, immediate select, pc select, shift enable, shift up/dn *)
ds, im, pcs, shen, shd: BIT;
(* and, or, xor, negate *)
and, or, xor, neg: BIT;
(* register load enable, output mux selectors *)
en, xs, ys: [Regs] BIT;

OUT
z, Y, so, r, co, zo: BIT; (* r for register 0 *)

VAR
d, x, y, u, zero, pz, shift, shiftr, rin, ren, r0in,
Y1, sum, a, o, Xor, And: BIT;
(* register bitslices, 0th register special (r) *)
R: [Regs-1] RegCell(Place);

BEGIN
pz := MUX(pcs: z, pc); (* select alu output or pc *)
so := MUX(ds: pz, din); (* select alu output, pc or data input *)

shift := MUX(shd: su, sd); (* shift up or down *)
d := MUX(shen: so, shift); (* shift select *)
shiftr := MUX(shd: hu, hd);
rin := MUX(shen: d, shiftr); ren := en.0+shen;
r := REG(ren, rin); (* reg 0 *)
zero := ’0; r0in := ys.0*r;
R.0(d, zero, r0in, en.1, xs.1, ys.1);(* reg 1 *)
FOR i := 1..6 DO (* reg 2-7 *)

R.i(d, R[i-1].x, R[i-1].y, en[i+1], xs[i+1], ys[i+1])
END ;
x := R.6.x; Y := R.6.y; (* x and y register bus *)
Y1 := MUX(im: Y, ir); (* select instruction or normal register *)

F. Wotan Microprocessor 160

y := Y1-neg; (* negate *)
u := x-y; (* half sum *)
(* alu operations *)
sum := u-ci; a := x*y; o := x+y;
Xor := MUX(xor: sum, u); And := MUX(and: Xor, a);
z := MUX(or: And, o);
co := MUX(u: x, ci); (* carry out *)
zo := ˜ z*zi; (* zero chain *)

IF Place = 1 THEN
FOR i := 0 .. 6 DO R.i :: 4+i*2, 0 END;
so :: 0, 0; shift :: 0, 1;
d :: 1, 0; rin :: 1, 1;
shiftr :: 2, 0; ren :: 2, 1;
r :: 3, 0; r0in :: 3, 1;
zero :: 4, 1;
x :: 16, 0;
Y :: 17, 1;
Y1 :: 18, 0; y :: 18, 1;
co :: 19, 0; u :: 19, 1;
sum :: 20, 0; Xor :: 20, 1;
a :: 21, 0; And :: 21, 1;
o :: 22, 0; z :: 22, 1;
pz :: 23, 0; zo :: 23, 1

END
END ALUslice;

F. Wotan Microprocessor 161

(* incrementable program counter *)
TYPE PCslice(Place);

IN ir, z, ci, as1, as0: BIT; (* instr. reg, alu output, carry in, selectors *)
OUT pc, co, a: BIT; (* pc, carry out, address *)
VAR a0: BIT;

BEGIN
(* increment pc *)
pc := REG(a - ci); co := a * ci;
a0 := MUX(as0: ir, z); (* instr. reg or alu output *)
a := MUX(as1: pc, a0); (* instr. reg, alu output or pc *)

IF Place = 1 THEN pc :: 0, 0; co :: 0, 1; a :: 1, 0; a0 :: 1, 1 END
END PCslice;

(* 3:8 decoder *)
TYPE Decoder(Place);

IN a: [3] BIT;
OUT y: [8] BIT;

BEGIN
y.0 := (̃ a.2 * ˜ a.1) * ˜ a.0; (* 000 *)
y.1:= (̃ a.2 * ˜ a.1) * a.0; (* 001 *)
y.2 := (̃ a.2 * a.1) *˜ a.0; (* 010 *)
y.3:= (̃ a.2 * a.1) * a.0; (* 011 *)
y.4:= (a.2 *˜ a.1) * ˜ a.0; (* 100 *)
y.5:= (a.2 *˜ a.1) * a.0; (* 101 *)
y.6:= (a.2 * a.1) *˜ a.0; (* 110 *)
y.7:= (a.2 * a.1) * a.0; (* 111 *)

IF Place = 1 THEN FOR i := 0 .. 7 DO y.i :: 2*i, 0 END END
END Decoder;

(* 3:8 decoder with enable *)
TYPE EnDecoder(Place);

IN en: BIT; a: [3] BIT;
OUT y: [8] BIT;

BEGIN
y.0:= (̃ a.2 * ˜ a.1) * (̃ a.0 * en); (* 000 *)
y.1:= (̃ a.2 * ˜ a.1) * (a.0 * en); (* 001 *)
y.2:= (̃ a.2 * a.1) * (̃ a.0 * en); (* 010 *)
y.3:= (̃ a.2 * a.1) * (a.0 * en); (* 011 *)
y.4:= (a.2 *˜ a.1) * (̃ a.0 * en); (* 100 *)
y.5:= (a.2 *˜ a.1) * (a.0 * en); (* 101 *)
y.6:= (a.2 * a.1) * (̃ a.0 * en); (* 110 *)
y.7:= (a.2 * a.1) * (a.0 * en); (* 111 *)

IF Place = 1 THEN FOR i := 0 .. 7 DO y.i :: 2*i, 0 END END
END EnDecoder;

