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Modula-2 and Object-Oriented Programming

N. Wirth

1. Introduction

it is a sad fact that our field of Computer Science is overly dominated by fads. They typically appear in
times of acute difficulties, are praised as powerful medicine against the major ills, and are carried by high
hopes of all in despair. In the area of software and programming, the often cited software crisis, openly
confessed in 1968, made structured programming popular. It was an expression of the recognition that
complex software can only be understood, if it is orderly and structured. The development of huge
systems, programmed by armies of "analysts’, made it evident that coordination, documentation, and
contracts between the participating workers in the form of interface specifications were mandatory.
Management became a dominant topic, and all these aspects were somehow covered by the new wave
called software engineering, implying the claim of a professional approach.

The most recent slogan is object-oriented programming. It expresses a different view of systems, focussed
on decentralized control, and originated in the area of system programming. Every such trend has its
legitimate reasons and goals, and it is appropriate to investigate its usefulness for one's particular
objectives. Such an investigation is even necessary in order not to succumb to the negative aspects of a
fad, namely to apply it where inappropriate, simply out of fear of being called old—fashioned. It is
mandatory to understand the issues and foundations of a new discipline. Otherwise we will not master
the discipline, but the discipline will master us.

2,What is "Object-Oriented” ?

The core of the concept is, | believe, decentralized control. The prime example, which is well-suited to
explain the idea, is an operating system. A conventional system contains a central routine which accepts
input from a keyboard and dispatches control to the routine specified for interpretation of the command.
An even simpler example is the "operating system” of a desk calculator, which selects the routine
according to the function key pressed. Modern workstations with their multiple window (viewer)
capability require a more sophisticated approach. Typically, operations are demanded through a mouse
click. The action to be taken depends on the position of the displayed cursor. It is unknown to the system
a priori, and depends on the type of viewer in which the cursor happens to be located. Each viewer is
considered to carry its own mode of command interpretation, in short, is regarded as an object with its
own behaviour. This scheme is implemented by executing a search for the descriptor representing the
viewer designated by the current cursor position, and then by dispatching control to a routine assigned to
that descriptor, a so—called handler. Naturally, different (types of) viewers must be able to contain
different handlers. Instead of control being centralized in a single dispatcher (in which the identities of
the destinations are explicitly specified), control is decentralized in handlers, whose identity and number
is not specified in the dispatcher's programtext.

Incidentally, this view of a structure carrying its own routines for interpreting its data coincides with the
notion of the abstract data type. The type declaration does not only specify the type and structure of data,
but also the applicable operators and function. Variables are said to be instances of the type. In the
community of object-oriented programmers, the set of objects with identical data structure and handler
is called a cfass, and an object is an instance of a class, just like a variable is an instance of a type.

It is often desirable to be able to derive a new class from a given class in the sense that instances of the
new class share the properties, i.e. attributes and operations, with objects of the given class, but feature
certain added properties. Thereby they become special members of the original class and form a subclass.
A typical example is given by subclasses of viewers: text viewers, graphic viewers, picture viewers will share
all properties of viewers, and feature additional operators suitable for handling texts, graphics, or pictures.



Some programmers find it attractive to view computer systems like humans. An object-oriented system
is then compared with a human society. A symptom of this anthropomarphic view — which | find
misleading rather than useful - s the notion that a subclass inherits the properties of its superclass. Thus
the subject of inheritance has found its entry into the programmers technical jargon. It might be added in
passing, that the term subject-oriented would have been more consistent with the popular
anthropomorphic view than object-oriented. After all, in the conventional sense, it is the subject that
displays a behaviour, that receives messages, whereas the object plays the passive role.

It is by no means accidental that the paradigm of object-oriented programming - we bow to convention
and adopt the misnomer — originated in the application area of simulation of systems with discrete
events. There emerged the need to represent abstractions of agents with properties and behaviour. Such
abstractions were first expressed in the languages Simula-1 {1] and Simula~67 [2]. The main focus still
lay on simulating the collective and concurrent actions of classes of agents using an interpreter with a
single processor. Hence, the notion of processes or, more precisely, coroutines remained intimately
coupled with Simula. The notion of an object, however, was adopted and plays the central theme in the
language Smalltalk [4]; at the same time, the paradigm of simulation and quasi-concurrency was
dropped ~ or at least fell into the background.

3, Which Features make a Language "Object-Oriented” ?

It is worth noting that applications where the object-oriented view makes sense typically involve a large
number of data elements, most of them with a transient existence. Therefore, the primary requirement to
formulate such applications is the availability of dynamic data structures, typically expressed through
records related by pointers. The necessary mechanisms are dynamic data allocation and (preferably
automatic) retrieval.

Apart from this prerequisite, we can identify two essential requisites:

1. It must be possible to define templates (of objects) consisting of variables and procedures.
Templates were given the name class, and instances of class are said to be objects. Procedures defined
for a class are called methods, and invoking a method is called sending a message.

2. It must be possible to derive new classes from existing classes. A derived class is related to the class
from which it is derived by the fact that it adopts the latter's variables, adopts or replaces its
procedures, and possibly adds new variables and procedures. A derived class is compatible with the
deriving class in the sense that an instance of the derived class can be substituted for any object of the
deriving class.

These compatibility rules imlpy that a procedure of an object may be invoked without reference to its
exact identity, because the object may be an instance of many of the derived classes. This explains the
term sending a message instead of calling a procedure: the meaning of the message is known, the
interpreting procedure is not. The dispatch of a message can now occur in a place where the actual
procedure is unknown, in particular in a module that lies below the module in which the procedure is
defined. Hence, such calls also are known under the term upcall.

type class
variable object, instance
procedure method
call message
extension inheritance

Conventional vs. Object—-Oriented Terminology



4. Modula-2 for Object-Oriented Programming?

We are now in a position to investigate the suitability of Modula [3] for object-oriented programming.
The prerequisite of dynamic data structures is satisfied (although most implementations do not contain
automatic storage retrieval).

