1?: SR O N

“idgendssische
Technische
Hochschule

Zurich

Institut
fur
Informatik

\liklaus Wirth

Mérz 1976

MODULA.
A language
for modular
multiprogramming

18

Eidgenossische Institut
Technische fur
Hochschule Informatik

ZUrich
Niklaus Wirth MODULA:
A language
for moqQular

multiprogramming

MODULA: A LANGUAGE FOR MODULAR MULTIFPHQGRAMMING

N .Wirth

Abstract

This paper defines a language called Modula, which is intended °

primarily for programming dedicated computer systems, including
process control systems on smaller machines. The 1language is
largely based on Pascal, but in addition to conventional block
structure it introduces a so-called module structure. A module
is a set of procedures, data types, and variables, where the
programmer has precise control over the names that are imported
from and exported to the environment. Modula includes general
multiprocessing facilities, namely processes, interface modules,
and signals. It also allows the specification of facilities that
represent a computer’s specific peripheral devices. Those given
in this paper pertain to the PDP-11.

Author’s address:
Institut fir Informatik, ETH, CH-8P92 Zurich

Contents

1. Introduction
2. Overview
3., Notation for syntactic description
4, Language vocabulary and representation
5. Facilities for sequential programming
1. Constant declarations
2. Type declarations
1. Basic types
2. Enumerations
3. Array structures
4, Record structures
3. Variables
4, Expressions
5. Statements
6. Assignments
7. Procedure calls
8. Statement sequences
9. If statements
1. Case statements
11, While statements
12. Repeat statements
13, Loop statements
14, With statements
15, Procedures
16. Modules
17. Programs
6. Facilities for multiprogramming
1. Processes
2, Process control statements
3. Interface modules
4, Signals
7. PDP=11 specific facilities
1. Device modules and processes
2. Device register declarations
8. Syntax diagrams
References

1. INTBODUCTIQON

The advantages of high=-level programming languages over assembly
code in the design of complex systems have been widely
recognised and commented [3]. The primary benefit of the use of
a suitable high-level 1language lies in the possibility of
defining abstract machines in a precise manner that is
reasonably independent of characteristics of particular
hardware. Assembly code is still used virtually exclusively in
those applications whose predominant purpose is not to design a
new system based on abstract specifications, but to operate an
existing machine with all its particular devices. Good examples
are process control systems, computerised laboratory equipment,
and input=-putput device drivers.

A major aim of the research on Modula 1is to conguer that
stronghold of assembly coding, or at 1least to attack it
vigorously. There is strong evidence that the influence of high-
level languages may become equally significant for process
control programming as it is now for compiler and operating
system design. It may become, even more important, considering
the availability of microprocessors at very low cost.

There are two requirements of such languages that are
characteristic for this area of applications, and that have not
existed for general purpose languages in the past. They must
offer facilities for pultiprogramming., i.e. they must allow to
express the concurrent execution of several activities, and they
must offer facilities to gpperate a computer s peripheral
devices. The principal obstacle is that such facilities are
inherently machine-~ and even configuration dependent, and as
such elude a comprehensive abstract definition. A practical
solution 1lies 1in accepting this situation and introducing a
language construct that encapsulates such machine dependent
items, i.e. restricts their validity or existence to a specific,
usually very small section of a program. We call this construct
a module. Its wusefulness 1is quite general and by no means
restricted to the domain of device dependent operations. It 1is
indeed of central importance, and has given the language its
name (for modular programming language).

Modula relies very strongly on Pascal [6,18]., Some of Pascal’s
features, however, have been omitted. The reason is not their
inadeguacy, but rather the necessity and the desire to keep the
language reasonably small. This seemed particularly advisable

for a language intended primarily for small computers.

Chapter 2 of this paper gives a brief overview of the 1language,
and concentrates on its “novel” features for modular design,
multiprogramming, and device operation. Chapters 3 and 4 define
the formalism for the syntactic definition of Modula, and of the
actual representation of programs. Chapter 5 defines the core of

the language 1in detail. It constitutes the conventional part -

restricted to seguential programminag. Most of these features
have been adopted from Pascal. Chapter 6 describes the
facilities added to express concurrency. The typical Modula
program consists of several processes that are themselves
sequential algorithms, and which are loosely coupled throuagh
synchronization operations. Its multiprogramming facilities are
designed accordingly.

The 1language described in Chapters 5 and 6 is defined in an
abstract way which does not refer to any specific computer. It
is well=-suited to be implemented on any existing computer. But
the purpose of a system programming language is not only to aid
in constructing and specifying abstract systems, but also to
operate existing hardware. For this purpose, additional features
must be provided that serve to operate particular facilities of
a given computer, in particular its peripheral devices. Chapter
7 describes a set of such features that were added to operate
the PDP=11, Such machine-dependent objects can only be declared
in specially designated device modules,

In this connection the total lack of anv kind of input=-noutput
facilities must be explained. Even the file structure of Pascal
is missing. The reason is that the typical application of Modula
is regarded as the design of systems that implement rather than
use _such a file facility. 1t should be possible to run Modula
programs on a bare machine with a minimal rup-time support.
Hence, Modula cannot contain high-level features such as FTile
operations. Instead, they may be programmed in terms of device
operations, neatly encapsulated within modules.

Another concept that is conspicuously absent is the interrupt.
The explanation is that the interrupt is a processor-oriented
concept. The purpose of interrupts is to let a processor take
part in the execution of several processes (tasks). Hence, in a
language that focusses on seguential processes as principal
constituents of its programs, the interrupt is a fechnigue to
implement a multi-process program on a single-~processor
computer, rather than a language goncept.

A most important consideration in the design of Modula was its
efficient implementability. In particular, the presented
solution allows processor management and “interrupt handling” to
be implemented equally efficiently as 1in assembly coding.
Guarantee of efficiency and absence of additional overhead 1in
the use of a high-level language is an absolute prerequisite for
a successful campaign to promote the use of such 1languages in
this traditional stronghold of assembly coding.

The current dimplementation of Modula is - experimental. The
presence or absence of certain facilities is still sub ject to
controversy. The usefulness of their presence or the effects of
their absence will only be known after a considerable amount of

actual experience 1in the use of Modula for the development of
many different systems.

So far, a cross-compiler has been completed. It relies on a very
small run-time support package to handle the switching of the
processor from one process to another. In modern systems, this
nucleus could well be incorporated as a micro-program or better
even directly in the hardware. (The current compiler is not
available for distribution.)

2., QVERVIEW

By far the largest part of Modula consists of facilities typical
for anmy sequential programming language. This is not surprising.,
because even large operating and control systems consist of
processes that are themselves purely sequential. Brinch Hansen,
in describing the design of an entire operating system, reports
that only 4% were coded in a 1language with multiprogramming
facilities [2] .

Most of the sequential programming facilities of Modula have
been adopted from Pascal, notably the concepts of data types and
structures. Modula offers the basic types integer, Boolean, and
char. In addition, scalar types can be defined by the programmer
by enumerations. In the realm of structures, only the array and
the record - the latter without variants = have been adopted.
The role of sets 1is partially taken over by a standard type
called bits, which constitutes a short Boolean array. The
language does not include any pointers.

Modula provides a rich set of program control structures.,
including if, case, while, and repeat statements. Their syntax
slightly _differs from that of Pascal, because the principle was

ollowed that every structured statement not only begins but
also ends with an explicit bracketing symbol. The for statement
has been replaced by a more general logp statement that allows
to specify one or several termination points.

