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The Oberon System
N. Wirth and J. Gutknecht

Abstract

In this paper we describe an operating system for a workstation designed and
implemented by the authors within two and a half years. it includes memory
management and module loader, a file system, a viewer system, editors for text and
graphics, a compiler, a server interface, and various tools. The primary motivation was to
demonstrate the feasibility of a small, yet highly flexible and powerful system, a system
that is a (decimal) order of magnitude smaller than commonly used operating systems.
This is possible due to regularity of concepts and concentration on the essential. The
benefits are not only fewer resources needed, but elegance and generality of concepts
resulting in transparency and convenience of usage and increased reliability. A
cornerstone of this approach is genuine extensibility, which is achieved by a new
language, in particular by a facility called type extension. it allows to integrate variables
(objects) of a new, extended type in structures of elements of an existing base type.

Introduction

In fate 1985, the authors started a project with the goal to develop an operating environment
especially tuned to personal workstations, and a language to implement the system. After 30
months of intensive programming, a highly flexible and reliable tool is operational, and this is a
summarizing report on both the project and the product called Oberon.

The system is implemented on the computer Ceres, designed by H. Eberle and the first author.
Its core is an NS32032 microprocessor, and it features a high-resolution display as output
medium and a mouse and a keyboard as input devices. A color display of equal resolution can b~
added optionally. A hard disk serves as store for non-volatile data.

Principles of Design and Operation

In the design of both hardware and software we followed a guiding principle, namely to
strive for clarity and simplicity. This is not only wise in view of the tiny team and the desire to
achieve a workable system within the time bounds of human patience, but simply indispensible
for producing any system with a claim to reliability. Clarity and simplicity is best achieved
through a regular and purpose-tuned structure. This in turn is possible, if the underlying model
of operation is well understood, reasonably simple, and free of conflicting premises.

Our chosen model is that of a single process at the disposal of a single human operator who
may be pursuing several tasks simultaneously. Such tasks usually are manifest through
documents displayed on the screen. The computing process consists of a sequence of
operations, each of which is initiated by a command given by the operator. Consecutive
commands may be directed at different operands in the pursuit of different tasks. Hence Oberon
may be called a single process multitasking system.

This model contrasts with that of conventional multitasking systems, where each task is
served by its own process. The processor is then switched from one process to another, either as
a reaction to user input or due to the system's scheduling strategy. Each suspended process
retains a state (represented by its associated workspace), until it is resumed. Switching may
occur between any two consecutive machine instructions, except where explicit measures have
been taken to prevent it. In Oberon, switching occurs between commands only under the users
control. Hence, the unit of uninterrupted processing is very much larger: the granularity of
interleaving is coarse. Complex interlocking mechanisms preventing undesirable process



switches become superfluous, and a single workspace suffices. All this contributes to the
system's structural simplicity. ’

An operation initiated by a command does not permit a dialog with the user; commands are
the atomic units of action on the part of the computer within the dialog. They are initiated by
the user's input, which occurs through the keyboard, the pointing device (mouse), or remotely
from another system via network. A command initiated by the mouse, by far the most frequent
case, is handled by the viewer to which the mouse (represented on screen by a cursor) points. A
command initiated by the keyboard is directed at the viewer in focus, i.e. the one in which the
caret was placed most recently. The most noteworthy effect of this scheme is that no command
leaves the system in a hidden state. If a command would permit a dialog, its request for an
answer (e.g. “type file name>”) would leave the system (or the process) in the requesting
state, hence dictating the user a specific reaction or to remember the process’ state. Typicaliy,
inputs are interpreted differently depending on the current state. This we believe to be an
essential impediment to convenient computer usage, perhaps the cornerstone of
user-unfriendliness; Oberon avoids hidden states categorically.

Commands take their parameters from the existing global system state, in most cases a
displayed text. An essential feature of Oberon is that the output of commands is non-volatile.
This implies that it is generated as a data structure that continues to exist after command
termination. A visible representation can be derived from this structure (typically text or
graphics) and displayed in a viewer, it can be used as input to another command, and it can be
stored as a file. For example, a requested excerpt of the file directory can be used as an editable
text, it can be subjected to further searching, or selected parts can be moved and inserted in
other texts. As a result, the user has the entire system at his disposal in order to prepare for his
next action.

The general form of a command name is M.P, where P is the name of a procedure and M the
name of the module containing it. It can be typed at the keyboard or, if visible in some text on
screen, it can be selected by a simple mouse click. Only a few, most frequently applied
commands are built-in; they are evoked by clicking specific mouse buttons (in some cases in
combination with the shift or control keys of the keyboard). For example, pressing the middle
button signifies that the text identified by the cursor is to be interpreted as a command. This
action therefore serves as anchor for all command activations. Or, pressing the right button of
the mouse signifies that the text be selected over which the cursor moves until the button is
released. Or, pressing a character key at the keyboard signifies that this character be inserted in
the focus viewer at the position of the caret, the insertion point mark.

Typically, a user will have some short texts or graphics displayed which contain lists of
frequently used commands (Fig. 1). We call such texts tools. It is noteworthy that tools are
normal, editable texts, and as such can be tuned to each user's individual needs and preferences.
Additional commands are listed in the heading of viewers and form so-called menus. These
commands automatically take their viewer as parameter, i.e. are directed at this viewer.
Obviously, no limits are set to fantasy for exploiting this universal scheme of command
activation.

Extensibility

Another central theme in the design of Oberon was extensibility. On a conventional level,
function can be added by programming further commands included in new modules. These
modules may utilize the resources of the existing system by importing procedures and data
types which are freely exported. For example, a compiler importing the type Text may acquire
source text directly from visible, edited text instead o{ from files on backing store. Or, a module
may be provided which performs some user-specific operation on a (displayed) text, a
possibility that in conventional systems requires a so-called programmable editor.

A more sophisticated and more powerful extensibility applies to data types. This pfbpérty of
the Oberon system permits to define, in modules to be added, data types that extend imborted
types. Variables of the extended type are compatible with those of the base type, and therefore
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can be integrated in already existing data structures. Operations are polymorphic in Oberon. If
an operation is applicable to base type objects, it can also be applied to those of the extended
types. This form of extensibility has even more far-reaching consequences, and indeed appears
to be a prerequisite for genuine extensibility of entire operating systems. For example, if a
certain data type in a drawing system represents graphic objects such a lines and symbols,
extensions of this type may specify "semantics”, i.e. data to be interpreted in some way, e.g.
lines as connecting wires, and symbols as resistors, diodes, transistors, or gates.

The development of the language Oberon was largely motivated by the need for a facility for
extending data types in the sketched sense. The chosen scheme is similar to that of classes and
prefixes in object-oriented languages. The major characteristic is, however, that it is integrated
into a strong typing concept, an indispensible property, as shall become evident later. Oberon
emerged from Modula-2 and is described in [1]. It omits several of Modula's features and has
thus become simpler to comprehend and to implement. Hence, also the language's design
followes the guiding principle of clarity and simplicity.

An important and desirable consequence of system extensibility is that the borderline
between a system's users and its designers (programmers) becomes obscure and even vanishes.
Clearly, programmers are also users when the system for which they program also serves as
their software development tool. Conversely, users (perhaps temporarily) become programmers
when they discover that an additional function is needed to accomplish their task. The
conventional strict distinction between users and designers may be quite appropriate for such
single-purpose tools as cars or kitchen aids, but it does by no means justice to the
general-purpase tool called computer, and it effectively prevents the full exploitation of the
computer's inherent power.

System Structure, an Overview

The system is a collection of modules. By virtue of their import/export relationships they
form a hierarchy. In essence there is no distinction between operating system modules and
those added by a programmer. Each module consists of procedures (code) and global variables
(data). Apart from modules, the computers store contains a workspace - the stack of procedure
activation records - and a space for dynamically allocated variables, the so-called heap. The
structure of the system in terms of its module hierarchy is perhaps best explained by following
the process performed when the computeris switched on.

First control passes to a boot loader. This is the only program resident in a read-only store (it
is about 300 bytes long), and it loads the boot file resident either on track 0 of the disk oron a
disk cassette. This file contains the following linked madules: Kernel, Disk, FileDir, Files, Modules.
They form the inner core of Oberon.

Kernel contains all functions which either make use of privileged instructions or access
protected data, i.e. must be executed by the processor being in the supervisor state. Hence, the
Kernel includes routines for "memory management”, i.e. address mapping, page allocation and
deallocation, and for disk sector reservation.

Disk is the driver for the hard disk, FileDir is the handler of the file directory, and Files the
coliection of routines operating on files, which are sequences of bytes. Modules is the system's
loader, both linking and transforming modules from object code files on disk into executable
form in main store.

After initializing the page maps and the disk sector reservation table of the Kernel, contro!
passes to the loader with the built-in request to load the module Oberon. The loading of
Oberon causes the subsequent loading of all imported modules, resulting in a structure shown
in Fig. 2, called the outer core. Then, the loading of module Display is requested, and thereby also
that of all modules imported by it. A viewer is opened which typically displays a standard tool
text reflecting the software configuration available on the particular computer. The resulting
system structure is shown in Fig. 3. The start-up process terminates by a call to the central loop,
in which the computer repeats ad infinitum to poll the various input devices, viz. the mouse, the
* keyboard, and (optionally) the network.



Let us now trace the events occuring when an input is sensed, for example the clicking of the
middle mouse button. First, a routine in module Viewers, where the books are kept about the
layout of the tiled viewers on the screen, identifies the viewer in which the cursor lies.
Thereupon, control is relegated to the handler (command interpreter) of this viewer.

A handler is a procedure assigned to a variable, typically the field of a record, in this case of a
record representing the viewer. The presence of a handler in a record is perhaps the moust
relevant criterion for letting the record be called an active object and its use object-oriented
programming. Nevertheless, the call of a handler is like an ordinary procedure call, with the
exception that the caller is unaware of the identity of the callee. The call has the connotation of
*handle the supplied parameters in any way deemed appropriate”, and hence the call's
parameters are typically regarded as a message, and the call of the installed procedure is
regarded as the sending of a message.