The first requirement is also satisfied through the existence of procedure types. Objects are representable
as records, their methods as procedure-typed fields. Sending a message turns out to be calling a
procedure indirectly via such a procedure-typed variable.

The second requirement, however, is not met. It is impossible to derive a type T1 from a type TO such that
TO remains compatible with T1 (apart from the trivial cases of identity and of subranges).

We could leave the topic at this point. However, it is worth investigating whether an object-oriented style
might be used with Modula when, perhaps, certain safety properties of Modula are sacrificed. As was
pointed out in [9], a possible approach lies in using Modula's loophole, features from the module
SYSTEM. In particular, the type ADDRESS offers a solution: In anticipation of the need for derived types,
the declaration of the basic type is provided with an additional field, say ext, of type ADDRESS. A
derivation is then possible through any record type containing the additional variables and procedures,
and by assigning its pointer to the field ext.

Apart from the need for an additional indirection in accessing the additional fields, the crucial drawback
is that the compiler's type checking capability has been crippled. A program using this recipe is potentially
as unsafe as assembler code. Type safety should be the last property of a high-level language that we are
willing to sacrifice. The low-level facilities in Modula-2 were provided with the intent that they be used
sparingly in cases where access to special machine resources are needed, and that they be isolated in
small driver—-modules. But | caution against their installment as central instruments to be used
throughout entire programs.

What we must find from the point of view of language design is neither a fix nor a trick, but a solution
which properly integrates the new requirement with the existing properties and fully complies with the
concept of type validation through textual inspection (viz. compile-time checking).

5. Extending Modula-2 for Object-Oriented Programming

Our approach to rendering Modula-2 suitable for object-oriented programming lies in extending the
language with the proper features and making sure that they fit into the existing framework, allowing a
precise and concise definition based on well-understood mathematical concepts. If we concentrate on
the fundamental requirements, only a single new facility is actually called for, namely one for introducing
derived classes of objects.

In accordance with the basic principle of language design, namely to introduce as few concepts as
possible, and recognizing the strong similarity, if not identity, of types and classes, we equate the terms
object with instance (of a record type) and class with type. A derived class (subclass) then corresponds to
an extension of a record type [5]. If a record type is regarded as spanning a coordinate space being the
Cartesian product of the subspaces spanned by the record field types, the extension increases the
dimensionality of the space. Accordingly, an assighment of an instance of a derived class, i.e. of a variable
of an extended type, to an instance of its superclass, i.e. to a variable of the base type, then simply
corresponds to a projection of the variable's value onto to subspace spanned by the base type.

Example:

TYPE Point2 = RECORD x, y: INTEGER END
Point3 = RECORD (Point 2) z: INTEGER END
VAR P2: Point2; p3: Point3;



p2:=p3 correspondsto p2.x:=p3.x; p2y = p3y

Naturally, the concept of extension is also applied to pointer types. Thereby it becomes possible to
construct heterogeneous structures whose relating pointer type is bound to a node type R. The nodes of
the structure may then be of different extensions of R, say R1, R2, R3. Clearly, a need for determining the
actual (extended) type of a node referenced by a pointer (bound to R) arises. Oberon provides it in the
form of a type test classified as a Boolean factor with the operator IS.

We emphasize that the principal achievement of this solution in Oberon [6, 7] is that the concepts of
types and classes were united, and that the coexistence of two distinct notions representing virtually the
same concept was avoided. P

6. "Syntactic” Issues

With respect to representing methods through procedure~typed record fields, some additional remarks
appear appropriate. in object-oriented languages, a class declaration appears like a record declaration
with additional pracedure declarations (or of headings thereof). This has some consequences and some
advantages. In Modula and Oberon, the corresponding procedure—typed field assumes the role of a
variable, and hence the actual procedure must be assigned to it explicitly each time an instance of the
record is generated. This can be regarded either as a burden (and a source of mistakes) or as an additional
degree of freedom (and power). Yet, most typical applications bind the same procedure (handler) to all
instances of a class: the view of methods is class—centered, Oberon'’s view is instance-centered.

Example:
CLASS Viewers = TYPE Viewers =
BEGIN x,y, w, h: INTEGER; RECORD x,y, w, h: INTEGER;
METHOQOD restore (T: Text) restore: PROCEDURE (T: Text)
BEGIN ... END
END restore
END
v := Viewers.New(X, Y, W, H) NEW(v);

vx =X, vy =Y,vw = Wivh = H;
v.restore = Restore

In an implementation of the class—centered view, each instance will contain a hidden pointer to the same
table of procedure references. In an Oberon implementation, each instance contains direct (and
duplicated) references to the installed procedures. This is clearly undesirable, if there are many of them.

Another advantage of the class—centered view and of declaring procedure bodies within the class
declaration is the possibility to directly refer to the object fields (x, y, w, h) from within the procedure.
This led to the following, convenient formulation of sending a message (restore) to an object (v):

v.restore(T)

This form is entirely consistent with the notation for field designatars, viz. v.x. In the above call, v plays a
double role as distinguished parameter. 1t both acts as a qualification for the method name (via the class of
v), and it represents a parameter of the call, namely the variable v. In Oberon, this abbreviating form is
not possible, and the two roles are clearly disjoint:

v.restore(v, T)
The distinction between class— and instance—centered view with regard to method definitions can be

regarded in another way: In the former case, methods are declared as (procedure valued) constants, in
the latter as (procedure valued) variables. The restrictiveness of the former appears already in conjunction



with subclasses, i.e. type extensions. Typically, a subclass features methods different from those of its
superclass. As they are delcared as constants, a new "feature” is called for: that of overriding the definition
of the superclass. In respective implementations overriding is manifested by the provision of a distinct
method table for each subclass. In the instance-centered view of Oberon, no such additional mechanism
is necessary, nor has the additional notion of overriding any place, as it occurs through a regular, explicit
assignment.