CONST
DataN := 24; AddrN := 16;
Place := 1; AluXOff := 4; AluYOff := 4;

IN

F. Wotan Microprocessor 162

AOE’: BIT;
INOUT

A: [AddrN] TS;
D: [DataN] TS;

OUT
RAMWE’: [4] BIT;
RAMOE’: BIT;

VAR
IR: [DataN] BIT;
alu: [DataN] ALUslice(Place);
cu: [AddrN] PCslice(Place);
Dx, Dy: Decoder(Place);
Dz: EnDecoder(Place);
N, Z, C: BIT;
ds, im, pcs, shen, shd, and, or, xor, neg: BIT;
(* state machine *)
LS, ph0’, ph1, ph2: BIT;
(* controls *)
ren, iren, cond, as0, as1: BIT;
zero, one, we’: BIT;
zeroes: [DataN-AddrN] BIT;

BEGIN
(* instruction register and decoders *)
FOR i := 0..DataN-1 DO IR.i := REG(iren, D.i) END;
Dz(ren, IR[15..17]); (* destination register select *)
Dx(IR[12..14]); (* src register 1 select *)
Dy(IR[0..2]); (* src register 2 select *)
(* ALU slices *)
zero := ’0; one := ’1;
alu.0(D.0, IR.0, cu.0.pc, alu.23.r, alu.1.so,

zero, alu.1.r, neg, one,
ds, im, pcs, shen, shd, and, or, xor, neg, Dz.y, Dx.y, Dy.y);

FOR i := 1 .. 11 DO
alu.i(D.i, IR.i, cu.i.pc, alu[i-1].so, alu[i+1].so,

alu[i-1].r, alu[i+1].r, alu[i-1].co, alu[i-1].zo,
ds, im, pcs, shen, shd, and, or, xor, neg, Dz.y, Dx.y, Dy.y)

END;
FOR i := 12 .. AddrN-1 DO

alu.i(D.i, IR.11, cu.i.pc, alu[i-1].so, alu[i+1].so,
alu[i-1].r, alu[i+1].r, alu[i-1].co, alu[i-1].zo,
ds, im, pcs, shen, shd, and, or, xor, neg, Dz.y, Dx.y, Dy.y)

END;
FOR i := AddrN .. DataN-2 DO

zeroes[i-AddrN] := ’0;
alu.i(D.i, IR.11, zeroes[i-AddrN], alu[i-1].so, alu[i+1].so,

alu[i-1].r, alu[i+1].r, alu[i-1].co, alu[i-1].zo,
ds, im, pcs, shen, shd, and, or, xor, neg, Dz.y, Dx.y, Dy.y)

END;
zeroes[DataN-1-AddrN] := ’0;
alu[DataN-1](D[DataN-1], IR.11, zeroes[DataN-1-AddrN],

alu[DataN-2].so, alu[DataN-1].co,
alu[DataN-2].r, alu.0.so, alu[DataN-2].co, alu[DataN-2].zo,

F. Wotan Microprocessor 163

ds, im, pcs, shen, shd, and, or, xor, neg, Dz.y, Dx.y, Dy.y);

(* status flags *)
N := REG(ren, alu[DataN-1].z); (* ALU.z negative? *)
Z := REG(ren, alu[DataN-1].zo); (* ALU.z zero? *)
C := REG(ren, alu[DataN-1].co); (* carry set? *)

(* PC and address generation *)
cu.0(IR.0, alu.0.z, iren, as1, as0);
A.0 := AOE’ | cu.0.a;
FOR i := 1..AddrN-1 DO

cu.i(IR.i, alu.i.z, cu[i-1].co, as1, as0);
A.i := AOE’ | cu.i.a

END;
FOR i := 0..DataN-1 DO D.i := RAMOE’| alu.i.Y END;

(* control signals *)
ds := ph1 *˜ IR.21; (* data select, load instruction *)
im := IR.22; (* immediate operand *)
(* select pc for register file: branch subroutine and link *)
pcs := IR.23 * IR.22 *˜ IR.21 * IR.20 * IR.19 * ˜ IR.18;
shen :=̃ IR.23 * IR.21; (* shift instruction *)
shd := IR.18;
and :=˜ IR.23 * ˜ IR.19 * IR.18;
or := ˜ IR.23 * IR.19 * ˜ IR.18;
xor := ˜ IR.23 * IR.19 * IR.18;
neg := IR.20;

(* state machine *)
LS := IR.23 * ˜ IR.22; (* load or store *)
ph0’ := REG(̃ iren);
ph1 := REG(̃ ph0’*LS); (* load or store phase *)
ph2 := REG(ph1);

iren := ˜ ph0’*˜ LS + ph2; (* instruction reg. enable *)
ren :=˜ ph0’*˜ IR.23 + ph1*̃ IR.21; (* reg. enable: ALU instr. or load *)

RAMOE’ := ˜ (iren + ph1*̃ IR.21); (* instruction fetch or load *)
we’ := ˜ (ph1 * IR.21); (* store *)
RAMWE’.0 := we’;
RAMWE’.1 := we’;
RAMWE’.2 := we’;

