
~idgenöss·ische
T echnisc~he
Hochschule

Zürich

~~8rz 1976
~ ' .,

·Institut
für .

Informatik

MODULA:
A language

formodular
multiprogramming

18
, „·

Eidgenössische
Technische
Hochschule

Zürich

Niklaus Wirth

Institut
für

Informatik

MODULA:
A language

formodular
multiprogramming

- 1 -

N .Wirth

Abstract

This paper defines a language called Modula, which is intended
primarily for programming dedicated computer systems, including
process control systems on smaller machines. The language is
largely based on Pasca l, but in addition to conventional block)
structure it introduces a so - called module structure . A module
is a set of procedures, data types, and variables, where the
programmer has precise control over the names that are imported
from and exported to the environment. Modula includes general
multiprocessing facilities, namely processes , interfacp, modules,
and Signals . It also allows the specification of facilities that
represent a computer ' s specific peripheral devices . Those given
in this paper pertain to the PDP - 11.

Author ' s address:
Institut für Informatik , ETH , CH-8092 Zürich

- 2 -

Coaten ts

1. Introduction
2. 0 verview
3. Notation for syotactic description
4. Language vocabulary and representation
5. Facilities for sequential programmiog

1. Constant declarations
2. Type declarations

1 • Basic types
2. E n um e ratio n s
3. Array struct.ures
4. Record struetures

3. Variables
4. Expressions
5. Statements
6. A ssigoments
7. P rocedure calls
8. Statement sequences
9. If statements

10 • Case statements
11 • While statements
12. Repeat statements
13. Loop statements
14. With s.tatements
15. P rocedures
16. Modules
17. P rograms

6. Facilities for multiproqramming
1. P rocesses
2. Process control statemeots
3. Interface modules
4. Signals

7. PDP-11 specific facilities
1. Device modules and processes
2. Device register declarations

8. Syntax diagrams
References

3
5

10
10
12
12
12
13
13
13
14
14
15
16
16
17
17
17
18
18
18
18
19
19
22
25
25
25
26
26
26
29
29
30
33
40

- 3 -

1, ,lNTRODUCTlilli

The advantaqes of hiqh-level proqramminq lanquaqes over assembly
code in the desiqn of complex systems have been widely
recoqnised and commented [31. The primary benefit of the use of
a suitable hiqh - level lanquaqe lies in the possibility of
defininq abstract machines in a precise manner that is
reasonably independent of characteristics of particular
hardware , Assembly code · is still used virtually exclusively in
those applications whose predominant purpose is not to design a
new system based on abstract specifications, but to operate an
existing machine with all its parti~ular devices. Good examples
are process control systems , computerised laboratory equipment,
and input-output device drivers .

A major aim of the research on Modula is to conquer that
strongho ld of assembly coding , or at least to attack it
vigorousl y, There is stronq evidence that the influence of hiqh­
level lanquages may beco me equally siqnificant for process
control programming as it is now for compiler and operating
system design. I t may become , even more important, considering
the availability of microprocessors at very low cost,

There are two requirements of such lanquages that are
characteristic for this area of applications, and that have not
existed for general purpose languages in the past, They must
offer facilities for myltiprgg ramming, i.e. they must allow to
express the concurrent execution of several activities , and they
must offe r facilities to gperate a computer ' s peripheral
deyices. The principal obstacle is that such facilities are
in herently machine - and even confiquration dependent, and as
such elude a comprehensive abstract definition. A practical
solution lies in acceptinq this situation and introducinq a
language construct that encapsulates such machine dependent
items , i,e, restricts their validity or existence to a specific,
usually very small section of a proqram, We call this construct
a m.Q.Q.W..e.. Its usefulness is quite general and by no means
restricted to the domain of device dependent operations. It is
indeed of central importance, and has given the lanquaqe its
name (for !IUll1!,tlar proqramming .J.2.nquage) ,

Modula relies very strongly on Pascal [6, 101. Sa me of Pascal' s
fe res, however, have been omitted , The reas;:J;'.i"i 5--r;'ot their
inadequacy, ut rather he necessity and the desir e to keep the
lanquage reasonably small , This seemed particularly advisable
for a language intended primarily for small computers.

Chapter 2 of this paper qives a brief overview of the lanquaqe,
and concentrates on its "novel" features for modular desiqn,
multiprogramming, and device operation. Chapters 3 and 4 define
the formalism for the syntactic definition of Modula, and of the
actual representation of pro grams, Chapter 5 defines the core of

- 4 -

the language in detail. It constitutes the conventional part
restricted to sequential programminq, Most of these features
have been adopted from Pascal. Chapter 6 describes the
facilities added to express concurrency, The typical Modula
proqram consists of several processes that are themselves
seguential alqorithms, and which are loosely coupled through
synchronization operations. Its multiprogramminq facilities are
designed accordinqly,

The language described in Chapters 5 and 6 is defined in an
abstract way which does not refer to any specific computer. It
is well-suited to be implemented on any existinq computer . But
the purpose of a system programming lanquage is not only to aid
in constructing end specifyinq abstract systems, but also to
operate existinq hardware . For t his purpose, additional features
must be provided that serve to operate particular faciiities of
a given computer , in particular its peripheral devices, Chapter
7 describes a set of such features that were added to operate
the PDP-11 , Such machine -de pendent objects can only be declared
in specially desiqnated device modules.

In this connection the total lack of eny kjnd pf input-n11tput
facilities must be explained . Even the file structure of Pascal
is missing , The reason is that the typical application of Modula
is reqarded as the design of systems that implement rather than
use such a file facility. It should be possible to run Modula
pr:'ograms on a bare machine with a minimal rup-time support,
Hence, Modula cannot contain high-level

4
features such as f'ile

operations. Instead, they may be programmed in terms of device
operations, neatly encapsulated within mo dules.

Another concept that is conspicuously absent is the interrupt,
The explanation is that the interru pt is a processor - oriented
concept , The purpose of interrupts is to let a processor take
part in the execution of several processes (tasks), Hence, in a
lanquage that focusses on sequential processe s as principal
constituents of its prog ra ms , the interrupt is a ~echnigue to
implement a multi-process proqram on a sinqle-processor
Computer, rather than a lanquaqe conceot.

A most important consicl-eration i 'n the design of Mo dula was its
efficient implementability, In particular, the presented
solution allows processor management and "interrupt handling" to
be implemented equally efficiently as in assembly coding,
Guarantee of efficiency and absence of additional overhead in
the use of a hiqh-level languaqe is an absolute prerequisite for
a successful campaign to promote the use of such languaqes in
this traditional stronqhold of assembly codinq.