Procedures can be wused recursively and can have two kinds of
parameters, namely constant and va;;gglgmwparameters. In the
former case, assignments to the formal parameter &@re prohibited,
and the corresponding actual parameter is an expression. In the
latter case, the actual parameter must be a variable, and
assignments to the formal parameter are assignments to that
actual variable, (In both <cases, parameters may - but do not
have to - be implemented by passing an address.)

Procedures form a blogk in the sense of Algol and Pascal. Hence,
constants, types, variables, and other procedures can be
declared local to a procedure. This implies that their existence
is not known outside the procedure, which thereby constitutes

the scope of these local objects. Block structure has proven to
)

= G =

be a most valuable facility din systematic program design.
However, block structure alone does not provide the possibility
to retain local objects after termination of the procedure, nor
to 1let several procedures share retained (hidden) objects. For
this purpose, the module has been introduced as an essential
supplement to the block concept.

A module is a collection of constant-, type-, variable-, and
procedure declarations. They are called ghbjects of the module
and come into existence when control enters the procedure to
which the module is local. The module should be thought as a
fence around its objects. The essential property of the module
construct is that it allows the precise determination of this
fence’'s transparency., In its heading, a module contains two

lists of didentifiers: The define=list wmentions all module
objects that are to be accessible (visible) outside the module.
The use-list mentions all objects declared outside the module

that are to be visible inside. This facility provides an
effective means to make available selectively those objects that
represent an intended abstraction, and to hide those objects
that are considered as details of implementation. A module
encapsulates those parts that are non-essential to the remainder
of a program, or that are even to be protected from inadvertant
access [7] . Modules may be nested.

Example: Suppose that an object a is declared in the environment
of M1, Then a, b, and c are accessible in this environment:

module M1;
define b,c;
use a;
{declare d}

modulg M2;

define c,e;

use d;

{declare c,e,f}

{c,d,e,f are accessible here}
end M2;

brocedure b;
{declare f}
{fa,b,c,d,e,f are accessible here!l

end b ;

{a,b,c,d,e are accessible here}

end M1

Identifiers in the define=list are said to be gxported, those in
the wuse=list are imported. If a type is exported, then only its
identity is exported, but not its structural details. This means
that outside the module from which a type is exported we do not
know whether a type is a scalar, an array, or a record.

Therefore, variabhles of this type can be operated by procedures
only that are exported from the same module. [he module [8]
therefnre assumes a similar role as the class construct of
Concurrent Pascal (1], which was develnped fraom the class
structure of Simula [4].

Exported variables cannot be changed except in the module to
which they .are local, i.e. they appear as read-only variables.
It must be emphasized that the module does not determine -the
"1ife~time” of its 1local objects. It merely establishes a new
scope. Objects declared within a module are considered local to
the procedure in which the module itself is local, i.e. they
come into existence when that procedure is called, and they
vanish when it is completed.

Only a minimal number of facilities for multiprogramminn are
added to the language described so far, which we may call
sequential Modula. The additional facilities are processes,
interface modules, and signals. A process looks like a
procedure. But unlike the procedure it is executed concurrently
with the program that called, i.e. initiated dit. When control
reaches the end of a process, the process goes out of existence.
Processes cannot create other processes. Process creation is
possible in the main program only, which should be regarded as a
system initialization phase. However, it is possible to activate
several instances of the same process declaration.

Synchronization 1is achieved by the wuse of giagnals. They are
declared similar to variables (syntactically, the signal appears
as a data type). Siagnals can be sent, and a process can wait for
a signal. Signals correspond to conditions of Hoare [5]1 and to
gueues of Brinch Hansen [1). A central aspect of this concept is
that processes, once started, are anonymous. They can be
influenced by signals (and shared wvariables) only. But the
environment cannot force a process to notice these signals (or
changes of variables), and there 1is no way to disrupt or
terminate a process by outside intervention.

Processes cooperate via common variables. This reqguires a
facdlity to guarantee mutual exclusion of processes from
critical sections of a program. In Modula, such sections are
declared as procedures and these procedures are gathered within
a specially designated, so-called jinterface module, which
corresponds to Hoare’s monitor [5]1., The monitor is a set of
corresponding critical sections, where simultaneous execution by
several processes 1is excluded. In contrast to the critical
section, however, the interface module allows more than one
process to be in a critical section, provided that all but one
are either waiting for a signal or are sendina a signal. This
relaxation of the mutual exclusion condition not only simplifies
implementation of the signalling and processor switching
mechanism, but also corresponds to many practical patterns of
gsage. A typical procoram pattern with two conperating processes

Se—

P and Q is shown below, where v stands for the common variables,
for instance data buffers in a producer-consumer constellation,
s stands for the signals by which P and Q synchronize their
activities, and p and g are their critical sections formulated
as interface procedures (see Fig. 1).

interface module M;
define p»a;
{declare v,s}
procedure p(x);

{uses v,s,x}
end p:
procedure gly);

fuses v,s,y}
end a;

beagin {initialise v}

end M;

brocess P
{uses p}

gnd P;

brocess Q3
{fuses g}

end Q

M

- oo

Fig.1. Processes P and Q interfacing via module M,

These general multiprogramming facilities are supplemented by a
few computer-dependent features. They are necessary, for
instance, to operate a computer’'s peripheral devices. We
describe as an example those which were designed and implemented
for the PDP-11. The underlying intention was to keep the number
of such facilities minimal, and to express them in strong
analogy with machine-=independent concepts wherever feasible and
economical.

A necessary condition is that the computer’s device registers
and operators on them are made available. They appear in Modula
as variables with a specification of their (hardware-defined)
address and (programmer-defined) type. Status registers are
usually declared of type bits, which &allows the convenient
setting and resetting of individual status and function bits.

Moreover, a system dimplementation languanga should allow the
effective wutilization of a computer s interrupt facility,
including its interrupt priority system, if one exists.

Traditionally, an input/output device is regarded as a process
by itselfy communicating with a master process by starting
signals and completion interrupts. In Modula, the operations
performed by the device and those executed by its associated
interrupt routine are considered as a single process, the former
part being represented by the statement "doio” [9] (see Fig.2).
This statement is allowed within so=-called ggylgg pbrocesses (or
drivers) only which are declared within a so-called device
modules In contrast to regular processes drivers are declared
entirely within the device interface module. This is possible,
because the doio statement - representing the actions performed
by the device - also constitutes a singular point within the
interface in the sense that during its execution the mutual
exclusion constraint is 1lifted.

main processor device
Y C
deposit buF===4 fetch
t - ¢
star
P send(s)—————- —{wait(s) doio
' nterrupt
i
tk wait(c)pe——————== send (c)
J B
in Modula:
N
deposit
1
P start
K
L doio

Fig.2. I/0 activities viewed as a device process

The explicit designation of device interface modules and drivers
facilitates for an implementation the efficient utilization of a
aiven computer system, but also exhibits the close relationship
or even identity of these machine oriented parts of a program
with the machine-independent concepts of the language.