A class-centered derivative of Oberon has recently been devised and implemented [10]. It showed that
the additional complexity of the compiler remains within tolerable bounds. The question is rather
whether the notational conveniences justify the conceptual complications, and it remains open.

-
Object~oriented languages typically confine objects to be dynamically allocated records referenced via
pointers. In Oberon, such a restriction would have to be defined through an explicit, exceptional rule,
because static as well as dynamic variables can be of a record type and are therefore extensible, In fact,
the availability of the type extension concept turned out to be extremely useful also in the case of static
variables passed as (reference) parameters to procedures. The above cited restriction would lead to the
use of dynamic allocation when conceptually a variable should be declared as static and local because of
its transitory nature. This in turn may have grave consequences on the efficiency of an implementation.

Oberon’s generality turns out to be a significant benefit, and regarding every variable as an object a
mistake.

Conclusions

Apart from convenient syntactic constructs, an object-oriented language features declarations of
procedures bound to data structures (records), and offers the possibility to declare structures (extensions)
that are derived from other structures and are type~compatible with them.

In Modula-2, it is possible to adopt the object-oriented paradigm by resorting to fow-level facilities and
sacrificing the most important asset of a high—level language, the guarantee of type consistency. Although
Modula allows the use of the paradigm, it does not support it.

The language Oberon extends Modula-2 with the necessary facility: fype extensions. There exist, however,
some differences between Oberon's object-oriented facilities and those of typically object-oriented
languages. The principal difference is that in the latter procedures (called methods) appear as constants
in the declaration of a record type (called class), whereas in Oberon they appear as variables (record
fields). Hence, in the former case methods are guaranteed to be the same for all instances of a class,
whereas in Oberon they may differ from instance to instance (and need to be explicitly installed
whenever an instance is generated). As a result, no additional language facility is needed in Oberon for
providing different procedures for extended types (subclasses), whereas in the typical object-oriented

languages the redefinition of methods (installed as constants) requires the additional concept of
overriding.

As a result, Oberon is conceptually simpler, and Oberon implementations are not burdened with
additional class mechanisms. On the other hand, object-oriented languages may offer somewhat more
convenient notational facilities and provide security by guaranteeing the constancy of declared methods
for all instances of a class, resulting in improved efficiency of upcalls. We consider this as a negligible
advantage, since we believe that the use of the object-oriented paradigm should be employed selectively
only where appropriate. In the design of an entire operating system [8], we found that almost the whole
system was advantageously programmed in the conventional style, the object-oriented style being
restricted to the viewer system which provides distributed control. It is wise to use upcalls sparingly.

A much more significant contribution to efficiency is the generalization of the type extension (subclass)
concept to static variables, in particular in their use as procedure parameters.

The most significant aspect of Oberon is that it supports object-oriented programming in the framework
of a language fully supporting also the conventional style, and that it guarantees full type—consistency
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checking. Oberon thus differs from other languages, because it grew from the conviction that language
design should strive for simplification through integration of highly similar concepts, rather than for
complication through the addition of new facilities highly similar to already existing ones.
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Drawing Lines, Circles, and Ellipses in a Raster

N. Wirth

Abstract

In a tutorial style, Bresenham's algorithms for drawing straight lines and circles are developed
using Dijkstra's notation and discipline. The circle algorithm is then generalized for drawing
ellipses.

1. Introduction

Recently, | needed to incorporate a raster drawing algorithm into one of my programs. The Bresenham
algorithm is known to be efficient and therefore was the target of my search. Literature quickly revealed
descriptions in several sources (1, 2]; all | needed to do was to translate them into my favourite notation.
However, | wished - in contrast to the computer - not to interpret the algorithms but to understand
them. | had to discover that the sources picked were, albeit typical, quite inadequate for this purpose.
They reflected the widespread view that programming courses are to teach the use of a (specific)
programming language, whereas the algorithms are simply given.

Dijkstra was an early and outspoken critic of this view, and he correctly pointed out that the difficulties of
programming are primarily inherent in the subject, namely in constructive reasoning. In order to
emphasize this central theme, he compressed the notational issue to a bare minimum by postulating his
own notation that is concisely defined within a few formulas [3].

in the following examples we adopt his notation but deviate from his discipline by specifying the task of
drawing algorithmically rather than by a result predicate over the drawing plane. In each case of the three
curves, the algorithm's principal structure is that of a repetition. In each step a next raster element (pixel)
is marked. In one dimension of the drawing plane, the next coordinate value is given by adding 1. The
considerations concerning termination are therefore trivial: repetition terminates when a limit value has
been reached. The problem is reduced to computing the other coordinate of the next raster point to be
marked. Bresenham's central idea is, instead of evaluating the function defining the curve, to compute
the coordinate incrementally from the coordinate of the last pixel, using integer arithmetic only. The
problem is now reduced to find an auxiliary function h which determines whether the coordinate must
be incremented or not. If the slope of the curve is guaranteed to be at most 45°, the increment is either 0
or 1. The statements for computing the auxiliary function in each step are derived by simple application
of the axiom of assignment. The function’s definition appears as the loop invariant.