(* condition set (IR.21 = 0) or cleared (IR.21 = 1) *)
cond := (C*IR.20 + N*IR.19 + Z*IR.18) - IR.21;
(* return or previous was load/store *)
as0 := IR.18 + ph1;
(* branch or return or previous was load/store *)
as1 := IR.23*IR.22 * (cond + IR.20*IR.19) + ph1;

IF Place = 1 THEN
FOR i := 0 .. DataN-1 DO alu.i :: AluXOff, AluYOff+2*i END;

F. Wotan Microprocessor 164

FOR i := 0 .. AddrN-1 DO cu.i :: AluXOff+24, AluYOff+2*i END;
FOR i := AddrN .. DataN-1 DO

zeroes[i-AddrN] :: AluXOff+24, AluYOff+2*i
END;
Dx :: AluXOff+2, AluYOff-4;
Dy :: AluXOff+3, AluYOff-2;
Dz :: AluXOff+3, AluYOff+2*DataN;
zero :: AluXOff+2, AluYOff-1; one :: AluXOff+23, AluYOff-1;
C :: AluXOff+19, AluYOff+2*DataN;
N :: AluXOff+22, AluYOff+2*DataN;
Z :: AluXOff+23, AluYOff+2*DataN;
as0 :: AluXOff+25, AluYOff+2*AddrN;
as1 :: AluXOff+25, AluYOff-1;
ds :: AluXOff, AluYOff-1;
shen :: AluXOff+1, AluYOff-1;
xor :: AluXOff+20, AluYOff-4;
and :: AluXOff+21, AluYOff-3;
or :: AluXOff+22, AluYOff-2;
pcs :: AluXOff+23, AluYOff-4;

FOR i := 0 .. DataN-1 DO IR.i :: 1, 2*i+1 END;
iren :: 1, 2*DataN;
LS :: 3, 2*DataN-3;
ph0’ :: 3, 2*DataN-2;
ph1 :: 3, 2*DataN-1;
ph2 :: 3, 2*DataN;

END
END Wotan.

F.3 Layout Synthesis

As can be seen from the Lola code, most of the gates are placed manually. This is necessary
to achieve a dense and fast layout. Using the automatic placer of Hades without placement
hints, one ALU slice has a bounding box of 20x12 cells with a utilization of 18%. The design
does not fit into a XC6216. After manually optimizing the ALU slice, it has a bounding box
of 24x2 with a utilization of 88%. The layout is shown in Figure F.7. The remaining logic is
preplaced as well, to ensure a routable design. Floor-planning is essential with this design, as
control signals, such as the shift control signalshen, need to be in the correct column. To get a
correct, routable layout using the placer and router interactively, about 12 hours were needed.
This includes the time to understand the design.

Figure F.7: ALU Slice

The quick response from the Hades tools were a prerequisite to try out different placements
of the ALU slice, to see whether the resulting layout was routable or not. Table F.3 compares
the performance of the Hades tools with the XACT step Series 6000 software from Xilinx. As
already shown in Chapter 6, Hades is an order of magnitude faster.

First, we let XACT place the design automatically. This took 5 minutes and resulted in a

F. Wotan Microprocessor 165

layout with components left unplaced. Then, we placed the design by inserting hints into the
Lola code. Note that this process still took much longer than when using Hades, because some
gates were left unplaced. The router took about 40 times as much time and resulted in twice
as many unrouted nets, despite utilizing the Magic resources. We tried the automatic ripup
and reroute feature of XACT. After 10 iterations, which took nearly 3 hours, there still were
52 unrouted nets. This experience undermines our request for a fast, interactive and iterative
design cycle.

1247 Cells and 3931 Nets Hades XACT high

Compile 0.5 s -
Map & Place 0.5 s 160 s
Bounding Box 34 x 54 34 x 54
Route 23.1 s 1076 s

Unroutes 85 168
Route using Script 41.2 s -

Unroutes 0 -
10x Ripup & Reroute - 9900 s

Unroutes - 52
Total (M+P+R) 41.7 s 1236 s / 10060 s
Speedup of Hades 29.6 / 241.2

Table F.3: Wotan Place & Route Times

Clearly, the requirement of our tools to specify the location of nearly every cell is an
undesirable feature, but it is necessary to achieve a compact, routable and fast design. The
sophisticated placement algorithm of XACT fails to find a satisfactory solution and the user
has to give hints as well.

Wotan has a critical path of 163 ns and should therefore run at about 6 MHz. Since
most instructions have two phases (except for load and store), it executes about 3 MIPS. The
resulting design is shown in Figure F.8. Note that the size of the bounding box in Table F.3
does not include the address drivers on the right side of the chip. With these, the bounding
box would be 64x54 cells.

F. Wotan Microprocessor 166

Figure F.8: Wotan Microprocessor on XC6216 FPGA

G Resources on the Web

This section lists a few useful URLs pointing to pages with information about Trianus and
Hades, as well as RC boards. These URLs are believed to be current. However, since the
World Wide Web is an ever-changing environment, we also list AltaVista queries (http://-
altavista.digital.com) below the URLs, which should return the most recent pointer to these
pages. More URLs can also be found in the Bibliography.

http://www.cs.inf.ethz.ch/cs/group/wirth/projects/cad-tools/
+hades +lola +trianus

Page of the Institute for Computer Systems, ETH Z¨urich,
on CAD tools for hardware design. From this page, the
Trianus/Hades system can be downloaded.

http://www.inf.ethz.ch/publications/diss.html
+host:inf.ethz.ch +dissertations

Page of the Department of Computer Science,
ETH Zürich, listing available dissertations.

http://www.eee.bham.ac.uk/James-RoxbyP/reconfig.htm
+james-roxby +birmingham +reconfigurable

Philip James-Roxby’s page about reconfigurable
computing, containing Lola examples, screen-shots
of Hades in action and more pointers to other resources.

http://www.vcc.com
+VCC +6200

Page of Virtual Computer Corporation offering a
PCI-card featuring an XC6200 FPGA.

http://www.xilinx.com
+xilinx +6200 +product +literature

Page with data-sheet for the XC6200.