The current implementation of Modu la is experimental, The
presence or absence of certain facilities i~ still subject to
controversy, The usefulness of their presence or the effects of
their absence will only be known after a considerable amount of

- 5 -

actual exoerience in the use of Modula for the development of
many different systems.

So far, a cross-comoiler has been completed. It relies on a very
small run-time suooort packaqe to handle the switchinq of the
processor from one process to another. In modern systems, this
nucleus could well be incoroorated as a micro-oroqram or better
even directly in the hardware, (The current comoiler is not
available for distribution.)

By far the larqest oart of Modula consists of facilities typical
for a~y sequential orogramminq language, This is not surorisinq,
because even large ooerating and control systems consist of
processes that are themselves purely sequential. Brinch Hansen,
in describinq the desiqn of an entire ooerating system, reoorts
that only 4% were coded in a languaqe with multiprogramming
facil i ties [2] •

Most of the sequential programming facilities of Modula have
been adopted from Pascal, notably the concepts of ~ ivoes and
structures. Modula offers the basic types integer, Boolean, and
char. In addition, scalar types can be defined by the programmer
by enumerations. In the realm of structures, only the array and
the record - the latter without variants - have been adooted.
The role of sets is partially taken over by a standard type
called bits, which constitutes a short Boolean array. The
language does not incJurle any pqinters.

Modula provides a rich set of proqram cgntrol ~tructures,
inclu~inq .if., ~~. ~.b..i.l.e., and reoeat statements. Their syntax \
slightly djffers fram that pf Pasc~l, because the orinciple was
f'o1lowed that every structured ptatement not only begins but
also ends with an explicit bracketing symbol. The for statement
has been replaced by a more general .l..i:w..IJ. statement that allows
to specify one or several termination points.

~edures can be used recursively and can have two kinds of
parameters, namely constant and vqr:iable parameters. In the
former case, assignments to the formal parameter ~ prohibited,
and the corresponding actual parameter is an expression. In the
latter case, the .actual parameter must be a variable, and
assignments to the formal parameter are assignments to that
actual variable. (In both ~ases, parameters may - but do not
have to - be implemented by passinq an address.)

Procedures forma~ in the sense of Algol and Pascal. Hence,
constants, types, variables, and other procedures can be
declared local to a procedure. This implies that their existence
is not known outside the procedure, which thereby constitutes
the scope of these local objects. Block structure has proven to

- 6 -

be a most valuable facility in systematic proqram desiqn.
However, block structure alone does not provide the possibility
to retain local objects after termination of the procedure, nor
to let seve r al procedures share retained (hidden) objects. For
t h is purpose, the module has been introduced as an essential
supplement to the block concept.

A module is a collection of constant-, type- , variable -, and
procedure declarations. They are called objects of the module•
and come into existence when control enters the procedure to
which the module is local , The module should be thought as a
fence around its objects . The essential property of the module
construct is that it allows the precise determination of this
fence's transparency , In its heading , a module contains two

'

Qists of identifiers : The define-list mentions all module
~bjects that are tobe accessible (visible) outside the module.
The use-list mentions all objects declared outside the module
that are to be visible inside , This facility provides an
effective means to make available selectively those objects that
represent an intended abstraction , and to hide those objects
that are considered as details of implementation . A module
encapsulates those parts that are non-essential to the remainder
of a program , or that are even to be protected from inadvertant
access [7] • Modules may be nested ,

Example : Suppose tha t an object a is declared in the environment
of M1. Then a , b , and c are accessible in this environment:

.m~ M1;
define b , c ;
..1.1~ a;
{declare d}

module M2:
define c,e ;
~.a d:
{declare c,e , f}
{c,d,e,f are accessible here}

.an.d. M 2:

procedyre b;
{declare f}
{a,b,c , d , e , f are accessible here}

.aD..d. b

{a,b , c,d , e are accessible here}
.aw;t M 1

Identif i ers in the define - list are said to be exported, those in
the use-list are impprted, If a type is e x ported, t h en only its
identity is exported, but not its structural details. This means
that outside the module from which a type is exported we do not
know whether a type is a scalar, an array, or a record.

- 7 -

Therefnre, varia bl es of this type cA n be op e r ated by o rnc e~ ur e s

only that ar e export ed from th P. same mo d u lo . The mn dul<c f il 1 /
therefnre assumes a similar role as t he clASS cnnstruct of
Concurrent Pascal [1], which wa s develno ed fro m t he cl a ss
structure of !3 imula [4].

Export ed variables cannot be chanaed except in the modul e to
which they _are local, i .e. they appear as read-only variabl es.
It must be emphasized that the module does not determine ' the
"life-time" of its !ocal objects. 'It merely establishes a new
scope. Objects declared within a module are consid ered local to
the procedure in which the module itself is local, i.e. they
come into existence when that procedure is called, and they
vanish when it is completed.

Only a 'minimal number of facilities for multiproqrammino are
added to the lanquaqe described so far, which we may call
~.l.!SUl.1.isl .M~. T he additional faci l i ties are processes, \
interface modul e s, and siqnals. A Qrocess looks like a 1
procedure. But unlike the procedure it is exetuted concurrently
with the proqram that called , i.e. initiated it . When control
reaches the end of a process, the process qoes out of existence.
Processes cannot create other processes. Proces s creation is
possible in the ma in proqram only, which should be reqarded as a
system initiali zat ion PD..JU>..§ ~ However, it is possible to activate
several instanc es of the same process declaration .

Synchronization is achieved by the use of ~jgnals. They are
declared similar to variables (syntactically, th e siqnal appears
as a data type). Siqnals can be sent, and a process can wait for
a siqnal. Siq nals correspond to conditions of Hoar e [51 and to
queues of Brinch Hansen (11. A central aspect of this conc e pt is
that processes, once started, are a n onymous. 1 hey can be
influ e nced by siqnals (and shared variab les) only. R ut the I
environment cannot force a process to notice these siq nals (or
chanq es of variabl es), and there is no way to disrupt or
terminate a process by outsid e intervention.