2.Lines
Let the straight line L be defined by the equation
L:bex—-ay=0

We now wish to plot the section from the origin to the point P(a, b) and accept, without loss of
generality, the condition 0 < b < a. Evidently, this can be done by stepwise incrementing x, each time
computing and roundingy, and marking the square with the resulting coordinates.

x:=0;

DOx<a-—

y = bex DIV a; Mark(x, y); x = x+1
oD
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The occurrence of a multiplication and a division in each step calls for a more efficient solution,
particularly one that avoids the use of fractions (floating-point numbers). It rests upon the idea to
determine, through evaluation of a simple integer valued function, whether or not the ordinate y has to
be incremented or not. Given a point x, y, the exact value Y of the ordinate of the next point follows from

the equation for L:

Y=(x+1) % b/a

L

IR A Ll
The integer value y nearest to Y must satisfy the condition

Y-1/2<y<Y+1/2

If the first part of the inequality is not satisfied, an increase of y is necessary. An increment by 1 then
implies that both parts become satisfied:

(x+1) % b/a-1/2<gy
bx+b-a/2<ay
bx-ay+b-a/2<0

We introduce an auxiliary variable h = bx - ay + b — a/2; this equality is a loop invariant. Each time x ory
are incremented, h has to be adjusted according to its definition. By direct application of the axiom of
assignment, we determine the precondition of x := x+1:

{h=b(x+1) +ay+b—a/2} x=x+1 {h=bx-ay+b-a/2}
and now wish to find an expression u such that
{h=bx-ay+b-a/2} h:=u {h=b(x+1) +ay+b-a/2}

By applying the axiom of assignment once again, we find u = h+b. A similar application yields the
necessary adjustment of h in the case of incrementing both x and y, the term k being constant.

h:= h+b; {h=bx+1) +k} x:=x+1 {h=b+k}
h:= h+b-a; {h = b(x+1)-a(y+1)+k} y :=y+1; x :=x+1 {h = bx-ay+k}

The resulting program is known as Bresenham's algorithm. In the expression defining the initial value of
h, a/2 has been replaced by a DIV 2. Hence, h may be (at most) 1/2 too small. This is acceptable, because
for all integers h, and for all csuch thatO<sc<1,h>0=h>c.

x:=0;y=0;h:i=b-aDIV2;
DO {P}

x < a - Mark(x, y);
IFh<O0-h:=h+b
[h>0-h:=h+(b-a)y:=y+
Fi;

X = X+1

oD
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3. Circles

Our task is to plot a circle C with its center at the origin and with radius r. It is defined by the equation
C:x2+ y2 =

The obvious method of computing x and y values for various angles by using trigonometric functions

must be rejected as too inefficient. Like in the case of a straight line, we wish to operate on integers only,

and to find a simple function which determines whether or not the ordinate has to be incremented. For

this purpose, we concentrate on plotting the circle in the first octant of the plane only (0 - 45°). The
remaining 7 octants can easily be covered by symmetry arguments and need no further computation.

Starting from the point P(r, 0), we increment y in unit steps. In each step the exact abscissa X for the next
point is derived from the circle equation as

X = sqrt(r - (y+1)%)

X

The abszissa of the next raster point to be marked must satisfy the inequalities

X-1/2<x< X+1/2
Replacing X in the second part yields

x=1/2 <sqrt(r? - (y+1)?)
xR ox+1/4 < 2oyt -2y-1
Wyl 4 2y-x-r2+5/4<0

In each successive step, y is incremented and x is, if necessary, decremented such that the condition h < 0
is reestablished, where

h=x2ey?+2y-x-r2+1

The necessary adjustments of h upon changing x or y directly follow from application of the axiom of
assignment:

th=y2+2y+kthi=h+2y+3{h=y2+dy+3+k} y=y+1 th=y? +2y+ k}
{h=x®=x+kbhi=h-2x+2{h=x2-3x+2+k} x:=x-1 {h=x2 = x+k}

From this follows the very efficient algorithm due to Bresenham.

Xx=ry=0h=1-r

DOy < x - Mark(x,y);
IFh<0-sh:=h+2y+3
[h20-h:i=h+2(y~x) + 5 x = x-1
Fl;

yi=y+1

oD
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4. Ellipses

Similarly to the circle algorithm, we wish to design an algorithm for plotting ellipses by proceeding in
steps to find raster points to be marked. We concentrate on the first quadrant; the other three quadrants
can be covered by symmetry arguments and require no additional computation.

Let the ellipse be defined by the following equation. Again without loss of generality, we assume 0 < a <
b.

E: (x/a)% + (y/b)? =1

We start with the point P{0, b) and proceed by incrementing x in each step, and decrementing y if
necessary. The exact ordinate of the next point follows from the defining equation:

Y = b x sqri(1 ~ (x+1)/2)2)
The raster point coordinate must satisfy

y-1/2 <b%sqrt(1 - ((x+1)/2)?)

yi-y+1/4 < b2 - b2x(x+1)2/a2

a%y? - a?y 4 a2/a < a?b? - b2 - 2b%x - b?
b2 + 2b2x + a%y? - ay + a2/4 —a?b? + b2 < O

The necessary and sufficient condition for decrementing y is therefore h = 0 with the auxiliary variable h
being defined as

h = b2x2 + 2b2x + a%y? - a?%y + a%/4 — a%b? + b?