Let us now further assume that the addressed viewer is a text viewer. In this case the handler
of text viewers is activated; it receives the message "middle button at position x,y". The
respective action is to locate the text (word) displayed at this position, which occurs with the
aid of appropriate procedures in modules Texts and TextFrames. If this word has the form M.P,
the action "middle button” signifies to interpret that word, which implies the loading of
module M (if not already loaded), and of activating its procedure P. Termination (normal or
abnormal) causes the return of control into the central loop and the renewed polling of input
devices.

In the module structure shown in Fig. 3, there exist three similar triples: Texts, TextFrames,
TextViewers, and Graphics, GraphicFrames, GraphicViewers, and Pictures, PictureFrames,
PictureViewers. They demonstrate a typical modular decomposition serving the effective
separation of cancerns. The base modules Texts, Graphics, and Pictures define data objects and
structures reflecting the respective entities, and procedures appropriate to reorganise the
structure. These procedures perform insertion of new objects, deletion, or their localization
(search). The structures represent texts, graphs, or pictures as abstractions, without respect of
their semantics or visualization. The latter is performed by the respective Frames module (e.g.
TextFrames). Its operators relate a particular object to a particular frame and generate the
respective visualized representation, i.e. bitmap raster. A frame is a rectangular area on the
screen. Each viewer is a frame, and in itself usually contains two subframes, called the menu and
the text (in the case of text viewers). ‘

The respective Viewers module (e.g. TextViewers) has the task of providing operations for
generating, restoring, closing a viewer, and, most important, of providing a handler. The general
module Viewers is responsible for the management of the screen area, i.e. it contains routines
which keep record of allocated viewers and which - relying on heuristics - determine the best
place to position a new viewer.

TextFrames, GraphicFrames, and PictureFrames are of course extensions of Frames, and
provide a fine example for an application of Oberon’s type extension concept.

Resource management

The reader may have noticed that the word program is missing from the Oberon vocabulary.
This may seem irrelevant; after all, it has been replaced by the word command. However, this
impression is misleading.

Conventional systems effectively process a sequence (in the case of multiprocess systems:
sequences) of program activations. The essential characteristic is that after termination of each
program its used resources (store) are free to be reused by the following program. The interface
between program activations consists of data generated by the preceding and consumed by the
subsequent program. Typically, these data are disk files.

In contrast to this paradigm, Oberon's interface between consecutive commands are
primarily data in main store, viz. global variables (or data structures anchored in global
pointers). This fact not only enhances efficiency of many operations and vastly expands the
system’s flexibility, but it has also the consequence that there is no event (such as program




7

termination) which explicitly signals the opportunity for easy storage reclamation. This also
holds for storage occupied by program code: the termination of a procedure does not prevent it
from being requested soon again, perhaps by the very next command.

An obvious recourse in such a situation is the use of an automatic storage retrieval
mechanism, also called garbage collector. It requires that all currently accessible objects must be
identifyable. This is achieved by providing additional data in the form of type descriptors.
Because the garbage collector is no safer than the descriptors guiding its actions, the
descriptors must be guarded against access, particularly against inadvertant write access.
Although this is easily achieved in principle, namely by not mentioning the tag's existence in
the language definition, it is much more difficult in practice. For, it requires the guarantee that
an implementation safely guards against all possibilities of disruption. Potential adversaries are
all sorts of access via computed address, specifically those involving indexing or dereferencing.
Indices must be guarded by a check of the index bounds, pointers by a NIL-test. Furthermore,
pointer variables must be type safe, i.e. no assignment of any value other than an appropriately
bound pointer must be permitted. The existence of a general type ADDRESS is out of the
question. Type safety through type guards, range checks, and NIL tests can no longer be
regarded as a convenient luxury, but becomes a simple necessity. Evidently, the design of a
system is intimately coupled with (the design of) the language in which that system is
programmed. The system's reliability is strongly influenced by the safety the language and its
compiler provide against blunders.

This is old but often repressed knowledge. The relevant question here is not whether or not it
is possible to construct a fully reliable system with a low-level tool such as assembler code or C,
but whether it is possible to convince others (and oneselft) of the claimed reliability. Our
experience gave convincing evidence that without the quality of the language our goal would
have been utterly unreachable.

The garbage collector operates on collectible storage only, the heap. It does not apply to
module storage. Modules are never released automatically, but can be freed by explicit
command. This facility might be regarded as merely a concession to the reality of limited
storage, but this is not so. Module release is also necessary when a module needs to be replaced
by an updated, recompiled version. By convention, upon retease of a module all its imports are
also released unless, of course, they are imported by yet another module. The determination of
releasable modules is based on the method of reference counting. its well-known drawback is
that of the persistence of circular references. However, circles should be avoided in module .
structures anyway, and therefore this problem was not considered as serious. Nevertheless, the
problem of storage reclamation turned out to be one of the hardest nuts to be cracked in the
course of the Oberon project.

It is perhaps worth mentioning that the Oberon scheme of abandoning the notion of program
and of relying on automatic retrieval has become practicable through the advent of large (yet
not infinite) storage capacity. Not letting conventional systems simply grow bigger and bigger,
but making sensible use of large stores is the major challenge in modern system design. In the
Oberon system, the loading of a client module is delayed until the first access to it occurs
during program interpretation.

Examples where the concept of delayed loading bears fruit are a compiler linked into a
general utility module, or a module for editing mathematical formulae linked into a general
document editor. In both cases, memory space is consumed only at the instance when the
respective facility is called upon.

The virtual address mapping facility (memory management) is hence utilised in Oberon for
two purposes: First, for implementing delayed loading, and second, for protecting certain
critical data from inadvertant modification. Apart from this, virtual addresses simplify the
allocation mechanism for modules. However, Oberon does not use the concept of demand
paging for hiding the differences between primary store and disk store.




Storage Layout and Module Structure

The storage layout in the Oberon system is determined by the structures of programs and
data present in high-level languages, in particular the Oberon language. Programs consist of
modules, which are separately compiled entities. It is therefore appropriate to let storage layout
and management reflect the module structure. Data are classified into thr?e categories
according to their allocation technique: Variables declared globally are called static. Their space
is allocated when a module is loaded, just as the space for the module’s program code is
allocated. Variables declared local to procedures are allocated when the procedure is called (and
due to recursion may exist in several incarnations). Dynamically allocated variables belong to
the third category. They are allocated by an explicitly programmed statement NEW(p).
According to these classes, the linear address space is divided into three sections: module area,
stack, and heap.

The module area contains the modules' code and static variables. The stack is the system's
workspace and contains - for each called procedure - a procedure activation record which
includes space for the procedure’s local variables. The heap is the space for dynamically
allocated variables. The global storage layout is shown in Fig. 4.

Although local variables might also be allocated in the heap, thereby making a separate stack
superfluous, we claim that the retention of a stack is crucial for a system’s efficiency. This is
because a stack implies a storage reclamation free of any explicit effort (apart from resetting a
stack pointer). Since local variables appear to dominate, the gain in speed obtained from the
use of a workspace organised as a stack is significant.

The Module Area

The second source of influence on storage layout is the architecture of the underlying
hardware. The NS32000 processor was chosen because it supports the language implementation
with appropriate registers and addressing modes. Nevertheless, there are particularities that
determine further details of the chosen layout. In order to understand them, it is necessary to
explain the pertinent features of the processor's architecture and instruction set.

The mentioned support for language implementation offered by the processor's structure lies
in its addressing modes and in the instructions for external procedure call and return. In
particular, we refer to the facilities for calling procedures and accessing variables declared in
other modules. These facilities effectively establish the binding of modules at the time of
program execution, and make their binding at load time superfluous. In our experience, this is of
significant advantage, as it avoids both module duplication and the (perhaps inadvertant)
presence of different versions of the same module entering at different linking stages.

The NS32000 architecture requires that each module is represented by three (possibly
disjoint) blocks of storage. These blocks contain data (static variables), code, and a link table
respectively. Their base addresses are stored in a module descriptor. Further details are described
in Appendix 1. Here it suffices to note that the architecture of the NS32000 processor represents
addresses of module descriptors by 16 bits. Hence, descriptors must reside within the first 64k
of memory, requiring that they be treated differently from other variables, and that they cannot
be placed in collectible storage. The module descriptor area therefore must be considered as a
fourth, separate, (write-protected) partition of memory space.

Various properties of the Oberon system require that the organization described so far be
extended. Module descriptors as well as module blocks contain parts in addition to those
imposed by the hardware. The areas allocated for program code, static variables, and links are
made contiguous and blocks for constants and for data accessed by the loader are added. The
resulting combination is called a module block. The extended structure of a module descriptor
and its corresponding module block are shown in Fig. 5. The fourth element of the descriptoris
the base address of the block. Descriptors are linked as a linear list whose anchor is a global
variable of the loader, requiring a field with a link to the next descriptor in the list. In order to
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understand the role of the extensions a closer look at the process of module loading is
necessary.

The Module Loader

The loading of a module consists of the following steps:
. Allocation of a module descriptor in the descriptor area.
. Allocation of a block in the module area.
. Transferring of the program code and of constants from the object file into the block.
. Translating the linkage information of the file into a link table in the block.

H W N

The linkage information of an object file consists of a list of module names from which
objects are imported (corresponding to the import list in the program text), a list of external
procedure references, each characterized by a pair consisting of the procedure’s (local) modute
aumber and its entry point number, and a list of the module's own entry points (procedure
addresses).

The translation procedure first identifies (finds the addresses of) the descriptors of the
imported modules. For this purpose, each descriptor must contain the module’s name (and
version key). Then the entry address of each referenced procedure is determined; together with
the descriptor address it forms the procedure descriptor which is stored in the link table and
which is referenced by the call instruction CXP. For this purpose, each module must carry the list
of its entry points. In principle, it could be reread from the object file each time a client module
is loaded. However, it was taken as a premise that upon loading a module all information
needed to establish links later-on had to be retained in order to avoid reaccessing object files.
As a consequence, a module's entry point list is copied from the object file into the descriptor.
The resulting extended descriptor format is shown in Fig. 5. Modules are loaded by procedure
GetMod in the loader module Modules which returns a pointer to the module's descriptor.