- 19 -

3. NOTATION FOR SYNTACTIC DESCRIPTION

To describe the syntax an extended Backus-Naur formalism is
used, It allows to use syntax expressions as right parts in a
production. Syntactic entities are denoted by English words
expressing their intuitive meaning. Symbols of the language are
enclosed by quote marks (") and appear as so-called literals in
the right parts of productions. Each production has the form

S = E . ’
where S is a syntactic entity and E a syntax expression denoting
the set of sentential forms (sequences of symbols) for which S
stands. An expression E has the form

T11 T2 1 sas | Tn (n > 2)
where the Ti’'s are the terms of E. Each Ti stands for a set of
sentential forms, and E denotes their union. Each term T has the
form _

F1 F2 ... Fn (n > 8)
where the Fi’s are the factors of T. Each Fi stands for a set of
sentential forms, and T denotes their product. The product of
two sets of sentences is the set of sentences consisting of all
possible concatenations of a sentence from the first factor
followed by a sentence from the second factor. Each factor F has
either the“Form

(x is a literal, and "x"” denotes the singleton set consisting of
this single symbol), or

(E)
(denoting the expression E), or

[E]
(denoting the union of the set denoted by E and the empty
sentence), or

{E}
(denoting the set consisting of the union of the empty sequence
and the sets E, EE, EEE, etc.)

Examples:
The syntax expressions ‘
T2 1 "™ F "B e} o 5 1™ 5* ™" &y "g"

denote the following sets of sentences respectively:
ab a ad
ac abc abd
bb abcbc acd
bc abcbcbc
4. LANGUAGE VOQCABULARY AND BEPRESENTATION

The 1language is an infinite set of sentences (programs), namely
the sentences well-formed according to the syntax. Each sentence
(program) is a finite sequence of symbols from a finite
vocabulary. The vocabulary consists of identifiers, (unsigned)

numbers, literals, operators, and delimiters. They are called
lexical gymbnls or tokens, anmd in turn are compnsed of sequences
of gharacters. Their representation therefore depends on the
underlying character set. The ATSCII set is used in this paper,
but the following rules must be observed for any set:

1. Identifiers are sequences of letters and digits. The first
character must be a letter. Capital and loger case letters
are not distinguished.

ident = letter {letter | digit}.

2. Numbers (integers) are sequences of digits, possibly followed
by the letter B signifying “octal”.

number = integer.
integer = digit {digit} | octaldigit {octaldigit} "B".

3., Strings are sequences of characters enclosed in guote marks.
If a guote mark itself is to occur within that sequence, then
it is denoted by two consecutive quote marks. A single
character string may also be denoted by its ordinal number
(in octal) followed by the letter C. (The ordinal refers to
the character set used.)

c".

string = {character!} octaldigit {octaldigit}
4., Operators and delimiters are special characters, character
pairs, or (reserved) words listed in Table 1 below. In this
report, they are underlined for clear distinction from
identifiers. These (reserved) words must not be used in the

role of identifiers.

+ (div until const
-) mad while yar
* [ar dao type
/] and loop array
= . oot when record
<> ’ if exit procedure
< : then begin process
<= : glsif end module
> else with dinterface
>= case yalue device
(* of xor use
1= *) repeat define

Table 1: Operators and Delimiters

5. Blank spaces (and line separation) are ignored unless they
are essential to separate two consecutive symbols. Hence,
blanks cannot occur within symbols, including identifiers,
and numbers.

6, Comments may be inserted between any two symbols 1in a
program. They are opened by the bracket (¥ and closed by *),
Comments may be nested, and they do not affect the meaning of
a program.

S, EACILITIES FOR SEQUENTIAL PROGRAMMING

Every program contains two essential components: parts where
objects of the computation are defined and associated with
identifiers, and parts where the algorithmic actions to be
performed on (and with) these objects are defined. The former
parts are called declarations, the latter statements. A blogk is
a textual unit (usually) consisting of elements of both kinds in
a well defined order.

Objects to be declared are constants, data types and structures,
variables, procedures, modules, and processes. Procedures and
modules consist themselves of a block. Hence blocks are defined
recursively and can be nested (see also 5.15).

5.1 Constant declarations

A constant declaration associates an identifier with a constant
value.

constantdeclaration = ident "=" constant.

constant = unsignedconstant | ("+"]"=") number .
unsignedconstant = ident | number | string | bitconstant.
bitconstant = "[" [bitlist] "17" .

bitlist = bitlistelement {",” bitlistelement} .
bitlistelement = constant [":" constant] .

Numbers are constants of type integer. A constant denoted by a
single-character string (or by an ordinal) is of type char (see
5.2.,1), @& string consisting of n characters is of type (see
5.2.3)

array 1:n gf char

A bit constant 1is a constant of type bits (see 5.2.1). The
elements of the bitlist are the indices of those bits that are
true”. An element of the form m:n specifies that all bits with

indices m through n are "true”. All other bits have the value

"

“false".

5.2 Type declarations

Every constant, variable, and expression is of a certain type.
In the case of numbers and literals their type is implicitly
defined, for variables it is specified by their declaration, and

= 13 =

for expressions it 1is derivable from the types of their
constituent operands and operators. A data type determines the
set of values that a variable of that type may assume: it also
defines the structure of a variable. There are four standard
types, namely integer, Boolean, char, and bits. Enumeration
types (enumerations) and the types integer, Boolean, and char
are unstructured, i.e. their values are atomic. Structured types
(structures) can be declared in terms of these elementary types
and of structures.

typedeclaration = ident "=" type.
type = ident | enumeration | arraystructure |
recordstructure .

5.2.1 Basic types

integer The values of type integer are the whole numbers in
the range min to max, where min and max are constants
dependent on available implementations. (For the PDP-

11: min = =32768, max = 32767).

Boolean The values are the truth values denoted by the
predefined identifiers true and false.

char The values are the characters belonging to the

character set determined by each implementation. (For
the PDP=-11: the ASCII set).

bits Its values are arrays of w Boolean elements. This type
is predeclared as (see 5.2.3)

array P:w gf Boolean

The constant w is the wordlength minus 1 of the
computer on which Modula is implemented. (For the PDP-
11: W=15)o

5.2.2 Enumerations

An enumeration is a list of identifiers that denote the values
which constitute a data type. These identifiers are used as
constants in a program. They, and no other values, belong to
this type. An ordering relation is defined on these values by
their sequence in the enumeration.

enumeration = "(” identlist ")".
identlist = ident {"," ident}.

5.2.3 Array structures
An array structure consists of a number of components which are
all of the same gcomponent tvype. Each component is identified by
a number of indices. This number is called the dimensionality of
the array. The range of index values of each dimension is
specified in the declaration of the array structure. The types
of the indices must not be structured.
arraystructure = “array’ indexrangelist "of" type.
indexrangelist = indexrange {"," indexrange}.

indexrange = constant ":" constant.

5.2.4 Becord structures

A record structure consists of a number of components, called
record fields. Each component is identified by a unique field
identifier. Field identifiers are known only within the record
structure definition and within field designators, i.e. when
they are preceded by a qualifying record variable identifier.
The data type of each component is specified in the field list.

recordstructure = "record” fieldlist {":" fieldlist} "end”.

fieldlist = [identlist ":" typel.

Examples of type declarations:
color = (red,yellow,green,blue)
vector = grray 1:100 agf color
matrix = grray 1:20, 0:18 of integer
account = record x: integer;
y: Boolean:;
z: array #:9 gf char
end

5.3 Variables

Variable declarations serve to introduce variables and associate
them with @& wunigue identifier and a fixed data type or
structure. Variables whose identifiers appear in the same 1list
all obtain the same type.

variabledeclaration = identlist ":" type.