Processes cooperate via common variables. This requires a
facility to guara nt ee mutual exclusion of processes from
critical sections of a pro qram. In Modula, such sections are
declared as procedures and these procedures are gat hered within
a specially desiqnated, so-called ~nterface module , which
corresponds to Hoare 's monitor [51. The monitor is a set of
correspondin q critical sections, where simulta neous execution by
seve ral processes is excluded . In contrast to the critical
sectioo, howev e r, the interface modul e altows more than one
process to be in a critical section, provid ed that all but one
are either waitioq for a siqnal or are sendioa a siq nal. This
relaxation of the mutual exclusio n conrlition not only simplifies
implementation of the sianallina a nd processor switchina
mechanism, but also corresponds to many practical patt e rns of
usaqe. A typic a l proaram patt e rn with two cooperatin q proc e sses
1

- 8 -

P and Q is shown below , where v stands for the common variables,
for instance data buffers in a producer-consumer constellation,
s stands for the signals by which P and Q synchronize their
activities , and p and q are their critical sections formulated
as interface procerlures (see Fig. 1).

interface m.u.Q~ M;
Q.e.f.i..a..e. p • Q ;

{declare v,s}
prpcedyre p(x) ;

{uses v,s,x}
s:..ru! p :
prpcedyre q (y) ;

{uses v,s,y}
s:..ru! Q:

h.e..!J..i.a. {initialise v}
.a.a.Q M :

Qrpcess P :
{uses p}

.w:i..d. p :

t;1rpcess Q:
{uses q}

.aru! Q

Fig .1. Processes P and Q interfacing via module M.

These general multiprogramming facilities are supplemented by a
few computer-dependent features. They are necessary, for
instance, to operate a computer "s peripheral devices. We
describe as an e xamp le those which were designed and implemented
for the PDP-11. The underlyinq intention was to keep the number
of such facilities minimal , and to express them in strong
analogy with machine -i ndependent concepts wherever feasible and
economical .

A necessary condition is that the computer "s deyice xegisters
and operators an them are made available. They appear in Modula
as variables with a specification of their (hardware-defined)
address and (proqrammer-defined) type. Status reqisters are
usually declared of type bits , which allows the convenient
setting and resetting of individual status and function bits .