As in the case of the circle, the termination condition is met as soon as y might have to be decreased by
more than 1 after an increase of x by 1, i.e. when the tangent to the curve is greater than 45°. Unlike in
the case of the circle, however, this condition is not obviously given by x = y. We reject the obvious
solution of computing the ordinate for which the curve's derivative is -1, because this computation alone
would involve at least the square root function. Instead we compute a function g, similar to h,
incrementally. Its origin stems from the inequality

y-3/2<bxsqrt(1 - ((x+1)/a)?)

implying that the ordinate of the next point be at least 3/2 units below the current raster point.
Therefore, a decrease of y by 2 would be necessary for an increase of x by 1 only. A similar development as
for h yields the function g as

g = b2x% + 2b%x + a%y? - 3a%y + 9/4%a? - a?b? + b2

and x can be incremented as long as g < 0. The first quadrant of the ellipse is then completed by the same
process, starting at the point P(a, 0), of incrementing y and conditionally decrementing x. The auxiliary
function h is here obtained from the previous case of h by systematically substituting x, y, a, b fory, x, b, a.
The derivation of the incrementing values for h and g follow from application of the axiom of assignment
and completes the design considerations for the following algorithm:

hi=h +b22x + 3) {h = b2x24+2b2x+b? + 2b2x+2b2 + Kk} x := x+1 {h =b2x2 + 2b%x + k}
hi=h-2a2(y-1) {h=a%?-2a%y+a? - (a%y-a%) + k} y =y-1 {h=a%y? — ay+ k}
gi=g-2a%(y-2) {g=a’y’-2a%y+a® - 3(a%y-a2) + k} y:=y-1 {g=ady? - 3a¥y + k}
x:=0; g =b;

h:= (a2 DIV 4) - ba? + b2, g := (9/4)a2 - 3ba? + b2;
DO g < 0 - Mark(x, y);
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IFh<0-d:= (2x+3)b? g:= g+d
fh20-d:=(2x+3)b% - 2(y-1a% g=g+d + 222y = y-1
Fl;
hi= h+d; x = x+1
oD;

Xi=ayli=yy:=0;

h:= (b2 DIV 4) - ab? +2a%;

DOy< y1 - Mark(x,y);
IFh<0-h:=h+Q2y+3)a?

lhz0-h:= h+(2y+3)az—2(x~1)b2;x = x=1

Fl;
yi=y+1

oD

We close this essay with the remark that values of h may become quite large and that therefore overflow
may occur when the algorithm is interpreted by computers with insufficient word size. Unfortunately,
most computer systems do not indicate integer overflow! Using 32-bit arithmetic, ellipses with values of
aand b up to 1000 can be drawn without failure.
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Flintstone

N. Wirth

1. Historical Background

Flintstone is - in this context - the name of a microprogrammable microprocessor. It consists, like the
common flintstone, of silicon or - to be more precise - of silicon oxyde. This at least since July 1989.
Before that date, it existed on paper only, its architecture having been defined by the author in the
summer of 1983. At that time, or rather even earlier, the idea existed to design and build a more
powerful, more highly integrated version of the Lilith computer [1]. The idea was soon dropped for
economic reasons, and the purpose of Flintstone was rather seen as a fast and flexible coprocessor for
raster operations on the one hand, and as a processor optimally suited to display the essentials of a
processor architecture and to exercise the craft of microprogramming.

Plans to implement Flintstone were picked up by M. Morf, but they didn't come to fruition and the
project seemed buried. In 1985, W. Fichtner, head of the Institute for Integrated Systems at ETH,
rediscovered Flintstone in a search for projects suitable for gaining design experience for integrated
circuits, the design appearing to be neither too simple, nor too complicated for the available tools and
technology. Flintstone's layout was designed by Th. von Eicken as a student project, in fact twice because
during the design phase the fabrication process and its parameters had been altered. The layout had been
completed in the fall of 1987 for Faselec's Sacmos fabrication process with a 2u gate width.

in the summer of 1989, a Flintstone wafer became available and samples were tested by H. Bonnenberg
and N. Felber [2]. They reach a clock rate of about 8 MHz. The interest in Flintstone primarily focusses on
its use as a vehicle for microprogramming a RISC—-type architecture in a laboratory environment. To make
available a suitable description of the processor is the primary reason for writing this report. Another is
the opportunity to acknowledge the many contributions that have moved Flintstone from paper to
silicon, and to thank all the participants for their expertise and endurance.

14
A 24
D 7 | A
Flintstone
ROM —cK
—>{Reset
D —>{Cond
D
I 32
LatchJ —F'I Transc.
3
Control
: A-Bus
D-Bus

Fig. 1. Typical Use of Flintstone
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2. Flintstone's Architecture

Because of the planned goal of using Flintstone as processor of a second version of the Lilith computer,
and because Lilith's central processing unit was built around AMD's eminently successful bit-slice chip
Am2901, Flintstone’s architecture is modelled after the 2901 with a few modifications. The chip
combines eight 2901's, yielding a data path width of 32 bits, and a sequence controller, modelled after
the Am2910 with its address path widened to 14 bits [3]. In order to obtain optimal flexibility, the
program code was to be stored in an off~chip memory, presumably ROM. The micro~instruction width is
24 bits. A typical application is sketched in Fig. 1.

In the subsequent description of the internal architecture, we first concentrate on the arithmetic-logical
unit (ALU) and its data paths. This is followed by an explanation of the support of multiplication and
division, which differs from that of the Am2901. The last part deals with Flintstone's control unit and its
instruction address paths. The control signals for ALU and CU together determine the micro-instruction
format.

3. The Arithmetic-Logic Unit

The data processing unit consists of 16 registers, the arithmetic-logic unit (ALU) and a funnel shifter. The
data path is shown in Fig. 2. The functions available on the ALU are addition and logical AND, OR, and
XOR. The funnel allows selecting any 32-bit section from a 64~bit double word. In each clock cycle, data
flow from the two input sources either through the ALU or the funnel to their destination, either to a
register or via the data port to the external bus. The input sources are selected by the R- and
S—multiplexors. The T-multiplexor selects the output of either the ALU or the funnel. The registers form a
two—port RAM; two registers can be selected concurrently and are specified by the A- and B-addresses;
the latter also specifies the destination register which is to receive the RAM~input.