PROCEDURE GetMod(name: ARRAY OF CHAR; VAR mod: Module)

Should the named module already be present in the list of loaded modules, the reading of the
object file is of course avoided. As each module may require the loading of further imported
modules, the procedure GetMod is recursive.

There exist three features of the Oberon system which call for further information to be
present in every module block:

1. The command list. Parameterless procedures can be activated by specifying a text of the form
MP, where P is the procedure’s identifier and M that of the module containing it. As a
consequence, once the module M is identified (and loaded), a possibility must exist to infer
P's entry point from the name. This is made possible by the inclusion of a list of commands in
the heading of each block. Each entry is a pair consisting of a name and an entry address. The
procedure GetProc yields, given a name and a module, the corresponding procedure descriptor
consisting of module descriptor address and entry point offset.

TYPE Command = PROCEDURE;
PROCEDURE GetProc(name: ARRAY OF CHAR; mod: Module; VAR P: Command)

2. The pointer reference list. Unused storage is to be reclaimed automatically, i.e. space occupied
by variables (objects) no longer accessible must be locatable. This requires a list of the
locations of all pointer variables, because they are the roots of data structures in collectible
storage.

3. The import list. Modules, once loaded, remain in the module area unless explicitly unloaded
by a call of Free.

PROCEDURE Free(name: ARRAY OF CHAR; all: BOOLEAN)
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If all is specified, unloading is transitive, i.e. also extends to the imported modules, requiring
that Free be recursive. In order to identify the modules to be affected, a list of imported
modtiles needs to be available.

The resulting, complete module block structure is shown in Fig. 5.

Virtual Addresses and Delayed Loading

Frames are allocated sequentially in the module area, and address space once allocated is
never reused, even if released (by a call of Free). This strategy may appear wasteful, but it is
quite realistic in view of the fact that modules are allocated in the virtual address space which
is quite large (14 MByte for the N532032, and almost 4 GByte for the NS32332 and NS32532).
However, procedure Free causes the release of the assigned physical pages. A corollary is that
the block size must always be rounded up to a multiple of the page size (512 Bytes for NS32032,
4096 Bytes for the other processors). Each module block wastes half of the page size in the
average (internal fragmentation).

The use of virtual addresses thus prevents the occurrence of unusable "holes” in memory
(external fragmentation), and hence the Oberon design takes advantage of the processor's
memory management facility (MMU). But the concept of demand paging, i.e. of dislocating
certain pages from main to disk store, is not used. The large memories of modern computers
appear to make demand paging quite useless, at least for single-user workstations.

However, Oberon employs demand paging in a limited form which we call delayed loading:
When a module M is loaded, its imports, if not already present, are merely allocated in the
module area in virtual space. The actual loading and occupation of physical pages is delayed
until genuinely needed, i.e. it happens on demand. The occurrence of such a demand, ie. the
reference to an object, is detected by the MMU through a page fault. This in tum is interpreted
as arequest for the actual, delayed loading of the missing module.

Care has to be taken that all information needed for linking an allocated but not yet loaded
module with one of its clients be physically present. This information consists of the module
name and all its entry point offsets. It is for this reason that name and entry points are
contained in the module descriptor instead of the block. Even in the case of delayed loading, the
descriptor is truly loaded (in the descriptor area), whereas the block is not. Hence the block
must contain information only that is accessed by the module itself, but not by clients.

We regard the delayed loading facility as a key to implement potentially very large systems
with moderately sized memories. Vice-versa, we regard the lack of this feature in most
commercially available systems as the principal culprit for the exceedingly large memories
required to compile and execute even the tiniest programs. The amount of code needed to
implement delayed loading is very small.

Collectible Storage and Type Descriptors

Dynamically allocated variables, often called objects, play an important role in programming
in Oberon. They are allocated in the heap by a call of the intrinsic procedure NEW. Its parameter
is the pointer variable to which the address of the created object is assigned; the amount of
storage needed is derived from the type of the object created, i.e. from the data type to which
the pointer variable is bound.

At system initialization, the heap has size zero. Whenever an object is allocated and no free
space is found, the heap area is enlarged by assigning an additional physical page to it. Such
heap pages are never released in order to guarantee that the heap occupies a contiguous
(virtual) address space.

Itis in this space that the garbage collector operates according to the conventional mark-scan
principle. During the mark phase, all data structures accessible from loaded modules are
traversed and marked. In the subsequent scan phase, the heap is scanned sequentially. All
unmarked objects are "retrieved”, i.e. collected in lists of rcassignable storage blocks, and all
marks are removed. No explicit deallocation procedure is provided in Oberon, since such hints
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could not be taken as absolutely trustworthy, and since any misdirected effort of the garbage
collector could easily have disastrous consequences for the entire system.

All global pointer variables existing in the system are potential roots of data structures to be
traversed during the mark phase. They are located by traversing the list of loaded modules, and
for each of them traversing its pointer reference list. The latter is created upon loading, and
provisions for establishing it must be made in the compiler, the object file format, and in the
loader. These preparatory measures cause negligible overhead during loading.

For local pointer variables, however, the overhead is considerable, because the relevant data
have to be established potentially for every procedure call. This appears as prohibitive. Another
approach has been taken with the Modula-2+ system [2). Since local variables are placed in the
stack(s), the stack is simply scanned for potential pointer values, which must lie within the
address range of the heap. Nevertheless, safety tags must be included in the objects themselves
to prevent the inadvertant marking of a location specified by a value that lies within the range,
yet happens not be a pointer.

In Oberon, we use a more conservative approach: The garbage collector is activated between
two consecutive commands only. At these moments, the stack is guaranteed to be void, since
no local variables exist. This scheme is not practicable, if single commands call for the
allocation of very large amounts of objects that cannot be fitted into the available heap space.

Given a root of a dynamically allocated data structure, the mark phase must traverse the
entire structure. Since each node may contain an arbitrary number of pointers, information must
be available about the number of these pointers and theirindividual locations within the object
(offsets). This information is contained in type descriptors derived by the compiler for each
record and array type. Each object contains a (hidden) pointer to the descriptor of its type, a
type tag. As the number of different types in a system is never very large, the time to establish
the descriptors and the space occupied by them is quite negligible. Fig. 6 illustrates a typical
structure and its associated descriptors.

The traversal of the data structures must not require further storage space for the collector's
local data. The traditional method to satisfy this requirement during the traversal of arbitrarily
complex structures is that of Bobrow and Deutsch [3]. It is based on the idea of inverting
traversed pointers, thereby establishing the return path (the thread of Adiadne) and fitting its
information within the structure itself.

During the scan phase of garbage collection, the collectible blocks of storage are discovered as
the complement of the marked objects. Various schemes exist to collect these blocks in lists or
other structures. The key issue here is to organise the set of free blocks in such a way that (1) a
block of the appropriate size is quickly located upon request, and that (2) smaller blocks can be
merged into larger blocks without undue overhead in order to reduce storage fragmentation.

The method chosen for Oberon is to classify objects into five categories according to size, and
to include all objects of each category in a list. The sizes of categories O to 3 are 16, 32, 64, 128
bytes; all objects in category 4 have a size which is a multiple of 128. The size of all objects is
rounded up to that of the smallest category into which the object fits. (Note that 4 bytes are
always added for the tag.)

The motivation for this choice is (1) that searching for a hole of appropriate size is easy and
quick, (2) that the amount of storage wasted (for smaller object, which are the vast majority)
is 25% (only), and (3) that the presence of adjacent holes of category k is easy to detect and
automatically leads to a hole of category k+1. This situation is similar to a so-called Buddy
System.

Type descriptors serve yet another purpose. They represent the relationship of a type to its
base type(s) and allow for an efficient realization of type tests (and type guards) [1]. For this
purpose, an additional field (not shown in Fig. 6) is provided. It contains a pointer to the
descriptor of the direct base type. The pointer is called base tag. The situation of four types T3 —»
T1-» TOand T2 » T1 (T’ - Tis pronounced as "T' is a direct extension of T*) is represented by a
descriptor structure as shown in Fig. 7, together with an object x of type T3. The type test x IS T
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is implemented by a simple search algorithm which typically consists of 6 to 8 machine
instructions compiled as in-line code:

t = x.tag:
Loor
IF t = T THEN EXIT TRUE END;
t:= thasetag;
IF t = NILTHEN EXIT FALSE END
END

In the case of a type guard x(T), EXIT FALSE is replaced by HALT.

We note in passing that the simplicity of this solution is based on the postulation of name
equivalence of types instead of structural equivalence, as it is assumed in the language Oberon.
Hence, a type is identified by the address of its descriptor rather than the descriptor's value
{which would have to be significantly extended).

The File System

The Oberon filing system consists of three modules, the disk driver, the file directory complex,
and the actual file handling module. Only the latter is normally accessed directly by users’
programs. The configuration is shown in Fig. 8.

The purpose of the module Files is to implement the abstraction of a sequence of bytes in
terms of dispersed disk sectors presented by the disk driver. The abstraction "sequence”
becomes manifest through the data type File and a set of procedures providing access to files.

Conventionally, a reading or writing position is associated with each file when itis opened.
This position determines the next element (byte) to be read or written, and it is implicitly
moved forward by each access. Upon closer inspection, this intimate connection of file and
position appears as unfortunate. In a practical sense, the inadequacy becomes manifest in a
system where a file may be accessed by several tasks, each performing sequential reading. If the
tasks access the file alternatingly, the (single) position of reading may have to be switched
back and forth many times, while each task must keep track of its own reading position. As itis
common practice to associate buffers with sequential access mechanisms, the inefficiency of
this schemeis inherent.

The solution lies in disentangling the notions of file structure and sequential access
mechanism. The attribute /ength belongs to the file, whereas the attribute position evidently
belongs to the access mechanism, of which several may coexist,

In Oberon, we therefore make the notion of a positioned access mechanism explicit in the
form of a data type and associated operators. The type is called Rider, reflecting that the access
pointrides on the file. The opening of a file now takes two steps:

1. A file f is obtained either by a call O/d(name) in which case the directory is searched for an
entry with the specified name, or by a call FilesNew() in which case a new, empty file is
created.