- 9 -

Moreover, a system implementation lanqua~8 should allow the
effective utilization of a computer's interrupt facility,
includi n q its interrupt priority system, if one exists.
Traditionally, an input/output device is regarded as a process
by itself \ communicating with a master process by startino
signals and completion interrupts. In Modula, the operatio n s ~

~~~=~~=~~ r~~ti~: 8ar~e~!~:id=~~d t:~s: :~~~~=e~r~~e~!~ ~~=o~!~!:~ . 
part being represented by the statement "cioio" [91 (see Fiq.2), 
This statement is allowed within so-called device orocesses (or 
drivers) only which are declared within a so-called deyice 
modyle. In contrast to reqular processes drivers are declared 
entirely within the device interface module. This is possible, 
because the doio statement - representinq the actions performed ! 
by the device also constitutes a sinqular point within the 
interface in the sense that durinq its execution the mutual 
exclusion constraint is lifted. 

ma in processor device 

p e-oil o 

in Modula: 

p 

Fig,2, I/O activities viewed as a device process 

The explicit designation of device interface modules and drivers 
facilitates for an implementation the efficient utilization of a 
oiven Computersystem, but also exhibits the close relationship 
or even identity_ of these machine oriented parts of a proqram 
with the machine-independent concepts of the languaqe, 



- Hl -

3. NOTATl..Q.tl E.D.ß liJ'.'.NTACTIC UESCRIPTIDN 

To describe the syntax an extended Backus-Naur formalism is 
used. It allows to use syntax expressions as riqht parts in a 
production. Syntactic entities are denoted by English words 
expressinq their intuitive meaninq. Symbols of the lanquage are 
enclosed by quote marks (") and appear as so-called literals in 
the right parts of productions. Each production has the form 

S = E • 
where S is a syntactic entity and E a syntax expression denoting 
the set of sentential forms (sequences of symbols) for which S 
stands. An expression E has the form 

T1IT21 ITn (n>0) 
where the Ti 's are the terms of E. Each Ti stands for a set of 
sentential forms, and E denotes their union. Each term T has the 
form 

F 1 F 2 Fn ( n > 0) 
whe re the Fi's are the factors of T. Each Fi stands for a set o~ 
sentential forms, and T denotes their product. The product of 
two sets of sentences is the set of sentences consisting of all 
possible concatenations of a sentence from the first factor 
followed by a sentence from the second factor. Each factor F has 
ei ther the form 

U II 

X 

(x is a literal, and " x" denotes the singleton set consistinq of 
this single symbol) , or 

(E ) 
(den o t in g t h e express i o n E ) , o r 

( E] 
(denoting the union of the 
sentence), or 

{ E} 

set denoted by E and the empty 

(denotinq the set consisting of the union of the empty sequen~e 
and the sets E , EE, EEE, etc.) 

Examples: 
The syntax expressions 

("a"l "b " ) ("b"l "c") "a" {"bc"}, "a" ( "b "l "c"] "d" 
denote the following sets of sentences respectively: 

ab a ad 
ac abc abd 
bb abcbc acd 
bc abcbcbc 

4. J....8.N.G.llAliE. VOCABULARY 8lill REPRESENTATIDN 

The languaqe is an infinite set of 
the sentences well-formed accordinq 
(program) is a finite sequence 
vocabulary. The vocabulary consists 

sentences (programs), namely 
to the syntax. Each sentence 
of symbols from a finite 
of identifiers, (unsigned) 



- 11 -

numbers. literals. ocPrators. and delimiters. They are c a lled 
lexical symbpls or tokens, and in turn are compn sPd of sequences 
of ~~racters, Their recresentation therefore der,e n ds on the 
underlyinq chara c ter set. The A~CII set is u sed in this oaoe r, 
but the followinq rules must be observed for any set: 

1. Identifiers are sequences of letters and diqits. The first 
character must be a letter. Capital and loqer case letters 
are not distinqujshed. 

ident s letter {letter diqit}. 

2, Numbers (inteqers) are sequences of diqits, possibly followed 
by the letter 8 siqnifying "octal". 

number „ integer. 
inte!=ler = diqit {diqit} 1 octaldioit {octaldiqitl "B". 

3. Strinqs are sequences of characters enclosed in quote marks, 
If a quote mark itself is to occur within that sequence, then 
it is denoted by two consec utive quote marks . A sinqle 
character string may also be denoted by its ordinal number 
(in octal) followed by the letter C. (The ordinal refers to 
the character set used . ) 

strinq • {character} " '" 1 octaldigit {octaldigit} "c". 

4. Operators and delimiters are special characters , character 
pairs, or (reserved) words listed in Table 1 below . In this 
report, they are underl ined for clear dis t inction from 
identifiers. These (reserved) words must not b e used in the 
role of identifiers. 

+ ( 
) 

* [ 
/ ] 

<> 
< 

> 

(* 
: „ *) 

~ 
m.w1 
W'.: 
~ 
.c.o.1 
il 
..tb..an 
ti.u..f. 
~.a 
~ 

.!J.L 
i::i;:caat 

.wUil ~ 
~ .\LW: 
.wi ~ 
.l.o..o..t2 .a~ 

:ILh.wJ. rfli;or:ci 
lUS.il 1;a:o i; fl ci u r:fl 
.Q~ Ql:Q!;fl~lil 

.wJ..ci. [!]QdUlfl 
1t.il..h .io t fl r:f ra i; !il 
~ ./ deyice 
2i.C.l'.: / ~ 

di;:fiolil 

Table 1: Operators and Oelimiters 

5. Blank spaces (and line separation) are iqnored unless they 
are essential to separate two consecutive symbols. Hence, 
blanks cannot occur within symbols, includinq identifiers, 
and numbers. 



- 12 -

6. Com~ents may be inserted between any two symbols in a 
proqram. They are opened by the bracket (* and closed by *). 
Comments may be nested, and they do not affect the meaninq of 
a proqram. 

5 • ~.I.llE..5 E.Q.B .5.E..Q l IE N TI Al E..8.Q G 8 AM MING 

Every proqram contains two essential components: parts where 
objects of the computation are defined and associated with 
identifiers, and parts where the algorithmic actions to be 
performed on (and with) these objects are defined. The former 
parts are called declaratipps, the latter statemepts. A .h.1...o..cis. is 
a textual unit (usually) consistinq of elements of both kinds in 
a well defined order. 

Objects to be declared are constants, data types and structures, 
variables, procedures, modules, and orocesses. Procedures and 
modules consist themselves of a block. Hence blocks are defined 
recursively and can be nested (see also 5.15). 

5.1 ~anstarrt declaratiops 

A constant declaration associates an identifier with a constant 
val ue. 

constantdeclaration = ident "=" constant. 
constant = unsignedconstant 1 ("+"I "- " ) number • 
unsignedconstant = ident 1 number 1 string 1 bitconstant. 
bitconstant = "[" [bitlistl "]". 
bitlist = bitlistelement {''," bitlistelement} 
bi tlistelement = constant [ ":" constantl 

Numbers are constants of type integer. A constant denoted 
single-character strinq (or by an ordinal) is of type char 
5.2.1), a string consisting of n characters is of type 
5.2.3) 

~ 1:n .Q..f char 

by a 
(see 
(see 

A bit constant is a constant of type bits (see 5.2.1). The 
elements of the bitlist are the indices of those bits that are 
"true". An element of the form m:n specifies that all bits with 
indices m through n are "true". All other bi ts have the value 
"false". 

5.2 L::L.R.e. Qeclaratiops 

Every constant, variable, and expression is of a certain type. 
In the case of numbers and literals their type is implicitly 
defined, for variables it is specified by their declaration, and 



- 13 -