Examples of variable declarions:
i,j.k: integer
p,g: Boolean
ch: char
u: record s: bits:
a: vector
end

s,t: bits

r: account

a: vector

m: matrix #
w: array 1:18 gf account

The syntactic construct of a designation of a variable is simply
called “variable”., It either refers to a variable as a whole,
namely when it consists of the identifier of the variable, or to
one of its components, when the identifier is followed by a
selector. If a variable, say v , has a record structure with a
field f ’ this component variable is designated by v.f . If v
has an array structure, its component with index i is designated
by v[i] .

- 15 -

variable = ident | variable ~." ident |
variable [" indices] .
indices = expression { ', expression}.

Examples of variables (see declarations above):
i r.X alil] m[i+1,3i=1] wlil Wx u.al k]

5.4 Expressions

Expressions are composed of operands (constants, variables, and
functions), operators, and parentheses. They specify rules of
computing values; evaluation of an expression yields a value of
the type of the expression.

There are four classes of gperators with different precedence
(binding strength). Relational operators have the 1least
precedence, then follow the so-called adding operators, the
multiplying operators, and the negation operator pot with
highest precedence. Sequences of operators with equal precedence
are executed from left to right.

Denotations of a yariable in an expression refer to the current
value of the variable. Function calls denote activation of a
function procedure declaration (i.e. execution of the statements
which constitute its body). The result acts as an operand in the
expression. The same rules about parameter evaluation and
substitution hold as in the case of a procedure call (see 5.7).

expression = simpleexpression [relation simpleexpression].
relation = "=" | "<>" | "<=" | <"] ST | Us="
simpleexpression = ["+"]"="]1 term {addoperator term}.
addoperator = "+" | "=" | "gr" | "xor" .
term = factor {muloperator factor}.
muloperator = "*" | /" | "div" | "mad” | "and” .
factor = unsignedconstant | variable | functioncall |
"(" expression)" | "pot” factor.
functioncall = ident parameterlist.
Arithmetic gperators (+ - * / div mod) apply to operands of type

integer and yield a result of this type. The operators + = * and
/ denote addition, subtraction, multiplication and division with

truncated fraction. The monadic operators + and =~ denote
identity and sign inversion. The operators div and mod yield a
guotient g = x div y and a remainder r = x mgd y such that x =

q*y+r , B < r <y . The divisor (or modulus) y must be strictly
positive.

Example: x = =15 , y = 4
x/y = =3 , xdivy = -4 , xmod y = 1 .
Boolean operators (or xor and not) apply to Boolean operands and

yield a result of type Boolean. The term a and b is evaluated as

!

- 16 -

-

"if a then b else false”, and the expression a gr b is evaluated
as if a then true glse b~ (Note: conditional expressions are
not available in Modula). Boolean operators can alsn be applied
to operands of type bits. The specified operation is then
performed on all corresponding elements of the operands.

Belations yield a result of type Boolean. (<> <= >= stand for 4%
< > respectively). They apply to operands of the standard types
integer, char, Boolean, and bits (to the latter only = and <>),
and of enumeration types.

Examples of factors:
27 i (i+3+<) npat » [2,3,5,7511]

Examples of terms:

i ¥k i/(i=1) ord(ch) (i<j) and (j<k) s and t

Examples of simple expressions
%4 i+5%k -1 p ar gq s ar t

Examples of expressions
(1+5)*(3+k) i k+5 1= t xor [8:7]

(Given the variables declared in 5.3, the first three examples
in each line are of type integer, the fourth is of type Boolean,
"and the fifth of type bits.)

5.5 Statements

Statements denote actions. Elementary statements are the
assignment statement and the procedure call. Composite
statements may be constructed out of elementary statements and
other composite statements.

statement = assignment | procedurecall | processstatement |
ifstatement | casestatement | whilestatement |
repeatstatement | loopstatement | withstatement | .

5.6 Assianments

An assignment denotes the action of evaluating. an expression and
of assigning the resulting value to a variable. The symbol := is
called assignment operator (pronounced "becomes”).

assignment = variable ":=" expression.

After an assignment is executed, the variable has the value
obtained by evaluating the expression. The old value is lost
("overwritten”). The variable must be of the same type as (the
value of) the expression.

Examples of assignments:

i 1= 108
p := true
mli,il = 13%i+j

5.7 Procedure calls

A procedure call denntes the execution of the specified
procedure, i.e. of the statement part of its body. The procedure
call must contain the same number of parameters as the
corresponding procedure declaration. Those of the «call are
called actual parameters. An actual parameter corresponding (by
its position in the parameter list) to a caonst-parameter must be
an expression. The types of the actual and the formal parameters
must be the same, and the formal parameter appears as a read-
only parameter, i.8. assignments to this parameter are
prohibited, If the actual parameter corresponds to a var-
parameter, it must be a variable. That variable is substituted
for the formal parameter throughout the procedure body. Types
must be identical, and if the actual parameter is an indexed
variable, the index expressions are evaluated upon procedure
call.

procedurecall = identification [parameterlist].
parameterlist = " (" parameter {"," parameter} ")".
parameter = expression | variable.

Examples of procedure calls:
inc(i,10)
sort(a,100)

5.8 Statement seguences

A sequence of statements separated by semicolons 1is called a
statement sequence and specifies the sequential execution of the
statements in the order of their occur-ence.,

statementsequence = statement {":" statement} .

5.9 If statements

If statements specify conditional execution of actions depending
on the value of Boolean expressions.

ifstatement = "if" expression “then” statementsequence
{"elsif"” expression "then” statementsequence}
["else” statementsequence] "end”.

B

5.1 Case statements

Case statements specify the selective execution of a statement
sequence depending on the value of an expression. First the case
expression 1is evaluated, then the statement sequence with label
equal to the resulting value is executed. The type of the case
expression must not be structured.

casestatement = "case’” expression "gf" case {":" casel "3ng";
case = [caselabels ":" "begin"” statementsequence "end”] .
caselabels = constant {",” constant}.

5,11 While statements

While statements specify the repeated execution of a statement
sequence depending on the value of a Boolean expression. The
expression 1is evaluated before the first and after each
execution of the statement sequence. The repetition stops as
soon as this evaluation yields the value false.

whilestatement = .
"while” expression "do” statementsequence "gnd” .

5.12 Repeat statements

Repeat statements specify the repeated execution of a statement
sequence depending on the value of a Boolean expression. The
expression 1is evaluated after each execution of the statement
sequence, and the repetition stops as soon as it yields the
value true. Hence, the statement sequence is executed at least
once .

repeatstatement = .
‘repeat” statementsequence "until” expression .

5.13 Loop statements

Loop statements specify the repeated execution of statement
sequences. The repetition can be terminated depending on the
values of possibly several Boolean expressions, called gxit
15 ti K
loopstatement = "loop” statementsequence
{“"when” expression ["dg” statementsequence]
statementsequence } "gnd”.

8 s !

"

Hence, the general form is
loop S1 when B1 do X1 exit
52 when B2 do X2 gxit

Sn when Bn do Xn exit

ol
e)
end

First, S1 is executed, then B1 is evaluated. If it yields the
value true, X1 is executed and thereupon execution of the loop
statement is terminated. Otherwise it continues with &2, etc.
After S, execution continues unconditionally with S1.