2. A rider 1 is is connected with f by the call Files.Open(r, f, pos). It places the rider at position
pos (usually 0).

Data transfer operations then refer to the rider, not to the file. Examples are Files.Read(r, ch)
and FilesWrite(r, ch). It is essential that several riders can be associated with the same file, i.e.
step 2 can be repeated.

The following procedures ave provided; the first group applies to files as a whole:

PROCEDURE Old(name: ARRAY OF CHAR): File;
PROCEDURE New(): File;

PROCEDURE Length(f: File): LONGINT;

PROCEDURE Register(f: File; name: ARRAY OF CHAR);
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The last procedure serves to register a (new) file in the name directory. This operation is
typically invoked after the file had been generated successfully and closed. It may be performed
earlier, e.g. immediately after creating the empty file. In this case, the danger of replacing an
existing file version by a new, yet incomplete one lurks. In many systems, the two functions of
creating a file and of registering it are combined into a single procedure. The availability of two
separate procedures has the advantage that the programmer may choose the time of registering
considered most appropriate for the particular case.

The second group of procedures involve a rider. A rider is a record with fields res and eof used
by file procedures to specify result conditions.

TYPE Rider = RECORD eof: BOOLEAN; res: INTEGER; f: File END

PROCEDURE Open (VAR r:Rider; f: File; pos: LONGINT);

PROCEDURE Read (VAR r: Rider; VAR x: BYTE);

PROCEDURE ReadBytes (VAR r: Rider; VAR x: ARRAY OF BYTE; n: INTEGER);
PROCEDURE Write(VAR r: Rider; x: BYTE);

PROCEDURE WriteBytes(VART: Rider; VAR x: ARRAY OF BYTE; n: INTEGER);
PROCEDURE SetPos (VAR r: Rider; pos: LONGINT);

PROCEDURE Pos(VAR r: Rider): LONGINT;

PROCEDURE Close{VAR r: Rider);

Implementation of Files

We first turn to the representation of files on disk. Oberon uses indexed allocation: the first
sector of every file contains a header with a table (array) of the disk addresses of the file's
sectors. This scheme allows sectors to be freely dispersed and avoids (external) storage
fragmentation entirely. When the file is opened, the address table is read and copied into the
handle (which acts as a cache) in main store. The drawback is the fixed length of such a table
for all headers; in short files the header is wasteful, and for long files it constitutes an
undesirable limitation. With a table size of 64, the maximum file length is 65536 bytes. In order
to relax this limitation, a second table of so-called extensions is provided in each header (and
consequently also in handles). Its entries are disk addresses of sectors that contain extensions
of the primary index table, each adding 256 entries (sectors). The extension table has 10 entries,
which determines the maximum file length as 64 +10%256 = 2624 sectors, or 2686976 bytes.

Apart from these tables and the length, the header also records the file's time and date of
creation, and a protection lock.

When a file is being connected, i.e. when a file handle is established through a call of either -
Old or New, the file's allocation table and its length are assigned to the handle. Furthermore, a
sector buffer is associated with the handle. A file may have several buffers; initially however,
there is only one. When, in the second step, a rider is opened, it s associated with both the file
and with a buffer. Bufters specifically belong to a file, and the data at the position of each rider
are duplicated (cached) in a buffer. In principle, a buffer rides along with the rider; however,
should several riders be positioned within the same sector, then only a single buffer represents
that sector. This strategy makes consistency updates of duplicate buffers superfluous. New
buffers are allocated only when new riders are opened or when a rider’s position is changed
through a SetPos operation, The data structure typically representing an opened file.is shown in
Fig.9.

The key to efficiency of a filing system lies in its elementary routines for sequential reading
and writing of single bytes. Even the "overhead” of book-keeping for reading or writing a sector
is of secondary importance. Most important is the number of instructions executed for fetching
or storing a single byte in a buffer. For, this operation may occur as many as a thousand times
before a next disk access is involved. The procedure Read in the Oberon file system is therefore

extremely short; mostly only one comparison, one assignment, and one increment are executed
for each call:
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PROCEDURE Read (VAR r: Rider; VAR x: BYTE);
BEGIN
IF rbytepos < rbuflimit THEN
x := rbufBIrbytepos]; INC(rbytepos)
ELSIF rsecpos < rfile.secleng THEN
INC (rsecpos); ReadPage(r); x := rbuf.BIO]; rbytepos := 1
ELSE x := OX; r.eof := TRUE
END
END Read

The Write routine is quite similar. ReadBytes and WriteBytes serve to read and write sequences of
a given number of consecutive bytes, and are somewhat more complex; they make use of the
processor's block move instruction, and can therefore contribute significantly to a program's
efficiency.

The file directory module is independent of the file module. The directory establishes a
mapping from file names to file addresses, i.e. the disk sector address of a file's header. Oberon
does not use the conventional technique of treating the directory as a file. Instead, it is
organised as a B-tree, each page allocated as an individual sector. The root page is located at a
fixed position (see Fig.10).

It is desirable to use a degree of the tree that is as large as possible. The limit is given by the
sector size. Each entry in the tree consists of a key (file name), the address of a file header, and a
pointer to the descendant directory page. Given a sector size of 1024 bytes and a fixed
(maximum) name length of 32, each page contains at most 25 entries; this results in a B-tree of
degree 12. Assuming a system with 1700 files, at most 3 directory pages need be accessed in a
name search. In the luckiest case, a tree of height 3 can contain almost 14000 files. In view of
this favourable performance and following the principle to keep algorithms reasonably simple
and regular, we have refrained from introducing more shophisticated schemes, such as the
Bx-tree, which treats internal and leaf nodes differently.

The file directory module contains two recursive procedures, one for searching and inserting a
name, the other for deletion. If upon deletion a directory page underflows, elements are
annected from a neighbouring page; if that page underflows too, the two pages are merged. The
algorithm is described in [4]. A third procedure called Enumerate serves to traverse the tree. Itis
typically used to inspect and generate excerpts of the directory. Since parameters of such search
orders usually contain so-called "wild cards", this enumeration procedure accepts a prefix to
the name as a parameter, and it constrains the traversal to that part of the tree whose keys start
with the prefix. For each node encountered, a parametric procedure is called.

A file system must not only be reliable, but it should also be robust against malfunctions of
the hardware. Sector addresses are encoded such that any single bit error is detected when
checked before sector access.

The most critical part of the entire system is the directory. Should a malfunction of the disk
make the directory unreadable, the file data, although unharmed, become unreachable in
principle and appear to be lost. The Oberon file system, however, attaches sufficient
information to each file header, so that a rescue and scavenger program might find unafflicted
file headers and, at least partially, restore the directory. A header mark and the file name suffice
for this purpose; they are otherwise redundant.

The disk driver is used directly by both modules Files and FileDir, and it presents the disk as an
abstract array of blocks. It hides particularities of individual disk controllers and drives, and
maps sector addresses, usually consisting of surface, cylinder, and sector numbers, onto a linear
scale.
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The Viewer System

Modern bitmap displays are capable of presenting data of different activitics simultaneously.
Typically, a rectangular area on the screen (a so-called viewer) is associated with each activity.
The management of viewers on the screen should therefore be regarded as a central system
task. Several allocation models exist, some of them are based on tiling, others on arbitrary
overlapping. Oberon uses hierarchic tiling: The display is horizontally divided up into tracks,
and each track is vertically subdivided into viewers (see Fig. 1). The topmost viewer in each
track is a background viewer or filler. 1t has normally height zero. The standard layout features
two tracks: a larger user track on the left for document viewers and a narrower system track on
the right for viewers that display system oriented data, present so-called tools (see chapter The
Concept of Tools), or log the progress of the currently executed command. Partial overlapping of
viewers is impossible. However, Oberon's hierarchy of viewers is actually three-dimensional:
Oberon allows any contiguous sequence of existing tracks to be covered by a newly created
track.

The basic viewer system consists of the modules Bitmaps and Viewers. Bitmaps provides raster
operations to copy a bit-block or a pattern from one location to another and to replicate a
pattern into a bit-block. Viewers is the actual viewer manager. It exports procedures to open and
close tracks, to open, change, and close viewers, and draw a fresh viewer. Notice that viewers
are passed to the viewer manager as input parameters. This is in concordance with Oberon's
concept of polymorphic operations: Actual parameters may well be extensions
(specializations) of the base type Viewer. in OpenTrack, X defines the (leftmost) track and W
the (minimum) width to be covered. In Open, (X, Y) defines a point on the top line of the new
viewer.

PROCEDURE OpenTrack (Filler: Viewer; X, W: INTEGER);
PROCEDURE CloseTrack (X: INTEGER);

PROCEDURE Open (V:Viewer; X, Y: INTEGER);
PROCEDURE Change (V: Viewer; Y: INTEGER);
PROCEDURE Close (V: Viewer);

PROCEDURE Draw (V:Viewer)

The viewer manager also provides some auxiliary procedures to get various information
about the constellation of viewers. This identifies the currently visible viewer at (X,Y), IsBottom
returns the value of the predicate the track at X is at the bottom, NojfViewers returns the number
of viewers in the track at X, and Upper retumns the upper neighbour of V. The last procedure
needs more explanation. Tiling viewer systems are especially predestined for automatic
allocation of new viewers. Locate provides useful information for a heuristic decision, where a
newly opened viewer should be placed. X specifies a track and H a hint on the desired height.
The following viewers are located: Filler, bottom viewer, viewer of maximum height, and an
alternative viewer of a height at least H.

PROCEDURE This (X, Y: INTEGER): Viewer;

PROCEDURE IsBottom (X: INTEGER): BOOLEAN;

PROCEDURE NofViewers (X: INTEGER): INTEGER;

PROCEDURE Upper (V:Viewer): Viewer;

PROCEDURE Locate (X, H: INTEGER; VAR fil, bot, alt, max: Bitmaps.Frame);

In reality, Oberon's display hierarchy is more unified and more general than we might have
given the impression so far. In fact, the entire display, tracks, and viewers are special cases of
so-called frames. A frame is a rectangular area in the bitmap together with a (possibly empty)
sequence of subframes. For example, tracks are subframes of the display, and viewers are
subframes of tracks. Even viewers themselves need not be atomic units. Usually, a viewer
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consists of two subframes: a header frame containing the viewer's name and a list of commands
(menu) and a main frame containing the viewer's actual contents.