for expressions it is derivable frorn the types of their 
constituent operands and operators. A data tyoe determines the 
set of values that a variable of that type may assume; it also 
defines the structure of a variable. There are four standard 
types, namely inteqer, Boolean, char, and bits. Enumeration 
types (enumerations) and the types inteqer, Boolean, and char 
are unstructured, i.e. their values are atomic. ~.i.l.!..I:..wj ..t~ 

(structures) can be declared in terms of these elementary types 
and of structures. 

typedeclaration = ident "=" type. 
type = ident 1 enumeration 1 arraystructure 

recordstruc ture 

5.2.1 ~ ..t~ 
integer The values of type inteqer are the whole numbers in 

the range min to max, where min and max are constants 
dependent on available implementations. (For the PDP-
11: min = -32768, max = 32767). 

Boolean The values are the truth values denoted by the 

char 

bits 

predefined identifiers true and false. 
The values are the characters belonging to 
character set determined by each implementation. 
the PDP-11: the ASCII set). 

the 
(For 

Its values are arrays of w Boolean elements. This type 
is predeclared as (see 5.2.3) 
~ 0:w .c..f Boolean 

The constant w is the wordlength minus 1 of the 
computer on which Modula is implemented . (For the PDP-
11 : W= 15 ) • 

5.2.2 Enumeratjons 
An enumeration is a list of identifiers that denote the values 
which constitute a data type. These identifiers are used as 
constants in a program, They, and no other values, belonq to 
this type, An ordering relation is defined on these values by 
their sequence in the enumeration. 

enumeration = "(" identlist ")", 
identlist = ident {"," ident}. 

5.2.3 .8..r:I:ä.Z'.. ~ctures 
An array structure consists of a number of components which are 
all of the same cpmponent ~. Each component is identified by 
a number of ipdices. This number is called the dimensionality of 
the array. The range of index values of each dimension is 
specified in the declaration of the array structure. The types 
of the indices must not be structured. 

arraystructure = "~" indexranqelist ".Q.f" type. 
indexranqelist = indexranqe { "•" indexranqe}. 
indexrange = constant ":" constant. 



- 14 -

5.2.4 ß.ru;;.i:u:Q ~ructures 
A record structure consists of a number of components, called 
I~.cu:.Q. L~· Each component is identified by a unique field 
identifier. Field identifiers are known only within the record 
structure definition and within field designators, i.e. when 
they are preceded by a qualifyinq record variable identifier. 
The data type of each component is specified in the field list. 

recordstructure = "recqrd" fieldlist {"':" fieldlist} "ßllli". 
fieldlist = [ identlist ":" type]. 

Examples of type declarations: 
color= (red,yellow,qreen,blue) 
vector = ~ 1:100 .c.f color 
matrix = ~ 1:20, 0:10 .Q.f. integer 
account = recprd x: inteqer; 

y: Boolean; 
z: ~ 0:9 ~L char 

Variable declarations serve to introduce variables and associate 
them with a unique identifier and a fixed data type or 
structure. Variables whose identifiers appear in the same list 
all obtain the same type. 

variabledeclaration = identlist 

Examples of variable declarions: 
i,j,k: inteqer 
p ,q: B oolean 
eh: char 
u : &ecprd s: bits; 

a: vector 
~ 

s,t: bits 
r: accoun t 
a: vector 
m: matrix 
w: array 1:10 .c.f account 

type. 

• 
The syntactic construct of a designation of a variable is simply 
called "variable". It either refers to a variable as a whole, 
namely when it consists of the identifier of the variable, or to 
one of its components, when the identifier is followed by a 
selector . If a variable, say v , has a record structure with a 
field f this component variable is desiqnated by v.f • If v 
has an ar ray structure, its component with index i is designated 
by v[i] 



- 15 -

variable = ident 1 variable • ident 
variable "[" indices "l" • 

indices = expression { "," expression l. 

Exampl es of variables (s ee declarations above): 
i r.'x a[i] m[i+1,.i-1l w[il.x u.a[k1 

5 • 4 .E2S..C.1.:..e,S Si o n S 

Expressions are composed of operands (constants, variables, and 
functions), operators, and parentheses. They specify rules of 
computinq values; evaluation of an expression yields a value of 
the type of the expression. 

There are four classes of ooerators with different precedence 
(bindin g strenqth), Relatio nal operators have the least 
precedence, then follow the so-call ed addinq operators, the 
multiplying operators, and the negation operator ~ with 
hiqhest precedence. Sequences of operators with equal precedence 
are executed from left to right, 

Denotations of a ~arjable in an expression refer to the current 
value of the variable. Functiqn ~.lä.l..l.s. denote activation of a 
function procedure declaration (i.e. execution of t h e statements 
which constitute its body), The result acts as an operand in the 
expression . The same rules about parameter evaluation and 
substituti on hold as in the case of a procedure call (see 5,7), 

expression = simpleexpression [relation simpleexpressionl. 
relation = "=" 1 <> 1 <= 1 < 1 > 1 >= 
simpleexpression = ["+"l"-"1 term {addoperator term), 
addoperator = "+" l l ".ll.r:" l "2S.lll'." 
term = factor {muloperator factor). 
muloperator = "*" 1 "/" 1 "~" 1 "rn.o.Q" 1 "..2.n..Q" , 

factor = unsignedconstant 1 variable 1 functioncall 
"(" expression ")" 1 ".wi.:t" factor. 

functioncall = ident parameterlist, 

Arithmetic operators (+ - * / Q.U m..wJ.) apply to operands of type 
integer and yield a result of this type. The operators + - * and 
/ denote addition, subtraction, multiplication and divisio n with 
truncated fraction. The monadic operators + and denote 
identity and siqn inversion. The operators Q.U and m..wl. yield a 
quotient q = x Q.i.~ y and a remainder r = x !lLQ.Q y such that x = 
q*y+r , 0 ~ r < y , The divisor (or modulus) y must be strictly 
positive. 
Example: x = -15 , y = 4 

x/y = -3 , X Q.U Y = -4 , X !lLQ.Q y = 1 

8 0 olean .Q.Q..e,rators (.Q..r: ~.lll'. .5l.ill1 n.ll..t) apply to Boolean operands and 
Yield a result of type Boolean. The term a s!lli bis evaluated as 



- 16 -

"il a ..th.fill b .§~ false " , and the expression a Q.1:. bis evaluated 
as ".i.f a .1hlill. true ~.lil. b" (Note: condi tional expressions are 
not available in Modula). Boolean operators can alsn b e applied 
to operands of type bits. The specified operation is then 
performed on all correspondin q elements of the operands. 

Relations yield a result of type Boolean. ( <> <=>=stand 
~ ~ respectively). They apply to operands of the standard 
inteqer , char, Boolean, and bits (to the latter only = and 
and of enumeration types. 

Examples of factors : 

f o r ~ 
types 
<>). 

27 i ( i+j +k) .llll.i p [ 2 , 3,5 , 7 , 11] 

Examples of terms : 
i *k i / ( i - 1) ord (eh) ( i < j ) äW1 ( j <k) 

Examples of simple expressions 
i+j i +5*k -i p Q.1:. q 

Examples of expressions 
(i+j)*( j +k ) i k+5 i=j t ~ [0 : 7] 

(Given the variables declared in 5.3 , the first three examples 
in each linea r e of t y pe integer , the fourth is of type Boolean, 
and the fifth of type bits . ) 

5 . 5 Statements 

Statements denote actio n s . Elementary statements are the 
assignment statement and the procedu r e call. Composite 
statements may be constructed out of elementary statements and 