Note: all repetitions can be expressed by loop statements alone,
the while and repeat statement merely express simple and
frequently occurring cases.

5.14 With statements

The with statement specifies a record variable and a statement
seguence to be executed. In these statements field identifiers
of that record variable may pEcur without preceding
qualification, and refer to the fields of the variable
specified.

withstatement =
"with" variable "da" statementseguence "gnd” .

5.15 Procedures

Procedure declarations consist of a procedure heading and a
blogck which is said to be the procedure body. The heading
specifies the procedure identifier by which the procedure 1is
called, and its formal parameters. The block contains
declarations and statements.

There are two kinds of procedures, namely proper procedures and
function d . The latter are activated by a function call
as a constituent of an expression, and yield a result that acts
as operand in the expression. The former are activated by a
procedure call. The function procedure is distinguished in the
declaration by the fact that the type of its result is indicated
following the parameter 1list. Its body must contain an
assignment to the procedure identifier which defines the value
of the function procedure. There are two kinds of parameters,
namely constant and variable parameters. The kind is indicated
in the formal parameter list. Constant parameters stand for a
value obtained through evaluation of the corresponding actual
parameter when the procedure is called. Assignments cannot be
made to a constant parameter. Variable parameters correspond to
actual variables, and assignments to them are permitted (see
5'7).

Formal parameters are local to the procedure, i.e. their scope
is the program text which constitutes the procedure declaration.

.

All constants, variables, types, modules, and procedures
declared within the block that constitutes the procedure body,
are local to the procedure. The wvalues of 1local variables,
including those defined within a local module, are not defined
upon entry to the procedure. Since procedures may be declared as
local objects too, procedure declarations may be nested. Every
object is said to be declared at a certain level of nesting. If
it is declared local to a procedure (or process) at level k , it
has itself level k+1 . 0Objects declared in the block. that
constitutes the main program are defined to be at level 0 .

In addition to its formal parameters and local objects, also the
objects declared in the environment of the procedure are known
and accessible in the procedure, unless the procedure
declaration contains a so-called useg-list. In this <case, only
formal parameters, local objects, and the identifiers occurring
in the use-list are known inside the procedure (see 5.16).
Standard objects are accessible in any case.

proceduredeclaration = "prac " ident
["(" formalparameters ")"] [":" ident] ":
[uselist] block ident .
formalparameters = section {":" section} .
section = ["canst”l"var"] ident {"," ident} ":" formaltype.
formaltype = ["array” indextypes “gf"] ident.
indextypes = identlist. .
uselist = "use"” [ident {"," ident}]™:" .
block = {declarationpart} [initializationpart]
[statementpart] "gnd” .
declarationpart = “caonst” {constantdeclaration ";"}|
"tvype" {typedeclaration ";"}|
var" {variabledeclaration ":"} | module ":" |
proceduredeclaration ":" | processdeclaration
initializationpart = "yalue” {ident "=" initialvalue}l .
initialvalue = constant | [" repetition "] initialvalue |
"(" initialvalue {"," initialvaluel})" .
repetition = integer | ident .

statementpart = "begin” statementsequence.

"
.
M)

The identifier ending the procedure declaration must be the same
as the one following the symbol procedure, i.e. the procedure
identifier.,. If the specifier cgonst or yar is missing in a
section of formal parameters, then its elements are assumed to
be constant (read-only) parameters.

An initialization part serves to assign 1initial wvalues to
variables declared in the same block. Parentheses indicate the
structure of the assigned value, which must correspond to that
of the initialised variable. Initialization parts can only occur
in blocks at 1level 9, i.e. in the main program and in modules
declared in the main program.

The use of the procedure identifier in a call within its

declaration implies recursive activation of the procedure. If a
formal type indicates an array structure, then only the types
but not the bounds of the indices are soecified.

Examples of procedure declarations:

procedure readinteger (yar x: integer):
var is: integer: ch: char:
begin i := @:

repeat readcharacter (ch)
until (°2° <= ch) and (ch <= ‘9°):
repeat i := 10*i+(integer(ch) = integer('8°)):
readcharacter (ch)
until (ch < “2°) gr (‘9" < ch):
X 1= i
end readinteger

procedure writeinteger(x: integer):
var i.,qg: integer: (*assume x >= @%)
buf: array 1: 12 gf integer;
begin i := @; g := x: writecharacter(’ ’):
repeat i := i+1; buf([i] := g maod 10; g := g div 10

¢ until g = 8;
repeat writecharacter(buf[i]): i := i-1
until i = ¢

end writeinteger

procedure gcd(x,y: integer): integer:
var a.b: integer: (*assume x,y > @¥%)
begin a := x; b = y;
while a <> b dg
if a < b then b := b-a glse a := a=-b
end
end
gcd ¢
end gcd

= a

Standard procedures
Standard procedures are predeclared and available throughout
every program.

Proper procedures

inc(x,n) = X 1= X+n

dec(x,n) = X X =n

inec(x) X 1= x+1

dec (x) = X = x=1

halt terminates the entire program
Function procedures

off(b1,b2) = b1 and b2 = [1 (b1,b2 of type bits)

aff(b) = b =[]

among (i ,b) = b[1i] (b is a bit expression)

low(a) = low index bound of array a
high(a) = high index bound of array a
adr (v) = address of variable v
size(v) = size of variable v

Type transfer functions
integer (x) =2 ordinal of x in the set of values
defined by the type of x.

char(x) character with ordinal x.

(adr and size are of type integer, and are implementation-
dependent).,

5.16 Modules

A module constitutes a collection of declarations and a seqguence
of statements. They are enclosed in the brackets mgdule and gnd.
The module heading contains the module identifier, and possibly
a so-called wuse-list and a so-called define-list. The former
specifies all identifiers of objects that are used within the
module and declared outside it. The 1latter specifies all
identifiers of objects declared within the module that are to be
used outside it. Hence, a module constitutes a wall around its
local objects whose transparency is strictly under control of
the programmer. Objects local to a module are said to be at the
same level as the module.

module = moduleheading [definelist] [uselist] block ident .
moduleheading = ["interface”] "module” ident ;™|
"device" "module” ident priority ":" .
definelist = "define’” ident {"," ident} ":" .
The identifier at the end of the module must be the same as the
one following the symbol module, i.e. the module identifier.
(For an explanation of the prefixes interface and device see
Sections 6.3. and 7.1) Identifiers which occur in the module’s
use-list are said to be imported, and those in the define-list

are said to be gxpaorted.

If a type is defined local to a module and its identifier occurs
in the define-list of the module, then only the type’'s identity,
but none of its structural details becomes known outside the
module. If it is a record type, the field names remain unknown,
if it is an array type, index range and elements type remain
unknown outside. Hence, variables declared of a type that was
exported in this way from a module can be used only by
procedures declared within and exported from that same module.
This implies that if a module defines a type, it also has to
include the definition of all operators belonging to this type.

If a 1local variable occurs in the define-list of a module, it
cannot be changed outside the module, i.e. it appears as a read-

only variable.

The statement sequence that constitutes the module body (block)
is executed when the procedure to which the module is local is
called. If several modules are declared, then these bodies are
executed in the sequence in which the modules occcur. The bodies
serve to initialize local variables.