167

Bibliography

[Act95] Actel. ACT Family Field-Programmable Gate Array Data Book, 1995.

[AMD95] Advanced Micro Devices.Programmable Logic Data Book, 1995.

[ASU86] A. V. Aho, R. Sethi, J. D. Ullman.Compilers Principles, Techniques and Tools.
Addison-Wesley, 1986.

[ACG95] M. Alexander, J. Cohoon, J. Ganley, G. Robins. Performance-Oriented Place-
ment and Routing for Field-Programmable Gate Arrays.Proc. European Design
Automation Conference.IEEE Computer Society Press, 1995.

[Alg90] Algotronix. CAL-1024 Data Sheet, 1990.

[Alg91] Algotronix, Configurable Array Logic User Manual, 1991.

[Alt96] Altera. Data Book, 1996.

[ACC95] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, G. Snider. Teramac —
Configurable Custom Computing.Proc. IEEE Symposium on FPGAs for Custom
Computing Machines.IEEE Computer Society Press, 1995.

[ACC96] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, G. Snider. Plasma: An
FPGA for Million Gate Systems.Proc. Intl. Symposium on Field Programmable
Gate Arrays.ACM, 1996.

[ABD92] J. M. Arnold, D. A. Buell, E. G. Davis. Splash 2.Proc. 4th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, 1992.

[AS93] P. M. Athanas, H. F. Silverman. Processor Reconfiguration Through Instruction-
Set Metamorphosis.IEEE Computer, Vol. 26, No. 3, March, 1993.

[Atm95] Atmel. Configurable Logic: Design & Application Book, 1995.

[BRV89] P. Bertin, D. Roncin, J. Vuillemin. Introduction to Programmable Active Memo-
ries.Systolic Array Processors.Prentice Hall, 1989.

[Ber93] P. Bertin.Mémoires actives programmables: conception, réalisation et program-
mation.(Programmable Active Memories: Conception, Realization and Program-
ming.) Dissertation, Paris University, 1993.

[BT94] P. Bertin, H. Touati. PAM Programming Environments: Practice and Experience.
Proc. IEEE Symposium on FPGAs for Custom Computing Machines.IEEE Com-
puter Society Press, 1994.

[Bli96] T. Blickle. Theory of Evolutionary Algorithms and Application to System Synthe-
sis.Dissertation 11894, ETH Z¨urich, 1996.

[BM77] R. S. Boyer, J. S. Moore. A Fast String-Searching Algorithm.Communications of
the ACM, Vol. 20, No. 10, October 1977.

168

Bibliography 169

[BRA96] Berkeley Reconfigurable Architectures, Systems and Software Research Group.
BRASS Research Group Homepage. http://www.cs.berkeley.edu/projects/brass-
/index.html, 1996.

[Bre96] G. Brebner. A Virtual Hardware Operating System for the Xilinx XC6200.Proc.
6th Intl. Workshop on Field-Programmable Logic and Applications.LNCS 1142,
Springer, 1996.

[BG95] G. Brebner and J. Gray. Use of Reconfigurability in Variable-Length Code Detec-
tion at Video Rates.Proc. 5th Intl. Workshop on Field-Programmable Logic and
Applications.Springer, 1995.

[Bre77] M. A. Breuer. Min-Cut Placement.Journal of Design Automation and Fault Tol-
erant Computing, Vol. 1, 4 (Oct.), 343-362, 1977.

[BFR92] S. D. Brown, R. J. Francis, J. Rose, Z. G. Vranesic.Field-Programmable Gate
Arrays.Kluwer Academic Publishers, 1992.

[BKV96] S. Brown, M. Khellah, Z. Vranesic. Minimizing FPGA Interconnect Delays.
IEEE Design & Test of Computers, Vol. 13 (4), 1996.

[Bry86] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.IEEE
Trans. on Computers, Vol. C-35, 6 (Aug.), 677-691, 1986.

[Bry92] R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision Di-
agrams.ACM Computing Surveys, Vol. 24, 293-318, 1992.

[Buc96] I. Buchanan. Xilinx Development Corporation, Scotland. Personal Communica-
tion, 1996.

[BJL92] M. Burrows, C. Jerian, B. Lampson, T. Mann.On-Line Compression in a Log-
Structured File System.Digital Systems Research Center Report No. 85, 1992.

[Cas96] S. Casselman. Virtual Computer Corporation, USA. Personal Communication,
1996.

[Chr95] Chromatic Research,MPact Media Engine, 1995.

[CKW95] S. Churcher, T. Kean, B. Wilkie. The XC6200 FastMapT M Processor Interface.
Proc. 5th Intl. Workshop on Field-Programmable Logic and Applications.LNCS
975, Springer, 1995.