other composite statements. 

statement = assignment 1 procedurecall 1 processstatement 
ifstatement 1 casestatement 1 whilestatement 
repeatstatement 1 loopstatement 1 withstatement 1 

5 . 6 Assignments 

An assignment denotes the action of evaluating an expression and 
of assigning the resulting value to a variable . The symbol . - is 
called assignment operator (pronounced " becomes") . 

assiqnment = variable " : =" expression . 

After an ass ignment is executed, the va r iable has the value 
obtained b y evaluatinq the expression . The old value is lost 
("ove r written " ) . The va r iable must be of the same type as (the 
value of) the e x pression . 



Exampl e s of assi q nments: 
i := 1trn 
p : = t rue 

m[ i ,jl .- 1;J *i+i 

5.7 I:_rocedure ~ 

- 17 -

A procedure call denotes the execution of the specified 
procedure, i.e. of the statement part of its body, The procedure 
call must contain the same number of parameters as the 
correspondinq procedure declaration. Those of the call are 
called actual oarameters. An actual paramet e r correspondinq (by 
its position in the parameter list) to a const-oarameter must be 
an expression. The types of the actual and the formal parameters 
must be the same, and the formal parameter appears as a read­
only parameter, i.e. assiqnments to this parameter are 
prohibited. If the actual parameter corresponds to a ~ 
oarame.i§.r, it must be a variable . That variable is substituted 
for the formal parameter throuqhout the procedure body, Types 
must be identical, and if the actual parameter is an indexed 
variable, the index expressions ar e evaluated upon procedure 
call. 

procedurecall = identification [ parameterlist]. 
parameterlist = " ( " parameter {"," parameter) ")", 
parameter = expression 1 variable. 

Examples of procedure calls: 
inc(i,10) 
sort(a,100) 

5.8 ß...tBtement ~eguences 

A sequence of statements separated by semicolons is called a 
statement sequence and specifies the sequential execution of the 
statements in the order of their occur ~en c e, 

stater.'l e ntsequence = statement {";" statement) 

5.9 lL ~tatement~ 

If statements specify conditional execution of actions dependinq 
on the value of Boolean expressions. 

ifstatement = "il" expression ".ib..lill. 00 

statementsequence 
{"~" expression ".ib..lill" statementsequence) 
[ "~" sta temen t se quence] "~ru;t", 



- 18 -

5.10 ~ statements 

Case statements specify the selective executioo of a statement 
sequence dependinq on the value of an expression. First the case 
expression is evaluated, then the statement sequence with label 
equal to the resultinq valu e is executed. The type of the case 
expression must not be structured. 

casestatement ~ expression ".c..f" case {":" case} "~.!J..d.". 
case = [ caselabels ":" "~" statementsequence ".e.ru!"] 
caselabels = constant {"," constant}. 

5.11 Yi.h:i.J..a ~tatements 

While statements specify the repeated execution of a statement 
sequence depending on the value of a Boolean expression. The 
expression is evaluated before the first and after each 
execution of the statement sequence. The repetition stops as 
soon as this evaluation yields the value false. 

whilestatement = 
"1Lb..i.1..a" expression ".d.c." statementsequence ".e.ru!" • 

5.12 Repeat statements 

Repeat statements specify the repeated execution of a statement 
sequence depending on the value of a Boolean expression. The 
expression is evaluated after each execution of the statement 
sequence, aod the repetition stops as soon as it yields the 
value true. Hence, the statement sequence is executed at least 
once . 

repeatstatement 
"~.i" statementsequence ".Y..C.lil." expression 

5.13 L..o.W2 statements 

Loop statements specify the 
sequences. T he repeti tion 
values of possibly several 
cpndit:ipns. 

repeated execution of statement 
can be terminated dependinq on the 
Boolean expressions, called ~ 

loopstatement = ".l.wu2" statementsequence 
{"1LIJ..a.a." expression [ ".!l.!l" statementsequence] "~" 
statementsequence } ".e.ru!". 

Hence, the general form is 
.l..!l.!lll S 1 1L1J..a.a. B 1 Q.!l X 1 ~~ 

S 2 1lmm B 2 Q.Q. X 2 ~.1d.,i 



- 19 -

G n .YLb.sill P, n Q.Q. X n ~ 
s 

First, S 1 is exec ut ed, then B 1 is evaluated. If i t yields the 
valu e true, X1 is executed and thereupon execution of the lonp 
statement is terminated. Otherwise it co ntinu es with S2, etc, 
After S, execution continues unconditionall y with S 1. 

Note: all repetitions can be expressed by loop statements alone, 
the while and repeat statement merely express simple and 
frequently occurrin q cases. 

The with statement specifies a record variable and a statement 
sequ e nc e to be executed, In these s tatem ents field identifiers 
of th at record variable may occur without precedinq 
qualification , and refer to the fields of the variable 
speci fied. 

withstatement 
"..'!Y.i.t.b" variable "rtu" statementsequence ".e.n..Q." • 

5.15 J:..rocedures 

Procedure declarations consist of a orocedu.i:.e. heading and a 
~~ which is said to be the procedure body, The heading 
specifies the procedure identifier by whic h the pro cedure is 
called, and its formal parameters. The block contains 
declara t~ons and state ments. 

There are two kinds of procedures, namely prpoer prpcedures and 
fuocti.o.n prpcedures . The latter are activated by a function call 
as a constituent of an expressi on , and yield a result that acts 
as operand in the expression . The former are activated by a 
procedure call . The function p roced ure is distinquished in the 
declaration by the fact that the type of its result is indicated 
follow i n g the param eter list. Its body must contain an 
assiqnment to the procedure identifier which defines the value 
of the function procedure . There are two kinds of parameters , 
namely constant aod v ar iabl e parameters. The kind is indicated 
in the formal parameter list . Constant parameters stand for a 
value obtained throu q h evaluation of the correspondin q act ual 
parameter when the procedure is called. Assiq nment s cannot be 
made to a constant parameter. Variable parameters correspond to 
actual variables, and assignments to them are permit ted (see 
5. 7). 

Formal paramete rs are local to the procedure, i .e. their il.Q..Q.e. 

is the proqram text whic h constitutes the procedure d eclaration . 



- 20 -

All constants, variabl e s, types, mndule s, and procedures 
declared within the block that const i tute s th e proc ed ure bo dy, 
are local to the proce d ure. The value s of loc a l varia bles, 
includinq those defined within a local modul e, are not defined 
upon entry to the procedure . S ince proc ed ures may b e d ec lared as 
local objects too, procedure declarations may be nested. Every 
object is said tobe declared at a certain lß.~ .o..f nestjng . If 
it is declared local to a procedure (or proc ess ) at level k , it 
has itself level k+1 Objects declared in the block that 
constitutes the main program are defined to be at level 0 

In addition to its formal parameters and loc a l objects, also the 
objects declared in the environment of the procedure are known 
and accessible in the procedure, unless the procedure 
declaration contains a so-called use-lisi. In this case, on1y 
formal parameters, local objects, and the identifier s occurrinq 