Example:
brocedure P;
module M1;
define F1, n1;
yvar nl: integer:
procedure F1(x: integer): integer:
D_E_Qi_n s 00 inC(n1) sew F1 98 ane
end F1 3
begin n1 := 0
end M1 ;

module M2;
define F2, n2;
var n2: integer;
procedure F2(x: integer): integer:
begin ses inc(n2) .ee F2 1= o4
end F2 ;
begin n2 := 0
end M2 ;

begin (*use procedures F1 and F2: n1 and n2 are counters of
their calls and cannot be changed at this place®*)

end P

In this example, the two statements n1 := @ and n2 := @ .can be
considered as being prefixed to the body of procedure P, Within
this body, assignments to these variables are prohibited.

Examples:
The following sample module serves to scan a text and to copy it
onto an output character sequence ., Input is obtained

characterwise by a procedure inchr and delivered by a procedure
outchr. The characters are given in the ASCII code: control
characters are ignored, with the exception of 1f (linefeed) and
fs (file separator). They are both translated into a blank, and
cause the Boolean variables eoln (end of line) and eof (end of
file) to be set respectively. fg is assumed to follow 1f
immediately.

module lineinput;
define read, newline, newfile, eoln, eof, 1lno:
use inchr, outchr:
congst 1f = 12C2 er = 15Cy fs = 34C»
var lno: integer: (*line number¥*)
ch: char: (#*1last character read¥)

= 27 =

°

eof ,eocln: Boolean:

procedure newfile:
begin
if not eof then
repeat inchr(ch) until ch = fs;
gnd;
eof := false: 1lno := @
end newfile:

bBrocedure newline;
beagin
if not eoln then
repeat inchr(ch) until ch
outchr(cr): outchr(1f)

1]
=
-+

end;
eoln := false: inc(lno)
end newline:

procedure read(yar x: char;
begin (¥assume pot eoln and not eof*)
loop inchr(ch): outchr(ch

(ch);
when ch >= ° " dg x := ch exit
when ch = 1f da x := ' ': eoln := true exit
when ch = fs dg x := ° ’: eoln := true:
eof := true gexit
end
end read:;
begin eof := true; eoln := true

end lineinput

The next example is' a module which operates a disk track
reservation table, and protects it from unauthorised access. A
function procedure newtrack yields the number of a free track
which is becoming reserved. Tracks can be released by calling
procedure returntrack.

module trackreservation:
define newtrack, returntrack:
const m = 64: w = 16; (*¥*there are m*w tracks*)

var i: integer;
reserved: array 0:63 of bits:

brocedure newtrack: integer:
(*reserves a new track, yields its index as function
result, if a free track is found, and =1 otherwise*)
var i,j: integer; found: Boolean:
begin found := false: i1 := m:
repeat dec(i); j := w;
repeat dec(j):
if not reserved([i,j] then found := true end
until found gr (j = @)

- otk

terved PN xév/vd
until found gr (i = 2): -

if found then newtrack := i*w+j étﬁ‘w«{
else newtrack := =1 gnd 8[

end newtrack:

procedure returntrack (k: integer):

begin (*assume @ <= k < m*w *)
reserved[k div w, k mod w] := false

end returntrack;:

begin i := m: (*mark all tracks free¥)
repeat dec(i): reserved[i] := []
until 1 = 0

end trackreservation

5.17 Programs

A Modula program is formulated as a module.

program = module "." .

6. FACILITIES FOR MULTIPROGRAMMING

This chapter defines those facilities that are needed to express
the concurrent execution of several program parts. They are
already referenced in the syntax of the preceding chapter, and
comprise three essential facilities: processes, interface
modules, and synchronization primitives.

6.1 Processes

A process declaration describes a sequential algorithm -
including 4its 1local objects = that is intended to be executed
concurrently with other processes. No assumption is made about
the speed of execution of processes, except that this speed is
greater than zero.

A process declaration has the form of a procedure declaration,
and, the same rules about locality and accessibility of objects
hold.,

processdeclaration =
"process” ident ["(" formalparameters ")”] [intvector] ;"
uselist block ident .

The identifier at the end of the declaration must be the same as
the one following the symbol process, namely the process
identifier. (For an explanation of intvector see 7.1)

Restriction:

- 26 -

.

Processes must be declared at 1level @, 1i.2. they cannot be
nested or be local to procedures. Objects local to a process are
said to be at level 1.

6.2 Process control statements

A process statement expresses the starting of a new process.
Syntactically it corresponds to the procedure call. However, in
the case of a procedure call, the calling program can be thought
to be suspended until the procedure execution has been
completed, whereas a program starting a new process is not
suspended. Rather the execution of the started process may
proceed concurrently with the continuation of the starting
program.

processstatement = ident [parameterlist].

Whereas a process declaration defines a pattern of behaviour, a
process statement initiates the execution of actions according
to this pattern. This implies that reference to the same process
declaration in several process statements initiates the
concurrent execution of several processes according. to the same
pattern (usually according to different parameters).

Restriction:
Process statements are confined to the body of the main program,
i.e. they can neither occur within procedures nor processes.

6.3 Interface modules

The interface module is the facility which provides exclusion of
simultaneous access from several processes to common objects.
Variables that are to establish communication or data transfers
between processes are declared 1local to an interface module.
They are accessed via procedures also declared local (so-called
interface procedures) and which are exported from the module. If
a process has called any such procedure, another process calling
the same or another one of these procedures is delayed, until
the first process has completed its procedure or starts waiting
for a signal (see 6.4).

An interface module is syntactically distinguished from regular
modules by the prefix symbol interface. Interface procedures
must not call on procedures declared outside the interface
module (except standard procedures). Examples of interface
modules are given in Section 6.4.

6.4 Signals

In general, processes communicate via common variables, usually

- 27 =

declared within interface modules. However, it is not
recommended to achieve synchronization by means of such common,
shared variables., A delay of a process could in this way be
realised only by a busy waiting' statement, i.e. by polling.
Instead, a facility called a sjignal should be used.

Signals are introduced in a prooram (usually within interface
modules) 1like other objects. In particular, the syntactic form
of its declaration is like that of a variable, although the
signal is not a variable 1in the sense of having a value and
being assignable. There are only two operations and a test that
can be applied to signals. They are represented by three
standard procedures.

1. The procedure call wait(s.r) delays the process until it
receives the signal s. The process is given delay rank r,
where r must be a positive valued integer expression. wait
is a short form for wait(s,1).

2. The procedure call send(s) sends the signal s to that process
which had been waiting for s with 1least delay rank. If
several processes are waiting for s with same delay rank,
that process receives s which had been waiting longest. If no
process is waiting for s, the statement send(s) has no
effect.,

3. The Boolean function procedure awaited(s) vyields the value
true, 1if there is at least one process waiting for signal s,
false otherwise.

If a process executes a wait statement within an interface
procedure, then other processes are allowed to execute other
such procedures, although the waiting process has not completed
his interface procedure., If a send statement is executed within
an interface procedure, and if the signal is sent to a process
waiting within the same interface module, then the receiving
process obtains control over the module and the sending process
is delayed until the other process has completed its interface
procedure. Hence, both the wait and send operations must be
considered as “singular points” or enclaves in the interface
module, which are exempted from the mutual exclusion rule.

If a signal variable is exported from a module, then no send
operations can be applied to it outside the module.