—

16 Registers

Fig. 2. Basic Data Paths
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The selected data path and the ALU function are determined by the current instruction. During each clock
cycle, exactly one instruction is interpreted. The following instruction fields are provided for controliing

the data flow:

— 0 g hE eru o

A-register address
B-register address

R~-mux control

S-mux control ,
T-mux control

Register input (write) enable
ALU function

Shift count

ALU carry input

inverter control

The shift amount of the funnel can be selected from either the corresponding instruction field or — if it
depends on the result of previous operations ~ from the 5 low-order bits of the Q register.

Since either the output of the ALU or the output of the funnel is discarded, the instruction fields for the
ALU-function and for the shift amount overlap (are the same).

4. Multiplication

The Flintstone architecture contains a few additional facilities to make an efficient multiplication program
possible. A multiplication of two 32-bit numbers consists of 32 instructions, so-called multiplication
steps. If the operands are unsigned numbers, the product z is given, given the multiplicand y and the

multiplier x:

31
2=2""x34 Y+

230

229

X30Y + X9 ¥+ o +2Xqy+XgY

—

16 Registers

A B
y
R-Mux | | S-Mux ]
y
ALU ke | c=0
Q
S+R S

[4]
T-shift > Qshitt [—_:q

Fig. 3. Data Paths for Multiply Step
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Each multiply step consists in the addition of a term to the partial product and the shifting of multiplier
and partial product by one bit position. Initially, y is stored in a register (say R1, and remains constant), x
is stored in the Q-register (specifically provided for this purpose), and forms together with another
general register, say RO, a double register that ultimately contains the product (64-bit). This double
register (RyQ) can be shifted as a whole by one bit position. the multiply step is given by

IFxg =1 THEN z := z+y END;
zXx:=2zxDIV2

and the relevant data path is shown in Fig. 3. Before step i (0 < i < 32), the multiplier is represented by
Q4. - Qp, and the partial product by ROz ... ROp, Q3 ... Qgp-j-

Multiplication of signed numbers differs only in its last step, where the multiplicand is subtracted rather
than added.

5. Division

The Q-register and its data path and shift-mux are also used in the process of division. The Q-register
actually derives its name from the fact that it holds the quotient. Division (for unsigned numbers) is also
performed by 32 identical instructions, called divide steps. Initially, the double register formed by a general
purpose register (say R0) and the Q-register holds the dividend (RO = 0), and another register (say R1)
holds the divisor (and remains constant). Each divide step is given by

rq = 2%(rq);
IFrzy THEN r:=r-y END

where r is the remainder (initially the dividend x), q is the quotient (initially 0), and y the divisor. Before

step i (0 < i 5 32), the remainder is represented by ROz, ... ROg, Q34 ... Q;, and the quotient by Q;_4 ... Qp.
The data path relevant in a divide step is shown in Fig. 4.

—

16 Registers | Q I

Fig. 4. Data Paths for Divide Step
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6. The Control Unit

The control unit contains the register | holding the instruction to be interpreted, the register PC holding
the address of the instruction to be fetched, and the (6-bit) register CC holding conditions resulting from
ALU operations. Interpretation of an instruction and fetching the subsequent instruction proceed
concurrently.

The source of the address of the next instruction is selected by the A-multiplexor. It is typically the
current instruction’s address plus one, except in the case of sequence control instructions (jumps). The
control unit therefore also contains an incrementor. Control instructions are distinguished from other
instructions by a 1-bit field of the instruction format (k). In their case, the source of the A-mux may be
the next-address field of the control instruction itself, and the selection between the incremented
address PC+1 and the jump address IR.adr depends on a condition. It is selected by the condition mask, a
field of the control instruction, from several conditions available in the condition code register CC. These
conditions are results of the previous instruction (except x):

z ALU output zero

n ALU output negative
v ALU overflow

e ALU extend

The condition for taking the next instruction address from the current instruction (jump) is met, if at least
one condition of the CC register is set which is not masked by its corresponding mask bit of the contro!
instruction. The sense of the decision (to jump or not to jump) is inverted, if the i bit of the instruction is
set.

A control (jump) instruction may additionally store the current value of PC is a stack of addresses, and act
as a jump to subroutine. This stack may be selected by the A-mux. Its selection represents a return from

subroutine instruction. The address-stack is only four elements deep, and no overflow indication is
provided. The data path of the control unit is shown in Fig. 5.

|
| Instr. Reg, I
ALU

X Ladr Stack

e $
CCMxL| 3 [ e |

Increment

Hold"

Fig. 5. Control Unit
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7. Instruction Format

7.1. ALU/Shift - Operations

field unit
k

w registers

r R-mux
S S—-mux
t T-mux

q Q-mux

h SC-mux
C-mux

c ALU

u ALU

F ALU

m  Shifter

a registers

b registers

Define shifter input X as X; = 5; and X;,3, = R; fori=0..31. Then G; = X

value result

1

0

1

0 Qu=0:0,Qy=1: A
1 A

2 C

3 D

0 Z

1 B

2 B shifted left
3 A

0 F

1 e=0:S,e=1: F
2 F shifted right
3 G

0 Q

1 T

3 Q shifted left
3 Q shifted right
0 l.m

1 Q

0 Q

1 l.a

0/1

0 R

1 ~R

0 R+S+lc

1 R+S+CCv
2 R+S+lc

3 R+ S+ CCv
4 RORS

5 RAND S

6 RXORS

7 FFO(R)
0.3

0.15

0..15

comment
enable ALU/shift clock

write enable
write disable

multiply step

constant or Q
data input, DD =1

zZero

divide step, Sg = Q3¢&!.g4

divide step
multiply step, T3q = e

divide step, Qp = e
multiply step, Q3¢ = Fy

shift count
Qu-Qq
zero—extended constant

carry input

invert Rinput
unsigned

signed

first one bit
shift count, if Lh=0
register A address

register B and write address

i+32-m

21
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7.2. Control Instructions

field unit value result

k 0

p A-mux 0

and stack 1 stack, pop

2 Ladr
3 l.adr, push

i CC-mux 0  jumpifcond =1
1 jump if cond = 0

X CC-mux

v CC-mux

n CC-mux

e CC-mux

z CC—-mux

adr 0.2

comment
disable ALU/shift clock

undefined

return subroutine
conditional jump
cond jump subroutine

invert condition

external
carry/overflow
negative
extend

zero

jump address

cd = (CCx&1.x) OR(CCv& Lv) OR (CC.n & I.n) OR (CCf & Lf) OR(CC.z & 1.2)