In module Bitmaps we can find the following declarations. A frame descriptor contains
references to the list of descendants and to the next frame in the own list, coordinates defining
the lower left corner, and width and height of the frame. We postpone the explanation of the
role of the installed handler.

TYPE Frame = POINTER TO FrameDesc;

FrameDesc = RECORD
dsc, next: Frame; (xdescendant, nextx)
X, Y, W, H: INTEGER;
handle: Handler

END;

The data types in module Viewers are extensions of frames. A viewer needs an additional
variable describing its state, and a track needs another pointer to further tracks possibly lying
underneath. At any given time, a viewer is in one of the following states: displayed (state > 1)
filler (state = 1), closed (state = 0), or covered (state < 0). Except in closed state, a viewer is
always referenced by the viewer manager.

TYPE Viewer = POINTER TO ViewerDesc;

ViewerDesc = RECORD
(Bitmaps.FrameDesc) (vextension of Bitmaps.FrameDescx)
state: INTEGER
END;

(xstate > 1: displayed
state = 1: filler

state = 0: closed
state < 0: coveredx)

Track = POINTER TO TrackDesc;

TrackDesc = RECORD
(ViewerDesc) (xextension of ViewerDesc)
under: Bitmaps.Frame
END;

The viewer manager maintains a private dynamic data structure reflecting the current
hierarchy of visible and covered tracks and viewers. Fig. 11 shows the exact memory
representation of a configuration with two tracks, the first of which is an overlay of two other
tracks. Essentially, the description of the display is a linked ring of track descriptors, a track
description is a linked ring of viewer descriptors, and a viewer description is a linked list of
frame descriptors. This is a good example of the kind of generic data structures the Oberon
language supports. In particular, frame descriptors can participate in the data structure even if
they defined (as extensions) years after the implementation of the viewer manager.

In Oberon, frames, and in particular viewers, are not just writing and drawing areas. Most
importantly, they are also objects in the sense of object-ariented programming. This essentially
means that frames can individually react on the receipt of messages.

Viewer frames, for example, are obliged to handle several different categories of messages.
Messages of a first category report on the state change of a viewer. For example, the viewer
manager itself sends a message when a viewer becomes visible and must therefore restore its
contents, or when the size of a viewer has changed because its lower neighbour was opened,
changed, or closed. Messages of a second category demand updating contents after an editing
operation, and messages of a third category notify a viewer of input events. The last category of
messages has far-reaching consequences on the role of viewers in Oberon. It actually means
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that an individual command interpreter is bound to every viewer. In the case of viewers
displaying text the interpreter could be a text editor, in the case of graphics it could be a
graphics editor, and in the case of a viewer representing a mailbox it could be a handler for
electronic mail.

So far, we have not explained how objects and messages are realized in Oberon. First of all,
we emphasize that we do not just mimic the conventional object-oriented programming style.
In contrast to usual object-oriented programs the complete set of messages understood by an
object need not be specified together with the definition of the object class. Instead, we explore
a more flexible approach: Messages are typically defined in those modules which send them. For
example, messages of our first category are defined in the viewer manager module Viewers,
messages of the second category are defined in the respective editor module (TextViewers for
text, see next section), and messages of the third category are defined in the input detector
module Oberon. An appropriate message handler would handle all messages known at the time
the handler was developed and simply ignore other messages.

Roughly speaking, the Qberon language supports subclassing (by the type extension facility),
but messages and message handlers are not institutionalized. We have implemented the above
outlined scheme by making use of procedure variables and by applying Oberon’s record
extension facility to objects and messages.

In module Bitmaps we declare the types of the handler and the (empty) base message. The
base message serves as a root in the hierarchy of frame messages.

TYPE FrameMsg = RECORD END;
Handler = PROCEDURE (Frame, VAR FrameMsg);

Module Viewers sends messages if a viewer has changed its state:

Message = RECORD
(Bitmaps.FrameMsg) (»extension of the base messagex)
id: INTEGER; (#identificationx)
X, Y, W, H: INTEGER; (»parameters«)
state: INTEGER (xparameters)
END;

Module TextViewers notifies text viewers of editing operations:

FrameMsg = RECORD
(Bitmaps.FrameMsg) (»extension of the base messagex)
id: INTEGER; (xidentifications)
text: Texts. Text; (s»parameters)
beg, end: LONGINT (xparameters«)
END;

Module Oberon signals input events:

Message = RECORD
(Bitmaps.FrameMsg) (xextension of the base messagex)
id: INTEGER; (xidentifications)
modes, keys: SET; (»parameters)
X, Y: INTEGER; (xparameterss)
ch: CHAR (»parameterx)
END;

Notice that, in contrast to objects, messages are of a temporary nature and that their creation
and deletion is determined by a command's control flow. It is therefore advantageous to
allocate message records statically on the procedure activation stack rather than dynamically in
the system heap. A garbage collector need then not be involved.
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A message is sent to a specific object by simply calling its installed handler. For example,
message M would be sent to viewerV by calling Vhandle(V,M). n addition, the viewer manager
provides a procedure to broadcast a message to all currently visible viewers:

PROCEDURE Broadcast (VAR M: Bitmaps.FrameMsg);

Broadcasting is used for example after a displayed document has changed. On receipt of such
a message, a viewer decides if it is affected. We note that this technique makes the
management of multiple views on the same document very easy.

An individual handler must be explicitly attached to every viewer at creation time. Viewer
handlers are usually implemented in higher level modules, for example in TextViewers,
GraphicViewers, and PictureViewers dealing with viewers displaying texts, graphics, and raster
pictures respectively. In the case of a text viewerV, creation of an instance looks like

NEW(V); V.handle := HandleViewer;

where HandleViewer is the procedure sketched at the end of the following section. Notice that
HandleViewer makes extensive use of Oberon's type test (and type guard) to discriminate the
different message categories.

In summarizing this section we can say that Oberon’s viewer system is based on hierarchic
tiling of the screen with the additional possibility of overlaying whole tracks. A viewer plays an
interesting double role in Oberon: Firstly, it serves as a display area, and secondly it hosts an
individual command interpreter.

The Text System

Text plays a key role in any computer system. Not only are input and output data frequently
represented as text, but also objects and commands are usually identified by their name. Text is,
therefore, a predefined type of document in the outer core of the Oberon system. The text
system comprises tiree text processing modules: Texts, TextFrames, and TextViewers, and a base
module Fonts for the representation of characters on screen.

Texts is the base module of the text processing triple. It exports the data type Text and
intrinsic operations on texts. A text descriptor displays the length of the text and the geometry
of lines (line space, ascender, and descender of characters). Open creates a text from a file with
a given name and Store is the inverse of Open. ReplaceFont replaces the fontin a given stretch of
a text from beg to end, Delete deletes a stretch in a text, and Insert inserts the contents of a
buffer at a given position in a text.

TYPE Text = POINTER TO TextDesc;

TextDesc = RECORD

len: LONGINT; (xlengthx)

Isp, asc, dsc: INTEGER; (xkine space, ascender, descenders)
END;

PROCEDURE Open (T: Text; name: ARRAY OF CHAR);
PROCEDURE Store (T: Text; name: ARRAY OF CHAR);

PROCEDURE ReplaceFont (T: Text; beg, end: LONGINT; fnt: Fonts.Font);
PROCEDURE Delete (T: Text; beg, end: LONGINT);
PROCEDURE Insert (T: Text; pos: LONGINT,; B: Buffer);

Also contained in the definition of Texts are procedures to read from and to write to a text.
We have devised an interesting concept for sequential reading. We use aggregates which are
variants of file riders, so-called readers and scanners. A reader is used if a text is viewed as a
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sequence of characters, and a scanner is used if a text is viewed as a sequence of symbols like
number, name, literal string etc.

Reader = RECORD
(Files.Rider) (xextension of Files.Riders)
frnt: Fonts.Font («font of last charread«)
END;

Scanner = RECORD
(Reader) (xextension of Readers)
nextCh: CHAR; (#next chars)
line: INTEGER; (xline numberx)
class: INTEGER; («token class»)
i: LONGINT;
X: REAL;
y: LONGREAL;
¢: CHAR;
len: SHORTINT;
s: ARRAY 32 OF CHAR

END;

(xclass = 0:invalid symbol,
1:names (length len)
2:literal string s (length len)
3:integeri (decimal or hexadecimal),
4: real numberx,
5:long real numbery
6: special character c»)

Scanning is controlled by the following lexicographic syntax:

name = NamePart { "." NamePart }.

NamePart = letter { letter | digit }.

LiteralString =" { letter | digit | SpecialChar} '™ | """ { letter | digit | SpecialChar} "'".
number = ["+" | "-"] digit { digit } ["." digit { digit} ["E" | "D" ["+" | "-") digit { digit} ).

Both readers and scanners must be opened at a specified position before they can be used. Each
call of procedure Read reads the next character, each call of Scan reads the next symbol.

PROCEDURE OpenReader (VAR R: Reader; T: Text; pos: LONGINT);
PROCEDURE Read (VAR R: Reader; VAR ch: CHAR);

PROCEDURE OpenScanner (VAR S: Scanner; T: Text; pos: LONGINT);
PROCEDURE Scan (VAR S: Scanner);

At first sight, writing is similar to reading. There exist so-called writers and procedures to
open a writer, to set the current font, and to write items of different kinds, for example
characters, strings, integers, and real numbers:

Writer = RECORD
(Files.Rider) (=extension of Files.Riderx)
buf: Buffer; (xassociated buffers)
fnt: Fonts.Font (xcurrent font«=)

END;

PROCEDURE OpenWriter (VAR W: Writer);
PROCEDURE SetFont (VAR W: Writer; fat: Fonts.Font);
PROCEDURE Write (VAR W: Writer; ch: CHAR);
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PROCEDURE WriteString (VAR W: Writer; s: ARRAY OF CHAR);
PROCEDURE Writelnt (VAR W: Writer; x, n: LONGINT);
PROCEDURE WriteReal (VAR W: Writer; x: REAL; n: INTEGER);
(xright adjust to at least n positions»)

Notice that we have the following hierarchy of types:

Texts.Scanner

4
Texts.Reader  Texts.Writer
+ 2y
Files.Rider

There is an important fine point conceming the file underlying a writer. It is created as an
anonymous file when the writer is opened. Because no entry in the directory exists, the disk
space used for this file will be reclaimed when the system is booted next time. We can therefore
look at the disk space as an extension of collectible memory and at the boot loader as a garbage
collector of this space. In order to avoid praliferation of files, a single writer is typically defined
globally in every module that contains routines producing text output.