in the use-list are known inside the procedure (see 5.16). 
Standard obj ects are accessible in any ca se. 

proceduredeclaration = "12.I:.C.&~„ ident 
( "(" formalpararn e ters ")"] ( ":" ident] 
( uselist ] block ident • 

formalparameters = section { ";" section} • 
section = [ "~" l "~ "] ident { " , " ident} " " formal type . 
formal type = [ "~" inde x types "llf"] ident. 
indextypes = identlist. 
uselist = "~" (ident {"," ident}l ";" 
block= {declarationpartl (initializationpartl 

[ statementpart] "~ " • 
declarationpart = "~" { constantdecl ara tion "; " } l 

"~" { typedeclara tion "; "} 1 

"~" {variabledecla ra tion ";" } 1 module ";" 1 

proceduredeclara t io n ";" 1 processdeclara tion "; " . 
initializationpart = "~~„ {ident " = " initialvalue} 
initialvalue = constant 1 " [" repetition "]" initialvalue 

" („ initialvalue {" , " initialvalue} ")" 
repetition = integer 1 ident 
statementpart = "~" statementsequence. 

The identifier endinq the procedure declaration must be the same 
as the one follnwing the symbol orocedure, i.e. the procedure 
identifier. If th e specifier ~ or ~ is missing in a 
section of formal parameters , then its elements are assumed to 
be constant (read-only) parameters . 

An initialization part serves to assiqn initial values to 
variables declared in the same block . Parentheses indicate the 
structure of the assigned value, wh ic h must corre spond to that 
of the initialised variable . Initializat i on parts c a n only occur 
in blocks at level 0, i.e . in the main pro g ram and in modules 
declared in the main proqram , 

The use of the procedure identifi er in a call within its 



- 21 -

declaration i~pli e s r e cursive activa tion o f t n e proce d ure. If a 
formal type indicat e s an array structure, th e n only the types 
but not the bounds of the indicas are saecified. 

Examples of procedure declarat i ons: 

procedure readinteqer (.IL§L x: inteq c r); 
~ßl: i: inteqer; eh: char; 

ll..e.JJ..i..u i : = [J : 

.r:e..Q..filU readcharacter(ch) 

.Yn..i.i.l ('0' <=eh) filli1 (eh<= '9'); 
reoeat i := 10*i+(inteqer(eh) - inteqer('0')); 

readeharaeter(eh) 
.Yn..ti.l. (eh< '0') Ill: ('9' <eh); 
X := i 

~ readinteqer 

.JU:.Q..l;,~ wri teinteqer (x: inteqer); 
.lü!.I: i,q: inteqer; (*assume x >= 0*) 

buf: ~ 1: 10 .o.r inteqer; 
lliuli.o. i : = 0 ; q : = x ; w rite eh a ra et er ( • • ) ; 

r:~SllLI;, i : = i + 1 ; b u f ( i ] : = q .m.wi. 1 0 ; q . - q Qll 1 0 
.Y.o..1.i.l. q = 0 ; 
repeat writeeharaeter(buf(i] ); i .- i-1 
.Yn.ii.l. i = 0 

SUll1 writeinteqer 

~..aieedure qcd(x,y: inteqer): inteqer; 
..IL9..I: a,b: inteqer; (*assume x,y > 0*) 

lliuli.o. a : = x; b := y; 
ti.hilß. a < > b .Q.o. 

.i.f a < b .th.e.n b .- b-a ~~ a .- a-b 

.lllll1 
§...0.Q 
ged .- a 

~ri.Q qcd 

li.:tia.JJ.Q.Sir..Q. ~xoeedures 
Standard proeedures are predeclared and available throuqhout 
every proqram. 

Proper procedures 
inc(x,n) 
dec(x,n) 
ine (x) 
dee(x) 
halt 

Function proeedures 
off(b1,b2) 
off(b) 
amonq(i,b) 

X . - x+n 
X := x-n 
X . - X +1 
X .- x-1 
termina te s 

b 1 .arui b 2 
b = ( ] 
b ( i l 

the entire program 

(1 (b1,b2 of type bits) 

(bis a bit expression) 



- 22 -

1 ow (a) 
hiqh (a) 
adr (v) 
size(v) 

low index bound of array a 
hiqh index bound of array a 
address of variable v 
size of variable v 

Type transfer functions 
inteqer(x) ordinal of x in the set of values 

defined by the type of x. 
char(x) character with ordinal x. 

(adr and size are of type inteqer, and are 
dependent). 

5.16 Modules 

implementation-

A module constitutes a collection of declarations and a sequence 
of statements. They are enclosed in the brackets module and .e..w;!. 
The module headinq contains the module identifier, and possibly 
a so-called ~-.l..iJii and a so - called Q~-ii.Ji..i. The former 
specifies all identifiers of objects that are used within the 
module and declared outside it. The latter specifies all 
identifiers of objects decla re d within the module that are to be 
used outside it. Hence, a module constitutes a wall around its 
local objects whose transparency is strictly under control of 
the programmer. Objects local to a module are said to be at the 
same level as the module . 

m o du 1 e = m o du 1 ehe~. d in g [ de f ~ n e ~ist] [ ~ se 1 ist] „ b ~ o c k i den t • 
moduleheading = [ interfac~ ] module ident ; 1 

"fil~" " module" iden t priori ty ";" • 
definelist = "ciefine" ident { "," ident} " " 

The identifier at the end of the module must be the same as the 
one following the symbol module , i.e. the module identifier . 
(For an explanation of the prefixes interface and .d.fl.~ see 
Sections 6.3. and 7.1) Identifiers which occur in the module's 
use-list are said to be imported, and those in the define-list 
are said to be exoorted . 

If a type is defined local to a module and its identifier occurs 
in the define-list of the module, then only the type's identity, 
but none of its structural details becomes known outside the 
module . If it is a record type, the field names remain unknown, 
if it is an array type , index ranqe and elements type remain 
unknown outside. Hence, variables declared of a type that was 
exported in this way from a module can be used only by 
procedures declared within and exported from that same module. 
This implies that if a module defines a type, it also has to 
include the definition of all operators belonginq to this type. 

If a local variable occurs in the define-list of a module, it 
cannot be chanqed outside the module, i.e. it appears as a read-



- 23 -

only variable. 

The statement sequence that constitutes the module body (block) 
is executed when the procedure to which the modul~ is local is 
called. If several modules are declared, then these bodies are 
executed in the sequence in which the modules occur. The bodies 
serve to initialize local variables. 

Example: 
procedu.i::..a P; 

.lll.Wi!d.l.si. M 1 ; 
.Q.tl.i..o..Sl. F 1 , n 1 ; 
..ll5U: n1: integer; 
~rocedure F1(x: integer): integer; 

.Q..e..!ll.o. ••• inc (n 1) ••• F 1 . -

.si..o..Q F 1 ; 
~ n1 .- 0 
JID.ci. M 1 

l!l..lll!J.Ll..a M 2 ; 
define F2, n2; 
~ n2: integer; 
pracedure F2(x: integer): integer; 

Q.e..!ll.o. ••• inc(n2) ••• F2 := ••• 
~ F2; 

~ n2 .- 0 
~ M2; 

.!liuL.i.o. (*use procedures F 1 and F 2; n 1 and n2 are counters of 
their calls and cannot be changed at this place*) 

~p 

In this example, the two statements n1 .- 0 and n2 := 0 can be 
considered as being prefixed to the body of procedure P. Within 
this body, assignments to these variables are prohibited. 

Examoles: 
The following sample module serves to scan a text and ta copy it 
onto an output character sequence. Input is obtained 
characterwise by a procedure inchr and delivered by a procedure 
outchr. The characters are given in the ASCII code; control 
characters are ignored, with the exception of .l..f (linefeed) and 
~ (file separator). They are both translated into a blank, and 
cause the Boolean variables eoln (end of line) and eof (end of 
file) tobe set respectively • .fß is assumed to follow .l..f 

· immedia tel y. 

modyle lineinput; 
Q~ read, newline, newfile, eoln, eof, lno; 
~~ inchr, outchr; 
~ lf = 12C; er= 15C; fs = 34C; 
~ lno: integer; (*line number*) 

eh: char; (*last character read*) 



- 24 -

eof,eoln : 8oolean : 

proeedure newfile : 
.b.filLi.n 