Fields x ... z are called the condition mask field.
Upon reset, the output of the A~-mux is 0.
If 1.k = 1, the adr-mux selects the PC register as input.

8. External Signals and Pin Assignments

DO-D31 1/0
AO-A13 e}
10-123 |

X
Hold'
AE'

|

|

|
DD o}

Reset

CLK

VCC (VDD)
GND (VSS)

data
address
instruction

ext. condition

PC increment carry input
address output enable
data direction
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9. Algorithmic Definition of Flintstone

TYPE BIT = CARDINAL; (%0..1 %)

ADDR = CARDINAL; (%0 ..2114-1 %)

WORD = ARRAY [0 .. 31] OF BIT;

Condition =
RECORD

X,v,e,n,z:BIT

END;

Instruction =
RECORD

k: BIT;
p:[0..7];

i, x,v,en,zBIT;
adr: ADDR;

w: BIT;
rstqg[0.7];
h, c: BIT;
f:[0..7];

u: BIT;

m: [0..31];
a,b:[0..15]

END;

Pin Pos Pin Pos Pin Pos Pin  Pos Pin Pos Pin Pos
DO N4 D8 U D16 G2 D24 C2 A0 N12 | A8 12
D1 M4 DS K2 D17 A D25 B1 Al M1 | A9 i3
D2 N3 D10 K1 D18 F2 D26 A1 A2 M2 | A0 HI2
D3 M3 D11 12 D19 E1 D27 B3 A3 MI3 | A1 HI3
D4 N2 D12 A D20 E2 D28 A2 A L12 A2 G12
D5 M2 D13 H2 D21 D1 D29 A3 A5 113 A3 G
D6 L2 D14 H1 D22 D2 D30 B4 A6 K12 AE MO
D7 M1 D15 G1 D23 C1 D31 A4 A7 K13 Hold N11
10 A7 18 A10 116 B13 PHI1 A5 0000000000000 N
Mmooz 19 B10 M7 13 PHI2 B6 0o°eeg8seeegs
PR, 10 A1 18 D12 | Reset N9 4 ool f
3 A8 1M1 B11 M9 D13 XC N7 cee ool ¢
14 B8 M2 A12 R0 E12 DD M5 58® °38l §
5 c8 M3 B12 21 E13 VDD G3 850 ococo  8o]¢
6 A9 "4 A13 22 F12 Vss  G13 ooeonec00008s| A
17 B9 115 C12 123 F13 VSS A6, M10 123456789 11 13
Fig. 9. Pin Assignment in 100-PCA Package
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(xinput signalsx)
CONSTHold =1;  (%PC increment carry inputx)
VAR 10, 11: CARDINAL; (#instructionx)

XC: BIT; (xexternal condition bitx)

(xthe following input signals are not represented in the simulator:
AE: BIT; instr. address output enable, active low
RESET: BIT;  forces address output to zerox)

(xoutput signalx)
VARDD: BIT; (xData Direction for D. D = 0: outputx)

(xinput/output signalsx)
VAR D: WORD;
A: ADDR;

(xregistersx)
VAR R: ARRAY [0 .. 15] OF WORD; (xregister RAMx)

Q: WORD; (smultiplier/quotient registerx)
St0, St1, St2, St3: ADDR:  (xreturn address stackx)
PC: ADDR; (xprogram counters}

CC: Condition; (xcondition code registerx)

I: Instruction; (*instruction registersx)

(%components external to the processors)
VAR Mem0, Mem1: ARRAY [0 .. MemSize-1] OF CARDINAL;

PROCEDURE ROR(x, n: CARDINAL): CARDINAL;
(*rotate x right by n bitsx)
END ROR;

(:

PROCEDURE Step;
VAR k, count: CARDINAL;
(%signal variablessx)
a b, rr, s fgq t: WORD;
cond: BOOLEAN;
cc: Condition;

PROCEDURE Add(carry: BIT; signed: BOOLEAN);
VAR k, sum, lastcarry: CARDINAL;
BEGIN
FORk:=0TO 31 DO
sum = r1[k] + s[k] + carry;
flk] := sum MOD 2; lastcarry := carry; carry := sum DIV 2
END;
IF signed THEN
cc.v = (carry + lastcarry) MOD 2;
IF I.s = 2 THEN cc.e := (carry + b[31]) MOD 2
ELSE cc.e = (carry + l.u) MOD 2
END
ELSE
cc.v = cary;
IFI.s =2 THEN cc.e = (carry + r[31]) MOD 2
ELSE cc.e := (carry + r[31] +s[31]) MOD 2
END
END
END Add;



PROCEDURE Set(VAR w: WORD; n: CARDINAL);
VAR i: CARDINAL;

BEGIN (xconvert n to binary representationx)
IFn<32THEN ccv:=0ELSEccv:=1;n:=0END;
FORi:=0TO4 DO

wli]:=n MOD 2;n:=nDIV2
END;
FORi:=5TO 31 DO wI[i] := 0 END

END Set;