However, when writing to a text, another aspect should be considered. A text is normally
displayed in one or more viewers. It would be rather inefficient to display the new state of the
text after writing every single character. Therefore, the destination of a writeris a buffer rather
than a text. The writer's buffer must be inserted into the text whenever a logically complete
piece of text has been written. Buffers are also used for saving already existing pieces of text.
The following declarations and operations on buffers are available from Texts. They include
operations to open a new buffer (is implicit in OpenWriter), to save a stretch of a text in a
buffer, to copy the contents of a source buffer into a destination buffer, to recall previously
deleted text, and to insert the contents of a buffer at a given position in a text.

Buffer = POINTER TO BufDesc;

BufDesc = RECORD
len: LONGINT (xbuffer length)
END;

PROCEDURE OpenBuf (B: Buffer);

PROCEDURE Save (T: Text; beg, end: LONGINT; 8: Buffer);
PROCEDURE Copy (58, DB: Buffer);

PROCEDURE Recall (VAR B: Buffer);

PROCEDURE Insert (T: Text; pos: LONGINT; 8: Buffer);

Module Texts uses an interesting internal data structure to describe texts. We call any
contiguous section of a text file a piece. Then, at any moment, a text is described by alinked list
of piece-descriptors. Operations on texts are in reality operations on the describing piece list.
For example, inserting a sequence of characters in a text is realized by splitting the piece
containing the insert-position and then inserting the piece describing the sequence. Fig. 12
illustrates this operation. It is noteworthy that buffers are also realized as piece lists rather than
actual arrays of characters. We emphasize that the piece data structure is completely
encapsulated in the module Texts. Clients need not be aware of the existence of pieces.

TextFrames is the next higher element in the hierarchy of text processing modules. Its main
functions are displaying texts within bitmap frames (typically subframes of viewers) and
interpreting frame oriented commands. Each frame descriptor contains a reference to the
underlying text, the position org of the first displayed character, margin width, type and
location of a frame mark (small crossbeam indicating viewer's position within the text or,
alternatively, vertical arrow signalling busy processor), a time stamp of the current selection,
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and exact locations of caret and selection (if any). The time stamp is typically used by
commands to determine the most recent selection(s).

TextFrames exports operations to open a new text frame, restore an open frame, show a
certain text position in an open frame, update the display of a replaced, deleted, or inserted
stretch of text, and track the mouse to set the caret, select a piece of text, or point at a text
word.

Frame = POINTER TO FrameDesc;

FrameDesc = RECORD
(Bitmaps.FrameDesc)
text: Texts.Text;
org: LONGINT;
margW, markH: INTEGER;
time: LONGINT;
mark, car, sel: INTEGER;
carloc: Location;
selbeg, selend: Location

END;

(xmark < 0: arrow mark
mark = 0: no mark
mark > 0: position marks)

PROCEDURE Open (F: Frame; T: Texts.Text; org: LONGINT; margW: INTEGER);
PROCEDURE Restore (F: Frame);
PROCEDURE Show (F: Frame; pos: LONGINT);

PROCEDURE Replace (F: Frame; beg, end: LONGINT);
PROCEDURE Delete (F: Frame; beg, end: LONGINT);
PROCEDURE Insert (F: Frame; beg, end: LONGINT);

PROCEDURE TrackCaret (F: Frame; X, Y: INTEGER);
PROCEDURE TrackSelection (F: Frame; X, Y: INTEGER; VAR modes: SET);
PROCEDURE TrackWord (F: Frame; X, Y: INTEGER; VAR pos: LONGINT; VAR modes: SET);

Notice that the type Frame is another extension of the base type Bitmaps.Frame. We thus
have the following hierarchy of types:

Viewers.Track
T
Viewers Viewer TextFrames.Frame
) *+
Bitmap.Frame

The internal data structure of a text frame is a simple linked list of line descriptors. By
summarizing visible lines line descriptors optimize the time-critical process of locating a
character at a position specified by the mouse.

In the section on viewers we have seen that a handler or command interpreter is associated
with every Oberon viewer. Module TextViewers elaborates one such command interpreter for
text viewers. A text viewer contains two text subframes, a menu frame as a header and a main
text frame, and the command interpreteris actually an editor operating on these two subframes.
TextViewers exports a procedure to create and initialize a new text viewer:

PROCEDURE NewViewer (menu, text: Texts.Text; org: LONGINT;
X, Y:INTEGER): Viewers.Viewer;
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Therefore, the command interpreter as a whole need not be exported. However, TextViewers
exports some of its elements, for example procedures to edit a menu or a main text frame, to
update a text frame in reaction to a change of the underlying text, and to write a character at
the caret's location. The idea behind exporting elements is that implementors of similar
command interpreters can make use of these elements. For example, an implementor of an
interpreter for graphic viewers consisting of a menu frame and a graphic frame can use
EditMenu instead of reprogramming it.

PROCEDURE EditMenu (V: Viewers.Viewer; F: TextFrames.Frame;

X, Y: INTEGER; Modes, Keys: SET);

PROCEDURE EditText (V: ViewersViewer; F: TextFrames.Frame;

X, Y:INTEGER; Modes, Keys: SET);

PROCEDURE Update (F: TextFrames.Frame; VAR M: FrameMsg);
PROCEDURE Write (F: TextFrames.Frame; ch: CHAR);

As can be seen from the following refinement of the command interpreter, editing in the
menu frame is done by a different routine than editing in the main text frame. Essentially, menu
operations are restricted (by the command interpreter) to non-destructive manipulations.

BNV D W NS

PROCEDURE HandleViewer(V: Bitmaps.Frame; VAR M: Bitmaps.FrameMsg);
VAR Menu, Text: TextFrames.Frame;

BEGIN

WITH V: Viewers Viewer DO

Menu = V.dsc(TextFrames.Frame); Text := V.dsc.next(TextFrames.Frame);
IF M 1S Oberon.Message THEN
WITH M: Oberon.Message DO
IF M.id = Oberon.defocus THEN Defocus(V)
ELSIF M.id = Oberon.neutralize THEN Neutralize(V)
ELSIF M.id = Oberon.consume THEN
IF Text.car # 0 THEN
IF M.ch = ENTER THEN Call(V, Text, Text.carloc.org)
ELSE Write(Text, M.ch)
END
END
ELSIF M.id = Oberon.track THEN
IF(MXD>=VX)& (MX<VX+VW) & (VY <=MY) THEN
IFM.Y <V.Y + VH - menuH THEN
EditText(V, Text, M\.X, M.Y, M.modes, M keys)
ELSIF M.Y < V.Y + V.H - barH THEN
EditMenu(V, Menu, M.X, MY, M.modes, M keys)
ELSIF MY <V.Y + VH THEN
IF left IN M.keys THEN Change(V, M.X, M.Y, M\modes, M keys)
ELSE EditMenu(V, Menu, MX, MY, M.modes, M keys)
END
END
END
END
END
ELSIF M IS Viewers.Message THEN
WITH M: Viewers.Message DO
IF M.id = Viewers.restore THEN Restore(V)
ELSIF M.id = Viewers.modify THEN Modify(V, M.Y)
ELSIF M.id = Viewers.suspend THEN Suspend(V)
END
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36 END

37 ELSIF M IS FrameMsg THEN

38 WITH M: FrameMsg DO

39 IF Text.text = M.text THEN Update(Text, M) END
40 END

41 END

42 END

43 END HandleViewer;

Explanations:

1 procedure of type Bitmaps.Handler

2 local variables Menu and Text point to subframes of handled viewer
4 type guard; V must be a viewer frame

5 initialize subframe pointers

6 type test;is message an Oberon (input) message?

7 type guard

8 if message demands defocnssing then defocus viewer

9 if message demands neutralizing then neutralize viewer

10  if message demands consuming then consume a character
11 if caretis active in main text frame

12 if characteris ENTER then call command specified by caret's text line
13 ifnot, echo the character to caret's location

16  if message demands mouse tracking

17  if the mouse is located within viewer

18  if the mouse is located within main text frame

19  edit main text (pass initial values as parameters)

20 if the mouse is located within menu frame

21 edit menu text

22 ifthe mouse is located in the title-bar

23  ifleft mouse key is depressed then change viewer size

24  if not, edit menu text

30  type test;is message a Viewers message?

31 type guard

32 if message demands restoring then restore viewer

33 if message demands modification then modify viewer

34 ifmessage demands suspending then suspend viewer

37  type test;is message a TextViewers FrameMsg (update message)?
38  type guard

39 update frame if the viewer's main text is concerned

Although the command interpreter is the most important ingredient of TextViewers, this
‘module has a second face that can best be characterized by ViewerTexts. It exports procedures
which operate on texts that are displayed in viewers:

PROCEDURE ReplaceFont (T: Texts.Text; beg, end: LONGINT; fnt: Fonts.Font);
PROCEDURE Delete (T: Texts.Text; beg, end: LONGINT);
PROCEDURE Insert (T: Texts.Text; pos: LONGINT; buf: Texts Buffer);

These procedures differ from their counterparts in module Texts in the fact that they
automatically reestablish consistency of text and display by sending appropriate broadcast
messages to all viewers.