Examples of interface modules with signal operations [5]:

interface module resourcereservation;
define semaphore,P,V,init;
type semaphore = record taken

free

: Boolean;

: sional
end:

procedure P (var s: semaphore):

S -

-

begin if s.taken then wait(s.free) end:
s.taken := true

end P

procedure V(yvar s: semaphore);
begin s.taken := false;
send (s.free)

egnd V

procedure init(var s: semaphore):
begin s.taken := false
end init;

end resourcereservation

¢ Anterface module bufferhandling;
- define get,put,empty;
caonst nmax = 256
var n,in,out: integer;
nonempty, nonfull: signal:
buf: array 1: nmax gf char;

brocedure empty: Boolean;
begin empty :=n = 0

end empty;
procedure put(ch: char):
begin if n = nmax then wait(nonfull) end:
inc(n):
buf[in] := ch: in := (in mod nmax)+1;
send (nonempty)
end put;

procedure get(yar ch: char);
begin if n = @ then wait(nonempty) end:
dec(n);
ch := buf[out]; out := (out mod nmax)+1;
send (nonfull)

egnd get;

beagin n = P; in := 1: out := 1
end bufferhandling

interface module diskheadscheduler:
define request,release:
use cylmax: (*no. of cylinders*)
var headpos: integer;
up ;busy: Boolean:
upsweep, downsweep: signal;

procedure request(dest: integer):
begin
if busy then

= DO =

if headpos < dest thep wait(upsweep,dest)
glse wait(downsweep,cylmax-dest) end;
busy := true:; headpos := dest
end reqguest;

brocedure release;
begin busy := false;
if up then
if awaited (upsweep) then send(upsweep)
glse up := false: send(downsweep)

end eglse

if awaited (downsweep) then send(downsweep)
else up := true: send(upsweep)

end

end
end release:

begin headpos := @: up := true; busy := false
end diskheadscheduler

7. PDP =11 SPECIFIC FACILITIES

All language facilities described in section 5 and 6 are defined
without reference to a specific computer, i.e. they are defined
by this report alone. This is not the case for the additional
facilities introduced in this chapter, for they refer to
features particular to the PDP =11 computer family, and can only
be fully understood by referring to a PDP=-11 description. They
represent that computer’s features for gcommunicating with
peripheral devices. These language facilities are available to
the programmer only within modules specially designed as device
modules.

7.1 Device modules and processes

A device module is an interface module that interfaces one or
more so-called device processes - also called drivers = with
other processes - also called 'regular” processes. A device
process is a process that contains operations that activate
(drive) a peripheral device, and its heading is marked by the
prefix symbol device. Whereas regular processes are declared
outside interface modules and interact via procedures declared
within the interface module, device processes are entirely
declared within the interface module (and hence need not be
especially distinguished by a mark or symbol). They, and only
they, may contain a statement denoted by the identifier doiag.
While executing this statement, the process relingquishes
exclusive access to the module’'s variables (as in the case of
wait and send). The doio statement represents that part of the
device process that is executed by the peripheral device.,
Usually it is preceded by some statement initiating the device

- 30 =

operation by accessing a device recister.

The PDP=11 processor operates at a certain priority 1level.
According to this level, interrupts from devices at lower levels
are disabled and saved until the processor drops its 1level and
"returns to duties of lower priority”. The integer in the module
headinag specifies that level (4 < L g 6), and signifies that all
procedures and processes defined in this module are executed
with this processor priority. The programmer is advised to
include in a device module only operations on devices that have
exactly that interrupt priority.

priority = "[" integer "1" .

If a device process sends a signal to a process of lower
priority, then the signalling process continues wuntil it
encounters a wait or a doio statement. This is an exception of
the rule given in 6.4, which specifies that the signalled
process continues. Begular processes have priority 0.

All processes defined within a device module are device
processes, and each such process is associated with a so=called
interrupt vector, i.e. with all devices that are interrupting to
one and the same store location. The address of that location
(interrupt vector) is to be specified in +the device process
heading (also enclosed in brackets). Interrupts must be disabled
during the execution of wait statements. Two examples of device
modules are given in Section 7.2.

intvector = "[" integer 1" .

Restrictions:

1. Device processes must not send signals to other device
processes.

2. Device processes must not call any nonlocal procedures.

3. 0Only a single instance of a device process can be activated.
Device processes are not 'reentrant’.

4., Wait statements within device processes must not specify a
rank .

7.2 Device reagister declarations

Register declarations serve to introduce interface registers
that are needed to communicate with peripheral devices. In the
PDP =11 each device is associated with one or several registers.
These registers have fixed store addresses which are to be
specified in register declarations.

A register appears in a Modula program as a variable of the
basic type specified in its declaration. Hence registers are
also declared like variables by a variable declaration. Status
registers are usually declared to be of type bits, whereas

& 3w

buffer registers are usually of type integer or char.

The address of a register is prescribed by the hardware and it
is specified immediately followinag the identifier and 1is
enclosed in brackets. Hence, the syntax of variable declarations
within a device module is slightly extended as follows:

variabledeclaration = ident [address] {"," ident [address]}
"ot bype .
address = [" integer "1".

Examples:

The following module defines two procedures, readch and writech,
which input a character from the typewriter keyboard and output
a character to its printer. Both routines communicate with the
devices via device processes and data buffers.,

device module typewriter [4]:
define readch ,writech
canst n = 64; (¥buffer size*)

var KBS [177560B]1: bits; (¥*keyboard status¥*)
KBB [177562B1 : char: (*<eyboard buffer¥*)
PRS [177564B]: bits; (*printer status¥)

PRB [177566B] : char: (¥*printer buffer*)
in1,in2,0ut1,0ut2: integer;

n1,n2: integer:
nonfull1,nonfull?2,nonempty1,nonempty2: signal:
buf1,buf2: array 1: n gf char;

procedure readch(yar ch: char):

beagin .
if n1 = @ then wait(nonempty1) end:
ch := buf1lout1]: out1 := (out?1 mod n) + 1:
dec(n1): send(nonfull?)

end readch;

procedure writech(ch: char):

-
if n2 = n then wait(nonfull2) end:
buf2[in2] := ch: in2 := (in2 maod n) + 1:
inc (n2); send(nonempty?2)

end writech:

process keyboarddriver [68B] :

begin
loop .
if n1 = n then wait(nonfull1) end :
KBS[6] := true: doio: KBS[6] := false:
buf1[in1] := KBB:; in1 := (in1 mod n) + 1;:
inc(n1): send(nonempty1)
end

end keyboarddriver:

.