BEGIN (xinterpretation step; latch instruction in Ix)
11 := ROR(I1, 8); 1.b := 11 MOD 16; l.adr := 11 MOD 256;
11 := ROR(I1, 4); l.a:= 11 MOD 16; L.u := 10 MCD 2; L. m := 10 MOD 32;
l.adr := 10 MOD 64 + l.adr;
10 := ROR(I0, 1); Lf := 10 MOD 8;
10 := ROR(10, 3); l.c := 10 MOD 2;

10 := ROR(10, 1); 1.h := 10 MOD 2;
10 := ROR(I0, 1); l.z := 10 MOD 2; .q := |0 MOD 4;
10 := ROR(10, 1); I.n := 10 MOD 2;

|0 := ROR(I0, 1); l.e := 10 MOD 2; I.t := 10 MOD 4;
10 := ROR(10,1); L.v := 10 MOD 2;

10 := ROR(I0, 1); I.s := 10 MOD 4; I.x := 10 MOD 2;
i0 := ROR(I0, 1); Li = |0 MOD 2;

10 := ROR(IO, 1); I.r := 10 MOD 4,

10 := ROR(I0, 1); L.p := 10 MOD 4;

10 := ROR(10, 1); L.w := 10 MOD 2;

10 := ROR(10, 1); 1.k := 10 MOD 2;

(xregister outputx)
a:= R[l.a]; b := R[.b];

(%¥R/C~Muxx*)
CASE L.r OF
0: (%mul stepx)
IFQ{0] =0 THEN
FORk:=0TO 31 DO r[k] := 0 END

ELSEr=a
END
{1:r=a
| 2:1F Lh = O THEN r := Q ELSE Set(r, L.a) END
[3:r:==D
END;
(%S-Muxs)
CASE I.s OF
0: FORk:=0TO 31 DO s[k] :=0 END
[1:s:=b
| 2: (%div stepx)
s[0] :=q[31];
FORk :=1 TO 31 DO s[k] := b[k-1] END
|3:s:=a
END;

(%Inverterx)
IFlu=0THENM =1
ELSE (stinvert rx)
FORk := 0TO 31 DO r1[k} := 1 - r[k] END

25
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END;

(%ALU%)
CASE I.f OF
0: Add(l.c, FALSE)
| 1: Add(CC.v, FALSE)
| 2: Add(l.c, TRUE)
| 3: Add(CC.v, TRUE)
| 4: (% AND %) ccv:= CCuv; cc.n = CC.n;
FORk:=0TO 31 DO
IF r1{k] = O THEN fk] := 0 ELSE f[k] := s[k] END
END
| 5: (% OR %) ccv = CCv; cc.n ;= CC.n;
FORk:=0TO 31 DO
IF r1[k] =1 THEN f{k] := 1 ELSE f[k] := s[k] END
END
| 6: (% XOR %) ccv:= CCy; cc.n := CC.n;
FORk:=0TO 31 DO
f{k] == (r1[k] + s[k]) MOD 2
END
| 7: (% First One Bit %) k := 0;
WHILE (k < 32) & (r1[k] =0) DO k := k+1 END ;
Set(f, k);
IFk =32 THEN ccv:= 1 ELSE ccvi= 0 END
END ;

(%Shifters)
IF 1.Lh = 0 THEN count := I.m
ELSE count:=0; (xQ[0..4]%)
FORk :=4TO 0 BY -1 DO count := 2%xcount + Q[k] END
END;
k:=0;
WHILE k < count DO g[k] := s[k+32-count]; k := k+1 END ;
WHILE k < 32 DO g[k] == r[k-count]; k == k+1 END;

(#T-Muxx)
CASE 1.t OF
0:t:=f

{11 (xdiv stepx)
IFcc.e=0THEN t:=sELSEt:=fEND

| 2: (#mul stepx)
FOR k := 0 TO 30 DO t{k] := f[k+1] END ;
t(31] := cc.n

[3:t=g

END;

(%Q-Muxx)
CASE 1.q OF
0:q:=Q
[1:q:=t
| 2: (xdiv stepx)
q[0] := cc.e;
FORk :=1TO 31 DO q[k] := Q[k-1] END
| 3: (®mul stepx)
FOR k := 0 TO 30 DO g[k] := Q[k+1] END;
q[311 = f[0]

END



(%CC-registers) k:=0;
WHILE (k < 32) & (t[k] = 0) DO k := k+1 END ;
IFk <32 THEN cc.z:= 0 ELSEcc.z:=1 END ;
cc.n = 1[31]; ccx = XC;

(%A-Muxx)

cond =
(1x=1) & (CCx =1) OR (xexternalx)
(lv=1) &(CCv =1) OR (xcarry/overflowx)
(I.n=1) & (CC.n =1) OR (xnegativex)
(le=1)&(CC.e=1) OR (xextx)
(l.z=1) & (CC.z=1); (»zerox)

IF Li=1 THEN cond := NOT cond END ;

IF (I.k = 1) ORNOT cond THEN A := PC

ELSIFILpDIV2=1THENA:= l.adr

ELSIF Lp =1 THEN A= St0

END;

(xAdr—stackx)
IF L.k = 0 THEN
IF I.p = 2 THEN (%pop%)
St0 := St1; St1 := St2; St2 1= St3
ELSIF Lp = 3 THEN (%pushx)
St3 := St2; St2 := St1; St1 := St0; St0 := PC
END
END;

(¥PC-registerx)
PC = A + Hold;

(xoutputx)
IF Lk =1 THEN
IFlw=0THEN R{LLb] :==tEND;
Q:=q; CCi=cc;
IFLr=3THEN DD =1 ELSEDD :=0; D :=tEND
END

END Step;
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