Oberon texts are sequences of characters rather than merely sequences of ASCll-codes. In
particular, a font is associated with each character. The modules Fonts and Bitmaps support the
management of fonts and the display of characters in diverse fonts. Fonts exports the data type
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Font and procedures to (load and) get a font from its name and to get the default font
respectively. A font descriptor contains the name and the height of the described font and the
extent of a hypothetical bounding box spanned by the set of all characters in the font. Most
importantly, font descriptors also contain a pointer to an array of character descriptors. Each
character descriptor contains information about the character's bounding box, the distance to
the next character, and the raster data. This information can be accessed by calling procedure

GetChar from module Bitmaps.
in module Fonts:

TYPE Font = POINTER TO FontDesc;

FontDesc = RECORD
name: Name;
height, minX, maxX, minY, maxY: INTEGER;
raster: Bitmaps.Font

END;

PROCEDURE This (name: ARRAY OF CHAR): Font;
PROCEDURE Default (): Font;

in module Bitmaps:
PROCEDURE GetChar (f: Font; ch: CHAR; VAR dx, x, y, w, h: INTEGER; VAR p: Pattern);

The Concept of Tools

A tool package, or tool for short, in Oberon is a package of logically connected commands. it is
quite essential that the set of tools is not fixed once and for all. In order to tailor a system to
specific needs, an expert user would perhaps create new tools or modify existing tools. In the
hierarchy of modules, tools are located at the top (see Figure 3). As is shown in Appendix 2,
programmers of toals usually make extensive use of Oberon’s system base and library modules.

There are some basic standard tools in Oberon. The Display tool, for example, offers
commands to manipulate tracks and viewers on the screen. The Edit tool provides commands to
edit and print texts that are displayed in text viewers. The System tool contains commands to
get system-oriented information and to specify system-parameters. The Compiler tool features
the Oberon compiler, and the Diskette tool handies backup to and restore from diskette.

An Oberon station is typically part of a local area network. Consequently, there are
commands to access remote servers. For example, the print command in the Edit tool sends the
text to a laser printer server. In addition, there is a special Server tool supporting the handling of
electronic mail and the transfer of files from and to remote stations. It is perhaps noteworthy
that Oberon's electronic mail server is smoothly integrated in the text system. The server tool
represents received messages as plain text that is immediately available for arbitrary editing
operations. Conversely, the tool allows to send as a message any text obeying the syntax of a
message (text with a header).

As mentioned in the chapter Principles of Design and Operation the term tool has another,
however related meaning. It also designates a text form that contains a list of command names,
possibly together with predefined parameters. Normally, a separate tool form exists for each
tool package. A user typically selects commands from several tool forms that are
simultaneously displayed in the system track.

Because tool forms are ordinary texts, an Oberon user can easily setup individual variants of
tool forms. For example, the diskette tool might look as follows. The exclamation marks are
guards which prevent unintentional execution of destructive commands, and the symbol ~
terminates the argument lists. Notice that the last command in this example tool may be
regarded as a backup server for a specific project.
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Diskelte Read ~

Diskette Write ~

Diskette.Write
Texts.Def Texts.Mod
TextFrames.Def TextFrames.Mod
TextViewers.Def TextViewers.Mod ~

IDiskette.Format

iDiskette.Initialize

Symmary and Conclusions

The system Oberon deviates from conventional operating systems in several respects:

The notion of program is absent; instead of a program activation, the procedure call is the
unit of action specified by the computer's operator.

Each procedure call (command) is an atomic action within the dialog between the operator
and the computer: the switch from one task to another occurs between the user's commands
rather than between two arbitrary machine instructions.

Commands take their input from texts and from other kinds of documents rather than from
the keyboard. Instead of writing directly onto the screen, commands generate non-volatile
output in the form of (displayed) data structures.

The interface between two consecutive actions consists of abstract data structures (texts,
graphics) in main store, rather than of files on disk. When displayed in viewers, they are
editable.

Oberon provides distributed command interpretation. Viewers are regarded as rectangular
areas on the screen that are capable of interpreting commands individually. To that purpose,
the object-oriented programming paradigm is used. A message is sent to a viewer whenever
an input event refers to it.

Oberon features a simple and extremely efficient file system. The disk directory is organised
as a B-tree. A clear distinction is made between a file and aggregates to access it, which are
called riders.

Modules are loaded under Oberon only when they are actually used. Delayed loading is
important because packages may statically consist of dozens of modules, of which only a few
are used for every specific application. Delayed loading is controlled by page faults, which are
caused by the virtual address mechanism.

A garbage collector is built into the Oberon Kernel. Instead of running as a separate process,
the garbage collector is explicitly activated between commands under the precondition of a
void stack. This precondition simplifies and accelerates the algorithm significantly.

The system and the user packages are implemented in a language offering data type
extension and polymorphic operations with guaranteed type safety. Full type safety is
mandatory for a system relying on automatic storage retrieval.

Oberon can be extended (possibly years later) by declaring new data types which are
extensions of existing, imported types. Objects of extended types are compatible with
objects of their base type, and therefore can be integrated in existing data structures.

There is no deep ditch in Oberon separating users from programmers. Having a powerful
module basis at their disposal, users can extend the system or adapt it to their needs by
programming new tools.

The design of both system and language was guided by the desire to free the computer's user

from artificial constraints imposed by traditional operating systems. This required the courage
to experiment, and it was made feasible by the ample storage and computing resources offered
by modem hardware. The main challenge lies in making innovative use of them, rather than
fetting systems of the conventional flavour simply adapt their size to that of available memory.
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Although the design of Oberon was influenced by Cedar {5] in several respects, the two

systems differ in their size by orders of magnitude. As shown in Fig. 13, the Oberon system,
including the compiler, is specified by 15000 lines of source program. The compiled code
consists of 150 kilobytes, and compilation takes about five minutes. Both in source form and in
object form, the whole system fits easily on a single double-sided 3.5 inch diskette.
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Appendix 1: Architectural Support for Module Structure

The NS 32000 processor contains a few registers, an addressing mode, and special call and
return instructions which support the realization of a module structure without the need for a
linking phase. Each module is represented by three blocks of storage holding data, code, and a
link table respectively. Their base addresses are contained in a descriptor, and the address of the
descriptor of the module currently under execution is stored in the processor's MOD register.
The address of the data block in the SB register (static base) can be regarded as an optimization
feature, accelerating access to global variables.

The presence of these registers requires that they be updated each time control switches from
a module A to a module B. Fortunately, there exist instructions for procedure call (CXP) and
return (RXP) which include these updates in addition to affecting the program counter PC. The
effect of the instructions CXP k and RXP n is explained below and additionally illustrated in Fig.
14. M denotes memory as an array of bytes. A module descriptor is denoted as a record with
three fields named data, link, and code. The link table is an array of procedure descriptors, each
identifying an external procedure, and each being a record with two fields named mod and pc
representing the module to which the procedure belongs and the offset of its entry point in the
code block. k is the index of the referenced descriptor. In Fig. 14, the register values after the call
are shaded.

ModuleDescriptor = RECORD
SB, LB, PB: LONGINT
END;

ProcedureDescriptor = RECORD
mod, pc: INTEGER
END;

CXPk: ,SB:=M[MOD].data;
pd := MIMIMOD L link + 4xk];
SP := SP-4; MI[SP] := MOD;
P = SP-4; MISP] := PC;
C:= M[MOD).code + pd.pc;
MOD := pd.mod

RXPn: PC:= MISP]; SP:= SP+4;
MOD := MISP]; SP := SP+4;
SB := M{MOD).data; SP := SP+n

1t may be noted that the CXP and RXP instructions require 6 and 3 memory accesses
respectively. This is the price to be paid for the late binding of modules and for the elimination
of an explicit module linker. The "overhead” is noticeable, and it is important that calls within
one module use the simpler BSR (branch subroutine) and RTS instructions, each requiring a
single memory reference only.

BRSn:  SP:=SP-4; MISP]:= PC;
PC := PC+n

RTSn:  PC:= MISPL;SP := SP+4;
SP := SP+n

27
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variable access is supported by three addressing modes and an additional base register (FP)
pointing at the most recent procedure activation record in the stack. Hence, local variables are
addressed with FP as base, global variables (of the module currently holding control) with SB
as base, and static variables in other modules with the external mode. The latter requires in
addition to the offset n the specification of the module, given in terms of a link table index k.

EXT(k,n) = MIMIMOD1link] +4xk]l +n

The formula shows that access of an external variable requires two memory references in
addition to the one for the variable's value. This overhead is quite acceptable in view of the
infrequency of external references.



Appendix 2: Examples of Applications of the System Library

In this section we demonstrate how implementors of applications or tool packages can use
the Oberon system's powerful module base. Notice a stylistic peculiarity: Applications typically
import numerous rather abstract data types and profit from library functions operating on
objects of these types. Examples of frequently imported types are Oberon ParList, Viewers Viewer,
Fonts.Font, Texts.Text, Texts.Reader, Texts Scanner, Texts Buffer, and TextFrames.Frame.

The first two examples show how an applicatibn can open a viewer and display data. The
third example shows how to enlarge an existing viewer, and the next example explains how a
command determines its operands generically. The last four examples show how to implement
an edit tool. They are included in this collection to demonstrate the adaptability of the Oberon
system to specific requirements.

Example 1. Open a viewer in the system track, generate, and display text data.

PROCEDURE Directory;
VAR Text; TextFrames.Frame; V: Viewers Viewer; f: File;
BEGIN
V := TextViewers.NewViewer(
NewMenu("Diskette.Directory”),
NewText(""),0,
Oberon.SX,
Oberon.SY());
Text = V.dsc.next (TextFrames.Frame); (xaccess main text frames)
T:= Text.text; (vtext of main text framex)
TextFrames.Mark(Text, -1); (xsetup vertical arrow markx)
(xread directory and first entry to fx)
WHILE (xfis afilex) DO
Texts.WriteString(W, f.file.name);
Texts Write(W, " "); Texts.Writelnt(W, ffile.size, 1);
Texts Writeln(W);
(*assign next entry to fx)
END;
TextViewers.Insert(T, T.len, W.buf); (xinsert at T's end and display written texts)
TextFrames.Mark(Text, 1) (xrestore position markx)
END Directory:

where
VAR T: Texts.Text; W: Texts. Writer;

are globally defined, and W is globally initialized by TextsOpenWriter(W), and NewMenu and
NewText are functions creating and initializing a menu text and the main text respectively:

PROCEDURE NewText (name: ARRAY OF CHAR): Texts.Text;
VAR T: Texts.Text;

BEGIN NEW(T); Texts.Open(T, name); RETURN T

END NewText;

29
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PROCEDURE NewMenu (name: ARRAY OF CHAR): Texts.Text;
VAR T: Texts.Text;

BEGIN T := NewText("");
Texts WriteString(W, name); Texts.WriteLn(W); Texts WriteLn(W);
Texts.WriteString (W, "Display.Close Edit.Copy Edit.Grow Editlocate Edit.Save");
Texts.WriteLn(W);
TextViewers.Insert(T,0, W.buf);
RETURN T

END NewMenu;

Remarks:

1. Normally, one writer per module is sufficient.

2. The above program generates its whole output text before displaying it. Alteratively, if
the statement TextViewers.nsert(T, Ten, W.buf) is moved into the WHILE-loop, every
generated line is displayed immediately.