[CH96] D. A. Clark, B. L. Hutchings. The DISC Programming Environment.Proc. IEEE
Symposium on FPGAs for Custom Computing Machines.IEEE Computer Society
Press, 1996.

[Con96] D. Conroy. Digital Systems Research Center, California. Personal Communica-
tion, 1996.

[Coo71] S. Cook. The Complexity of Theorem Proving Procedures.Proc. Third Annual
ACM Symposium on the Theory of Computing, 1971.

[CLR90] T. H. Cormen, C. E. Leiserson, R. L. Rivest.Introduction to Algorithms.The MIT
Press, 1990.

[COO93] W. B. Culbertson, T. Osame, Y. Otsuru, J. B. Schackleford, M. Tanaka. The HP
Tsutsuji Logic Synthesis System.Hewlett-Packard Journal, August, 1993.

Bibliography 170

[CAC96] W. B. Culbertson, R. Amerson, R. J. Carter, P. Kuekes, G. Snider. Exploring
Architectures for Volume Visualization on the Teramac Custom Computer.Proc.
IEEE Symposium on FPGAs for Custom Computing Machines.IEEE Computer
Society Press, 1996.

[Cyp95] Cypress.Programmable Logic Data Book, 1995.

[DeH96] A. DeHon.Reconfigurable Architectures for General-Purpose Computing.Dis-
sertation, A.I. Technical Report No. 1586, Artificial Intelligence Laboratory, MIT,
1996.

[DGR87] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, A. Wang. Technol-
ogy Mapping in MIS.Proc. IEEE Conference on Computer Aided Design, 1987.

[Dio87] J. Dion. Fast Printed Circuit Board Routing.Proc. 24th Design Automation Con-
ference, ACM/IEEE, 1987. Also available as Digital Western Research Labora-
tory Report No. 88/1, 1988.

[DM95] J. Dion, L. M. Monier.Contour: A Tile-Based Gridless Router. Digital Western
Research Laboratory Report No. 95/3, 1995.

[DR97] A. R. Disteli, P. Reali. Combining Oberon with Active Objects.Proc. Joint Mod-
ular Languages Conference, 1997.

[ECF96] C. Ebeling, D. C. Cronquist, P. Franklin. RaPiD - Reconfigurable Pipelined Dat-
apath.Proc. 6th Intl. Workshop on Field-Programmable Logic and Applications.
LNCS 1142, Springer, 1996.

[Ebe87] H. Eberle.Development and Analysis of a Workstation Computer.Dissertation
8431, ETH Zürich, 1987.

[EH94] J. G. Eldredge, B. L. Hutchings. Density Enhancement of a Neural Network Using
FPGAs and Run-Time Reconfiguration.Proc. IEEE Symposium on FPGAs for
Custom Computing Machines.IEEE Computer Society Press, 1994.

[FM82] C. M. Fiduccia, R. M. Mattheyses. A Linear Time Heuristic for Improving Net-
work Partitions.Proc. 19th Design Automation Conference, ACM/IEEE, 1982.

[FB72] R. A. Finkel, J. L. Bentley. Quad Trees: A Data Structure for Retrieval on Com-
posite Keys.Acta Informatica, 4(1), 1974.

[Fie95] C. A. Fields. The Proper Use of Hierarchy in HDL-Based High Density FPGA
Design.Proc. 5th Intl. Workshop on Field-Programmable Logic and Applications.
LNCS 975, Springer, 1995.

[Fou93] P. W. Foulk. Data-Folding in SRAM Configurable FPGAs.Proc. IEEE Sympo-
sium on FPGAs for Custom Computing Machines.IEEE Computer Society Press,
1993.

[FRV91] R. J. Francis, J. Rose, Z. Vranesic. Chortle-crf: Fast Technology Mapping
for Lookup Tabled-Based FPGAs.Proc. 28th Design Automation Conference,
ACM/IEEE, 1991.

[Gal95] J. Galloway. The Transmogrifier-C Hardware Description Language and Com-
piler for FPGAs.Proc. IEEE Symposium on FPGAs for Custom Computing Ma-
chines.IEEE Computer Society Press, 1995.

Bibliography 171

[GJ79] M. R. Garey, D. S. Johnson.Computers and Intractability: A Guide to the Theory
of NP-Completeness.W. H. Fremann, 1979.

[Geh97] S. Gehring.An Integrated Framework for Structured Circuit Design with Field-
Programmable Gate Arrays.Dissertation to appear, ETH Z¨urich, 1997.

[GLW94] S. Gehring, S. Ludwig, N. Wirth. A Laboratory for a Digital Design Course Us-
ing FPGAs.Proc. 4th Intl. Workshop on Field-Programmable Logic and Applica-
tions.LNCS 849, Springer, 1994.

[GL96] S. Gehring, S. Ludwig. The Trianus System and its Application to Custom Com-
puting.Proc. 6th Intl. Workshop on Field-Programmable Logic and Applications.
LNCS 1142, Springer, 1996.

[GHK90] M. Gokhale, W. Holmes, A. Kosper, D. Kunze, D. Lopresti, S. Lucas, R. Min-
nich, P. Olsen. SPLASH: A Reconfigurable Linear Logic Array.International
Conference on Parallel Processing, 1990.