= 32 =

progcess printarderiver> [H4B]

begin
loop
if n2 = @ then wait(nonempty?2) end:
PRB := buf2[out2]: out2 := (out2 maod n) + 1:
PRS[6] := true: doio: PRS[6] := false:
dec (n2): send(nonfull2)
end

end printerdriver;

begin in1 := 1; in2 :

nlt ¢= @; n2 := B

keyboarddriver:

end typewriter

1: out1

printerdriver

The following module defines a variable time that is incremented

every 2@ msec, a signal tick that is sent every 20 msec,
procedure pause(n)

mSec .

which

device module realtime [6]:
define time, tick,
var time: integer:

LCS [177546B1: bits;

procedure pause (n: integer):
var delay: integer;
begin delay := n:

tick:

pause

while delay > @ da

wait (tick):

dec (delay)

:= true:

inc(time);
while awaited(tick) dg send(tick) end

end
end pause ;
process clock [180B];
begin LCS[6]
loop doio;
end
end clock
beagin time := 0

end realtime

clock

According to Restriction 1

neither wait for
procedure pause.

the

signal

signal:
(¥*Line Clock Status*)

(7.1), other device processes
tick, nor can they call

and a
delays the ~calling process by n¥*20

can
the

UNSIGNED CBNSTANT

» 1DENT }

—»{ INTEGER }

+ CHRRACTER }—

»[@CTALDIGIT }

CONSTANT CANSTANT J

INTEGER

- e
LS

={ DIGIT }

= PCTALDIGIT }

IDENT

—{ LETTER }

LETTER

DIGIT

STATEMENTSEQUENCE

o STATEMENT -
[7 J
e
FRACTBR
< [UNSIGNED CBNSTANT }
q = VARIABLE |
IDENT =) = EXPRESSIPN }
VARIABLE
(=
- (D -+ EXPRESSIBN —
q =(NBT)~ —s{ FACTOR |
TERM
= FACTOR - N
N - x FACTOR
e D—
DIV
~—+(AND)—

—— (e
——CD)e—
— G
e €50
—{NBISSIHIXTTTINIS fo—s— (=)= S = {NBISSIHIXIITNIS |=
NB1SS3YdX3
.
=
o
We31 €
A { W93 Je (=

N@ISSIYIXIITIWIS

VARIABLE

—{ IDENT }
[VARIABLE } +(, — »[TDENT }
VARIARBLE =()— »[EXPRESSIBN —(7)
[- N\ai j
A2
TYPE
- —= TDENT }
N (D [»{ TDENT }] *1)
b e
2 *
>(ARRAY CONSTANT (D) CONSTANT oF = TYPE }
I .
NES*
RECBRD IDENT TYPE =(END)
{ L \a
L
CBNSTANT
(4)— »[INTEGER }
1 S f
g =>4

o[UNSIGNED CONSTANT |-

STRTEMENT

={ EXPRESSIBN ——

h <[TOENT (D W {EXPRESSTBN} r D

(ENDD

e
>(RHILE > ~{EXPRESSIBN } =08 [STATEMENTSEQUENCE ~(END -
=(REPEAT) —o{ STATEMENTSEQUENCE | =(ONTIL) EXPRESSIBN
o7 STATEMENTSEQUEN - =(END)
(W1 +{ VARIRBLE } =00 = STRTEMENTSEQUENGE =(END>

» INENT +

= JDENT } -

FPRMALPRRAMETER

v

INITIALVRLUE

CONSTANT

ety TN) >

(O [»{ INITIALVALUE }] =)

Ve ™
L™

=) » INTEGER } (1) »{ INITIALVALUE
IDENT

Beferences

1 Brinch Hansen, P., Concurrent Pascal Report, Calif. Inst. of
Technology, June 1975

2o m———— The Solo operating system, Calif. Inst. of Technology,
July 1975

3. Brooks, F.. Jr., The mythical man month, Addison-Wesley.,
Reading, Mass. 1975

4, Dahl, 0.-J., Myhrhaug, B., Nygaard, K., The SIMULA 67 common
base language. Norwegian Comp. Center, Oslo 1968.

5. Hoare, C.A.R.,, Monitors: An operating system strucpuring
concept. Comm.ACM 12,18,549-557 (0Oct. 1974)

6. Jensen,K., and Wirth, N., PASCAL - User manual and report.
Springer-Verlag, 1974/5.

7. Parnas, D.L., Information distribution aspects of design
methodology. IFIP Congress 71, Booklet TA-3, pp.26-30.

8. Sandmayr, H., Strukturen und Konzepte zur Multiprogrammierung
und ihre Anwendung auf ein System flir Datenstationen
(Hexapus). ETH-Dissertation 5537.

9. Wirth, N., On multiprogramming, machine coding, and computer
organization, Comm.ACM 12,9,489-498 (Sept.1969)

1, =--- The programming language Pascal, Acta Informatica 1, 35

- 63, (19721)
Acknowledgement
I wish to thank U.Ammann, J.Hoppe, V.K.Le, and 8 .Schoenberger
for their contributions to the experimental Modula

implementation. Thanks are due to H.Sandmayr for many valuable
suggestions, and to J.ﬁpillmann for the preparation of the
program to draw syntax diagrams automatically.

Berichte des Instituts fir Informatik

Nr. 1
Nr. 2
Nr. 3
Nr. 4
Nr. 5
Nr. 6
Nr. 7
Nr. 8
Nr. 9
Nr.10
Nr.11
Nr.12
Nr.13
Nr.14
Nr.15
Nr.16
Nr.17
Nr.18

Niklaus Wirth:
Niklaus Wirth:

Peter Lauchli:

Walter Gander,
Andrea Mazzario:

Niklaus Wirth:

C.A.R. Hoare,
Niklaus Wirth:

Andrea Mazzario,
Luciano Molinari:

E. Engeler,
E. Wiedmer,
E. Zachos:

Hans-Peter Frei:

Karl Lieberherr:

E. Engeler:

W. Bucher:
Niklaus Wirth:

Niklaus Wirth:

K.V. Nori,

U. Ammann, K.Jensen,
H.H. N&ageli:

G.I. Ugron,

F.R. Lithi

Niklaus Wirth:

U. Ammann:

The Programming Language Pascal (out of print)

Program development by step-wise refinement
(out of print)

Reduktion elektrischer Netzwerke und
Gauss'sche Elimination

Numerische Prozeduren I

The Programming Language Pascal (Revised

Report) (out of print)

An Axiomatic Definition of the Language
Pascal (out of print)

Numerische Prozeduren II

Ein Einblick in die Theorie der Berechnungen

Computer Aided Instruction: The Author
Language and the System THALES (out of print)

The PASCAL 'P' Compiler: Implementation Notes

Das Informations-System ELSBETH

PASCAL-5: A Subset and its Implementation
Code Generation in a PASCAL Compiler

Toward Feasible Solutions of NP-Complete
Problems

Structural Relations between Programs and
Problems

A contribution to solving large linear systems

Programming languages: what to demand and how
to assess them and
Professor Cleverbyte's visit to heaven

MODULA: A language for modular multiprogramming

	P 713 228_18_0001
	P 713 228_18_0002
	P 713 228_18_0003
	P 713 228_18_0004
	P 713 228_18_0005
	P 713 228_18_0006
	P 713 228_18_0007
	P 713 228_18_0008
	P 713 228_18_0009
	P 713 228_18_0010
	P 713 228_18_0011
	P 713 228_18_0012
	P 713 228_18_0013
	P 713 228_18_0014
	P 713 228_18_0015
	P 713 228_18_0016
	P 713 228_18_0017
	P 713 228_18_0018
	P 713 228_18_0019
	P 713 228_18_0020
	P 713 228_18_0021
	P 713 228_18_0022
	P 713 228_18_0023
	P 713 228_18_0024
	P 713 228_18_0025
	P 713 228_18_0026
	P 713 228_18_0027
	P 713 228_18_0028
	P 713 228_18_0029
	P 713 228_18_0030
	P 713 228_18_0031
	P 713 228_18_0032
	P 713 228_18_0033
	P 713 228_18_0034
	P 713 228_18_0035
	P 713 228_18_0036
	P 713 228_18_0037
	P 713 228_18_0038
	P 713 228_18_0039
	P 713 228_18_0040
	P 713 228_18_0041
	P 713 228_18_0042
	P 713 228_18_0043