3. If a specific part of the output text is to appear in a new font, for example in bold face
Syntax10b.Scn Fnt or italics Syntax10iScn.Fnt, call Texts SetFont(W,
Fonts.This(Syntax10b.Scn.fnt)) before  writing the part and  TextsSetFont(W,
Fonts.Default()) before continuing to write ordinary text.

4. Oberon SX specifies the start of the system track. OberonSY() is a standard proposal for
the placing of a new system viewer containing output data that was produced by a
command. Of course, individual algorithms are possible as well. For example, if the
star-shaped marker is allowed to override standard placing, the algorithm is

PROCEDURE SY (): INTEGER;
BEGIN
IF Oberon.Marker.on & (Oberon.Marker.X >= Oberon.SX) THEN
RETURN Oberon.Marker.Y + Viewers.barH DIV 2
END;
RETURN Oberon.SY ()
END SY;

5. Oberon provides another standard allocation procedure Oberon.LY() for system viewers. it
is used to allocate so-called log-viewers, i.e. viewers reporting on the progress in the
execution of a command.

ixample 2. Open a viewer in the user track and display an existing text specified by a
varameter.

PROCEDURE OpenText;
VAR par: Oberon.Parlist;
Text: TextFrames.Frame;
S:Texts.Scanner;
BEGIN
par := Oberon.Par(); (xaccess parametersx)
Text := par.frame(TextFrames.Frame); (xcalling framex)
TextFrames.Mark(Text, -1); (»arrow markx)



Texts.OpenScanner(S, par.text, par.pos); (vopen scanner at position of parameter list«)
Texts.Scan(S); (xget first symbolx)
IF S.class = 1 THEN (»if symbol is a stringx)
V := TextViewers.NewViewer(
NewMenu(S.s),
NewText(S.s),0,
Oberon.UX,
Oberon.UY())
END;
TextFrames.Mark(Text, 1) (xrestore position marks)
END OpenText;

Remark:

OberonUX specifies the start of the user track. OberonU¥() is a standard proposal for the
placing of a new viewer in the user track. Again, individual algorithms (respecting perhaps the
marker's state) are possible as well.

Example 3. Enlarge a text viewer.

PROCEDURE EnlargeViewer;

VAR par: Oberon Partist;

Menu, Text: TextFrames.Frame;
V, newV: Viewers.Viewer,;
X, W: INTEGER;

BEGIN

par := Oberon.Par(); (=access parametersx)

V= parvwr,

IF (V.dsc # NIL) & (V.dscnext IS TextFrames.Frame) THEN («if text viewerx)
IF V.H < Viewers DH THEN X := V.X; W = VW (xgrow to size of trackx)
ELSE X := 0; W := Viewers.DW (xgrow to size of display«)

END;

Menu := V.dsc(TextFrames.Frame); Text := V.dsc.next(TextFrames.Frame);
Oberon.OpenTrack(X, W); (xopen new standard overlaying track=)

newV := TextViewers.NewViewer(Menu.text, Text.text, Text.org, X, Viewers.DH) (xopen
copyx)

END

END EnlargeViewer;

Remark:
Actually, a copy of the original viewer is opened in the new track. When this track is later

closed, the original viewer will reappear.

Example 4. Process a viewer text or a sequence of texts, depending on command’s location.

PROCEDURE ProcessText;
VAR par: Oberon.ParlList;
Text: TextFrames.Frame;
S: Texts.Scanner;
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T: Texts.Text;
BEGIN
par := Oberon.Par(); (xaccess parameterss)
IF par.frame = parvwr.dsc THEN (»command in menu frames)
IF parvwr.dsc.next|S TextFrames.Frame THEN
Text := parvwr.dscnext(TextFrames.Frame); (»main text framew)
TextFrames.Mark(Text, -1) (#set arrow mark«)
Process(Text.text); (xprocess displayed texts)
TextFrames.Mark(Text, 1) (xrestore position mark«)
END
ELSE (xcommand in main text framex)
Text := par.frame(TextFrames.Frame);
TextFrames.Mark(Text, 1) (»set arrow marks)
Texts.OpenScanner(S, par.text, par.pos); (vopen scanner at position of parameter list«)
Texts.Scan(S); (xget first symbol«)
WHILE S.class = 1 THEN (xwhile symbol is a strings)
Texts.Open(T,5.5); (xopen text from filex)
(xprocess text Tx)
Texts.Scan(S) (»get next symbolx)
END;
TextFrames.Mark (Text, 1) (xrestore position marks)
END;
END ProcessText;

Example 5. Delete a selected part of text in the marked viewer.

PROCEDURE Delete;
VAR Text: TextFrames.Frame; v: Viewers Viewer,
BEGIN
v := Viewers.This(Oberon.Marker.X, Oberon.Marker.Y); (vget marked viewers)
Text := v.dsc.next(TextFrames.Frame); (¥main text frame of marked viewers)
IF Text.sel >0 THEN (if there exists a selectionx)
TextViewers.Delete(Text.text, Text.selbeg.pos, Text.selend.pos) («delete texts)
END
END Delete;

Example 6. Copy the mostrecently selected text part to the caret's position.

PROCEDURE CopyText;
VAR Text: TextFrames.Frame; buf: Texts Buffer; v: Viewers Viewer;
BEGIN
FindSelection (T, beg, end); (+find most recent selectionx)
IF T # NIL THEN («if found»)
Texts.OpenBuffer(buf);
Save(T, beg, end, buf}; (xsave textin buffers)
v := Oberon.Focus; («get focus viewerx)
IF (v.dsc # NIL) & (v.dsc.next IS TextFrames.Frame) THEN (»if text viewers)
Text := v.dsc.next(TextFrames.Frame); (»main text framex)
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IF Text.car > 0 THEN (xif caret sets)
TextViewers.Insert(Text.text, Text.carloc.pos, buf) (vinsert text at caret’s positionx)
END
END
END
END CopyText;

where

PROCEDURE FindSelection (VAR T: Texls.Text, VAR beg, end: LONGINT);
VAR F: Bitmaps.Frame; time: LONGINT; X: INTEGER;
BEGIN
T:=NIL time:=-1;X:=0;
WHILE X # Viewers.DW DO (xanother track»)
V := Viewers.This(X,0); (xget bottom viewerx)
WHILE V.state > 1 DO (xif not fillers)
F:= V.dsc; («first framein lists)
WHILE (F # NIL) & (F 1S TextFrames.Frame) DO
WITH F: TextFrames.Frame DO
IF (F.sel >0) & (F.time > time) THEN (xnewer selections)
T:= F.text; beg := Fselbeg.pos; end := F.selend.pos;
time := F.time
END
END;
F := F.next (xnext frame in lists)
END;
V := Viewers.Upper(V) (xget upper neighbours)
END;
X := X + V.W (xmove to next tracks)
END
END FindSelection;

Example 7. Copy font from visibly marked position to the most recent text selection.

PROCEDURE CopyfFont;
VAR F: TextFrames.Frame;
T: Texts.Text;
v: Viewers.Viewer;
beg, end: LONGINT;
X, Y:INTEGER;
ch: CHAR;
BEGIN
FindSelection(T, beg, end); (xfind most recent selections)
IF (T # NIL) & Oberon.Marker.on THEN (xif found and marker visiblex)
X := Oberon.Marker.X; Y := Oberon.Marker.Y;
v = Viewers.This(X, Y); (smarked viewerx)
IF (v.dsc # NIL) & (v.dsc.next IS TextFrames.Frame) THEN
F:= v.dscnext(TextFrames.Frame);
IF(X>=TextX) & (X CFX+FW)&(YD>=FY)&(YCFY + FH) THEN
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Texts.OpenReader(R, F.text, TextFrames.Pos(F, X, ¥)); («position readers)

Texts.Read (R, ch); (»read marked char»)
TextViewers.Change(T, beg, end, Rfnt) (xchange fonts)

END
END
END
END CopyFont;

Example 8. Move caret to the next character written in italics.

PROCEDURE Searchitalics;
VAR Text: TextFrames.Frame;
R: Texts.Reader;
italic: Fonts.Font;
v:ViewersViewer;

pos: LONGINT;
ch: CHAR,;
BEGIN

italic := Fonts.This("Syntax10.Scn.Fnt");

v := Oberon.Focus; («get focus viewers)
IF (v.dsc # NIL) & (v.dsc.next S TextFrames.Frame) THEN («xif text viewers)

Text := v.dsc.next(TextFrames.Frame); (#main text framex)

IF Text.car > 0 THEN (#if caret set=)
Texts.OpenReader(R, Text.text, Text.carloc.pos); (»open reader at caret’s positions)

Texts.Read(R, ch);
WHILE (ch #0X) & (R.fnt #italic) DO Texts.Read(R, ch) END; (»read char streams»)

IF ch # 0X THEN (xnot end of text=)
pos := Texts.Pos(R); (xreader's position«)
TextFrames.RemoveSelection(Text); (xremove all marks«)
TextFrames.RemoveCaret(Text);
Oberon.RemoveMarks(Text.X, Text.Y, Text.W, Text.H);
TextFrames.Show (Text, Max (0, pos - 200)); (»show text at pos«)
Oberon.SetFocus(v); («define v as focus viewers)
TextFrames.SetCaret(Text, pos) (»set caret to new positionx)

END
END
END
END Searchltalics;
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Fig.13. The Size of the Oberon System