[Gol89] D. E. Goldberg.Genetic Algorithms.Addison-Wesley, 1989.

[GS95] M. Gschwind, V. Salapura. A VHDL Design Methodology for FPGAs.Proc.
5th Intl. Workshop on Field-Programmable Logic and Applications.LNCS 975,
Springer, 1995.

[Guc94] S. Guccione.List of FPGA-based Computing Machines. http://www.io.com-
/˜ guccione/HW-list.html, 1994.

[GG95] S. Guccione and M. Gonzalez. Classification and Performance of Reconfigurable
Architectures.5th Intl. Workshop on Field-Programmable Logic and Applica-
tions.Springer, 1995.

[Guc95] S. Guccione.Programming Fine-Grained Reconfigurable Architectures.Disser-
tation, University of Texas at Austin, 1995.

[Gut97] J. Gutknecht. Do the Fish Really Need Remote Control?Proc. Joint Modular
Languages Conference, 1997.

[GMN96] B. Gunther, G. Milne, L. Narasimhan. Assessing Document Relevance with Run-
Time Reconfigurable Machines.Proc. IEEE Symposium on FPGAs for Custom
Computing Machines.IEEE Computer Society Press, 1996.

[HH95] J. D. Hadley, B. L. Hutchings. Design Methodologies for Partially Reconfigured
Systems.Proc. IEEE Symposium on FPGAs for Custom Computing Machines.
IEEE Computer Society Press, 1995.

[HWA76] M. Hanan, P. K. Wolff Sr., B. J. Agule. A Study of Placement Techniques,Journal
of Design Automation and Fault Tolerant Computing, Vol. 1, 1 (Oct.), 28-61,
1976.

[HHC96] I. Harvey, P. Husbands, D. Cliff, A. Thompson, N. Jakobi. Evolutionary Robotics
at Sussex.Proc. Intl. Symposium on Robotics and Manufacturing, 1996.

[Hee88] B. Heeb.Design of the Processor-Board for the Ceres-2 Workstation. Technical
Report Nr. 93, Dept. Informatik, ETH Z¨urich, 1988.

[Hee93] B. Heeb. Debora:A System for the Development of Field Programmable Hard-
ware and its Application to a Reconfigurable Computer.Dissertation, ETH
Zürich, 1993.

Bibliography 172

[HN91] B. Heeb and I. Noack.Hardware Description of the Workstation Ceres-3. Tech-
nical Report Nr. 168, Dept. Informatik, ETH Z¨urich, 1991.

[HP92] B. Heeb and C. Pfister. Chameleon: A Workstation of a Different Colour.2nd Intl.
Workshop on Field-Programmable Logic and Applications.LNCS 705, Springer,
1992.

[HP96] J. L. Hennessy, D. A. Patterson.Computer Architecture: A Quantitative Ap-
proach, Second Edition.Morgan Kaufmann, 1996.

[HW96] J. P. Heron, R. F. Woods. Architectural Strategies for Implementing an Image
Processing Algorithm on XC6000 FPGA.Proc. 6th Intl. Workshop on Field-
Programmable Logic and Applications.LNCS 1142, Springer, 1996.

[Hig69] D. Hightower. A Solution to Line Routing Problems on the Continuous Plane.
Proc. Design Automation Workshop, 1969.

[Hof96] D. Hofmann.Minterms: A Program for Logic Minimization, 1996.

[IEE87] IEEE Standard 1076-1987,IEEE Standard VHDL Language Reference Manual,
Institute for Electrical and Electronic Engineers, 1987.

[ICS96] Institute for Computer Systems.The Oberon Archive.ftp://ftp.inf.ethz.ch/pub-
/software/Oberon.

[Ise96] C. Iseli.Spyder: A Reconfigurable Processor Development System. Dissertation
1476, EPF Lausanne, 1996.

[IS95] C. Iseli, E. Sanchez. A C++ Compiler for FPGA Custom Execution Units Syn-
thesis.Proc. IEEE Symposium on FPGAs for Custom Computing Machines.IEEE
Computer Society Press, 1995.

[JG93] H. Johnson and M. Graham.High-Speed Digital Design: A Handbook of Black
Magic.Prentice Hall, 1993.

[Kar86] R. M. Karp. Combinatorics, Complexity, and Randomness.Communications of
the ACM, Vol. 29, No. 2, February 1986.

[Kea89] T. A. Kean.Configurable Logic: A Dynamically Programmable Cellular Ar-
chitecture and its VLSI Implementation. Thesis CST-62-89, Univ. of Edinburgh,
1989.

[KG89] T. A. Kean, J. Gray. Configurable Hardware: Two Case Studies of Micro-Grain
Computation.Systolic Array Processors. Prentice Hall, 1989.

[Kea96] T. A. Kean. Xilinx Development Corporation, Scotland. Personal Communica-
tion, 1996.

[KB92] T. A. Kean, I. Buchanan. The Use of FPGA’s in a Novel Computing Subsystem,
Proc. 1st Intl. ACM/SIGDA Workshop on FPGAs. ACM Press, 1992.

[KNS96] T. Kean, B. New, B. Slous. A Fast Constant Coefficient Multiplier for the
XC6200.Proc. 6th Intl. Workshop on Field-Programmable Logic and Applica-
tions.LNCS 1142, Springer, 1996.

[KL70] B. Kernighan, S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs.
Bell System Technical Journal, Vol. 49, February, 1970.

Bibliography 173

[Keu87] K. Keutzer. DAGON: Technology Binding and Local Optimization by DAG
Matching.Proc. 24th Design Automation Conference, ACM/IEEE, 1987.

[KGV83] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecci. Optimization by Simulated Anneal-
ing. Science, Vol. 220, May, 1983.

[Kni96] G. Knittel. A PCI-compatible FPGA-Coprocessor for 2D/3D Image Processing.
FPGAs for Custom Computing Machines’96. IEEE Computer Society Press,
1996.

[Kri84] B. Krishnamurthy. An Improved Min-Cut Algorithm for Partitioning VLSI Net-
works.IEEE Trans. on Computers, Vol C-33, No. 5, May 1984.

[Lat96] Lattice.Lattice Data Book, 1996.

[Lee61] C. Y. Lee. An Algorithm for Path Connections and its Applications.IRE Trans.
Electronic Computer, Vol. EC-10, September 1961.

[LS88] B. Liskov, L. Shrira, Promises: Linguistic Support for Efficient Asynchronous
Procedure Calls in Distributed Systems.SIGPLAN ’88 Conference on Program-
ming Language Design and Implementation.ACM SIGPLAN Notices 23 (7),
1988.

[Log91] Logical Devices. CUPL PLD/FPGA Language Compiler, 1991.

[Lud94] S. Ludwig.Conventions for Programming.Internal Memo, Institute for Computer
Systems, ETH Z¨urich, 1994. Also available in the Oberon System 3 distribution.

[Lud96] S. Ludwig. The Design of a Coprocessor Board Using Xilinx’s XC6200 FPGA
- An Experience Report.Proc. 6th Intl. Workshop on Field-Programmable Logic
and Applications.LNCS 1142, Springer, 1996.

[LSC96] W. Luk, N. Shirazi, P. Cheung. Modelling and Optimising Run-Time Reconfig-
urable Systems.FPGAs for Custom Computing Machines ’96.IEEE Computer
Society Press, 1996.

[LD93] P. Lysaght, J. Dunlop. Dynamic Reconfiguration of FPGAs.More FPGAs: Proc.
1993 Intl. Workshop on Field-Programmable Logic and Applications, 1993.

[MD95] L. M. Monier, J. Dion. Recursive Layout Generation.Proc. 16th Conference on
Advanced Research in VLSI.IEEE Computer Society Press, 1995.

[MD96] E. Mirsky, A. DeHon. MATRIX: A Reconfigurable Computing Architecture with
Configurable Instruction Distribution and Deployable Resources.Proc. IEEE
Symposium on FPGAs for Custom Computing Machines.IEEE Computer Society
Press, 1996.

[Moo59] E. F. Moore. Shortest Path Through a Maze.Annals of the Computation Labora-
tory of Harvard University.Harvard University Press, 1959.

[MW91] H. Mössenb¨ock, N. Wirth. The Programming Language Oberon-2.Structured
Programming.Vol. 12, No. 4, 1991.

[Mot95] Motorola.Fast Static RAM. Databook, 1995.

[Mul97] P. Müller. Arithmetische Einheiten auf FPGAs. (Arithmetic Units on FPGAs.)
Term Project, Institute for Integrated Systems, ETH Z¨urich, 1997.

[NS88] National Semiconductor.Series 32000 Microprocessors Databook, 1988.

Bibliography 174

[OE95] E. Oertli, H. Eberle. Switcherland – An Interconnect for Workstations.Proc. 21st
EUROMICRO 95 Conference. IEEE, 1995.

[Ohr84] R. Ohran.Lilith: A Workstation Computer for Modula-2. Dissertation 7646, ETH
Zürich, 1984.

[PCI93] PCI Special Interest Group.PCI Local Bus Specification, Revision 2.0. PCI Spe-
cial Interest Group, Portland, 1993.

[Pfi92] C. Pfister.CALLAS: A Physical Design Framework for Configurable Array Logic.
Dissertation 9940, ETH Z¨urich, 1992.

[Phi95] Philips Semiconductors.TriMedia Data Sheet, 1995.

[PTS93] D. V. Pryor, M. R. Thistle, N. Shirazi. Text Searching on Splash 2.Proc. IEEE
Symposium on FPGAs for Custom Computing Machines.IEEE Computer Society
Press, 1993.

[Qui94] QuickLogic.Very High Speed FPGAs Data Book, 1994.

[Raz94] R. Razdan.PRISC: Programmable Reduced Instruction Set Computers. Disserta-
tion, Harvard University, 1994.

[RBS94] R. Razdan, K. Brace, M. D. Smith. PRISC Software Acceleration Techniques.
Proc. Intl. Conference on Computer Design, 1994.

[RS94] R. Razdan, M. D. Smith. High-Performance Microarchitectures with Hardware-
Programmable Functional Units.Proc. 27th Annual IEEE/ACM Intl. Symposium
on Microarchitecture, 1994.

[RW92] M. Reiser and N. Wirth.Programming in Oberon: Steps Beyond Pascal and Mod-
ula. Addison-Wesley, 1992.

[RS97] P. Roe, C. A. Szyperski. Lightweight Parametric Polymorphism for Oberon.Proc.
Joint Modular Languages Conference, 1997.

[Sha96] M. Shand.PCI Pamette V1. http://www.research.digital.com/SRC/pamette/,
1996.

[SKC95] G. Snider, P. Kuekes, W. B. Culbertson, R. J. Carter, A. S. Berger, R. Amerson.
The Teramac Configurable Compute Engine.Proc. 5th Intl. Workshop on Field-
Programmable Logic and Applications.LNCS 975, Springer, 1995.

[Syn92] Synopsys Inc.VHDL Compiler Reference Manual, 1992.

[TI87] Texas Instruments.The TTL Data Book, 1987.

[Tho96] A. Thompson. An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics.
Proc. First Intl. Conference on Evolvable Systems: from Biology to Hardware,
LNCS, Springer, 1996.

[Tra95] D. W. Trainor.An Architectural Synthesis Tool for VLSI Signal Processing Chips.
Dissertation, Queen’s University of Belfast, 1995.

[TWM95] D. W. Trainor, R. F. Woods, J. V. McCanny. Architectural Synthesis of an Image
Processing Algorithm Using Iris.Proc. IEEE Workshop on VLSI Signal Process-
ing, 1995.

Bibliography 175

[TW96] D. W. Trainor, R. F. Woods. Architectural Synthesis and Efficient Circuit Im-
plementation for Field Programmable Gate Arrays.Proc. 6th Intl. Workshop on
Field-Programmable Logic and Applications.LNCS 1142, Springer, 1996.

[TM91] D. E. Thomas and P. Moorby.The Verilog Hardware Description Language.
Kluwer Academic Publishers, 1991.

[VSC96] J. Villasenor, B. Schoner, K.-N. Chia, C. Zapata, H. J. Kim, C. Jones, S. Lans-
ing, B. Mangione-Smith. Configurable Computing Solutions for Automatic Tar-
get Recognition.Proc. IEEE Symposium on FPGAs for Custom Computing Ma-
chines.IEEE Computer Society Press, 1996.

[VCC97] Virtual Computer Corp. http://www.vcc.com, 1997

[VBR96] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, P. Boucard. Pro-
grammable Active Memories: Reconfigurable Systems Come of Age.IEEE Trans.
on VLSI Systems, Vol. 4, No. 1, March 1996.

[WAL93] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, H. Silver-
man, S. Ghosh. PRISM-II Compiler and Architecture.Proc. IEEE Symposium on
FPGAs for Custom Computing Machines.IEEE Computer Society Press, 1993.

[WG92] N. Wirth and J. Gutknecht.Project Oberon: The Design of an Operating System
and Compiler.Addison-Wesley, 1992.

[Wir95] N. Wirth. Digital Circuit Design. An Introductory Textbook. Springer, 1995.

[Wir96a] N. Wirth.Compiler Construction. Addison-Wesley, 1996.

[Wir96b] N. Wirth. The Language Lola, FPGAs, and PLDs in Teaching Digital Circuit De-
sign.Proc. 2nd Intl. Andrei Eshov Memorial Conference.LNCS 1181, Springer,
1996.

[WH95] M. J. Wirthlin, B. L. Hutchings. A Dynamic Instruction Set Computer.Proc. IEEE
Symposium on FPGAs for Custom Computing Machines.IEEE Computer Society
Press, 1995.

[Woo96a] R. Woods. Answer to question asked during presentation of [WCG96], 1996.

[Woo96b] R. Woods. Queen’s University of Belfast, Northern Ireland. Personal Communi-
cation, 1996.

[WCG96] R. Woods, A. Cassidy, J. Gray. VLSI Architectures for Field Programmable Gate
Arrays: A Case Study.Proc. IEEE Symposium on FPGAs for Custom Computing
Machines.IEEE Computer Society Press, 1996.

[WLH97] R. Woods, S. Ludwig, J. Heron, D. Trainor, S. Gehring. FPGA Synthesis on
the XC6200 Using IRIS and Trianus/Hades (or from Heaven to Hell and Back
Again).Proc. IEEE Symposium on FPGAs for Custom Computing Machines.
IEEE Computer Society Press, 1997.

[Xil96] Xilinx. The Programmable Logic Data Book, September 1996.

[ZK97] R. Zimmermann, H. K¨aslin, Cell-Based Multilevel Carry-Increment Adders with
Minimal AT- and PT-Products.To be published in IEEE Trans. on VLSI Systems.

[ZR95] Zuken-Redac.CadStar for Windows, 1995.

Curriculum Vitae

Stefan Hans-Melchior Ludwig

May, 21 1966 born in Z¨urich, Switzerland,
citizen of Schiers, Graub¨unden,
son of Donat Dietegen Ludwig and Marlene Ludwig-M¨arki

1985 Matura Typus B, Kantonsschule Freudenberg, Z¨urich

1991 Diploma in Computer Science,
Swiss Federal Institute of Technology, Zurich (ETH Z¨urich)

1991–1997 Research and teaching assistant,
in the research group of Prof. Dr. N. Wirth,
Institute for Computer Systems,
Swiss Federal Institute of Technology, Zurich (ETH Z¨urich)

1997– Member of research staff,
Systems Research Center,
Digital Equipment Corporation, Palo Alto, California

176