..i.f ncl eof ..t.b..sill 
~~ inchr(ch) yJJ..i.il. eh fs ; 

..e..w1 : 
eof : = false ; lno : = 0 

.!iUJ..!i newfile ; 

procedure newline : 
~Ll.i..a 

..i.f ncl eo 1 n ..trum 
reoeat inchr(ch) ~n..:t.i.l eh lf : 
outchr (er) ; outchr (1 f) 

..e.n.Q : 
eoln := false: inc(lno) 

Sl..D...d newline : 

procedyre re ad(~.fi.I: x: char : 
h.!i!..!U..o (*assume .D..ll.t eoln ~n..ci. ncl eof*) 

l.o.w2 inchr(ch) ; outchr(ch): 
.1'Lb.w:J. Ch > = , , Jj.Q. X ! = C h .wsil 
..w.he.o eh lf .d..a. x := eoln : = true .wtiJ; 
..w.he.o eh = fs .Q.Q. x . - eoln := true : 

eof := true ~ 

f.Ull! read; 

~ eof := true ; eoln := true 
.!iUJ..!i lineinput 

The ne x t example is a module which ope rates a disk traek 
reservation table , and proteets it from unauthorised access . A 
function procedure newtraek yields the number of a free traek 
whieh is beeoming reser ved . Tracks can be released by callinq 
proeedure returntrack . 

module trackreservation ; 
define newt r ack , returntra ek: 
const m = 64: w = 16: (*there are m*w tracks*) 
~ i : integer : 

reserved : ~ 0: 63 .ll.f bits : 

~roeedyre newtraek : integer : 
(*reserves a new traek , yields its i nde x as funetion 

result, if a free traek is found , and - 1 otherwise*) 
~ i , j : inteqer : found : Boolean : 

begin found := false : i : = m; 
repeat dec(i) ; j := w : 

reoeat d e c (j) : 
.if. n..c...t reserved[i , jl ..trum found .- true ..e..DJ.1 

.!d.Oiil. found .QJ: (j = 0 ) 



- 25 -

.b!.ll..ii.l. found ~L (i = 3); 
il found .ihfill n ewtrack 

~ ne wtrack 
~ newtrack; 

. - i*v;+ .i 

.- -1 ~ 

pro~dure returntrack(k: inteqer); 
l2.!llLirJ. (*assume 0 <= k < m*w *) 

r 
reserved [ k J;!i.lL. w. k rn.Q.Q w] : = fal se 

~ returntrack; 

l2ß.fli..o. i := m: (*mark all tracks free*) 
repeat dec(i); reserved[i] •- [ 1 
.1.!u.ill. i = 0 

~ trackreservation 

5.17 Pro qra ms 

A Modula proqram is formulated as a module. 

program = module 

6. FACILITIES E..Q..8. MULTIPROGRAMMING 

This chapter defines those facilities that are needed to express 
the concurrent execution of several program parts. They are 
already referenced in the syntax of the preceding chapter, and 
comprise three essential facilities: processes, interface 
modules, and synchronization primitives. 

6. 1 P ro c esse s 

A process declaration describes a sequential alqorithm 
includinq its local objects - that is intended to be executed 
concurrent ly with other processes. No assumption is made about 
the speed of execution of processes, except that this speed is 
greater than zero. 

A process declaration has the form of a procedure declaration, 
and , the same rules about locality and accessibility of objects 
hold . 

processdeclaration 
"orqcess " ident [ "(" formalparameters ")"] [intvector] 
uselist block ident • 

„ „ . 
The identifier at the end of the declaration must be the same as 
the one following the symbol prqcess, namely the process 
identifier. (For an explanation of intvector see 7.1) 

Restriction: 



- 26 -

Processes must be declared at level 0, i.e. they cannot be 
nested or be local to procedures. Objects local to a process are 
said tobe at level 1. 

A process statement expresses the startinq of a new process. 
Syntactically it corresponds to the procedure call. However, in 
the case of a procedure call, the calling program can be thouqht 
to be suspended until the procedure execution has been 
completed, whereas a proqram startinq a new process is not 
suspended. Rather the execution of the started process may 
proceed concurrently with the continuation of the starting 
program. 

processstatement = ident (parameterlistl. 

Whereas a process declaration defines a pattern of behaviour, a 
process statement initiates the execution of actions according 
to this pattern. This implies that reference to the same process 
declaration in several process statements initiates the 
concurrent execution of several processes according to the same 
pattern (usually according to different parameters). 

Restriction: 
Process statements are confined to the body of the main proqram, 
i.e. they can neither occur within procedures nor processes. 

6.3 Interface modules 

The interface module is the facility which provides exclusion of 
simultaneous access from several processes to common objects. 
Variables that are to establish communication or data transfers 
between processes are declared local to an interface module. 
They are accessed via procedures also declared local (so-called 
interface procedures) and which are exported from the module. If 
a process has called any such procedure, another process calling 
the same or another one of these procedures is delayed, until 
the first process has completed its procedure or starts waiting 
for a siqnal (see 6.4). 

An interface module is syntactically distinguished from reqular 
modules by the prefix symbol ipterface. Interface procedures 
must not call on procedures declared outside the interface 
module (except standard procedures). Examples of interface 
modules · are given in Section 6.4. 

6.4 Sigpals 

In qeneral, processes communicate via common variables, usually 



- 27 -

declared within interface modules. However, it is not 
recommended to achieve sy nchronization by me a ns of suc h common, 
share d variables. A delay of a process could in this way be 
realised only by a "busy waitinq" statement, i.e. by pollinq. 
Instead , a facility called a signal should be used. 

Siqnal s are introduced in a proqram (usually within interfa ce 
modules) like other objects. In particular, the syntactic form 
of its declaration is like that of a variable , althouqh the 
siqnal is not a variable in the sense of havinq a value and 
being assiqnable. Th ere are only two operations and a test that 
can be applied to signals. They are represented by three 
standard procedures. 

1. The procedure call ~ait(s.rl delays the 
receives the siqnal s. T he process is 
where r must be a positive valued inteqer 
is a short form for wait(s,1). 

process until it 
qiven delay rank r, 
expression. ~~ 

2. The procedure call send(s) sends the siqnal s to that process 
which had been waitinq for s with least delay rank. If 
several processes are waiting for s wit h same delay rank, 
that process receives s which had been waiting lonqest. If no 
process is waitinq for s, the statement send(s) has no 
effect, 

3. The Boolean function procedure ~waited(s) yields the value 
true, if there is at least one process waiting for siqnal s, 
false otherwise. 

If a process executes a wait statement within an interface 
procedure, then other processes are allowed to execute other 
such procedures, althouqh the waiting process h as n ot completed 
his interface procedure. If a send statement is executed within 
an interface procedure, and if the signal is sent to a process 
waiting within th e same interface modul e, then the receivinq 
process obtains control over the module and the s e ndin g process 
is delayed until the other process has completed its interface 
procedure. Hence, both the wait and send operations must be 
considered as "si ngular points" or enclaves in the interface 
module , which are exempted from the mutual exclusion rule, 

If a signal variable is exported from a module, then no 
operations can be applied to it outside the module. 

Examples of interface modules with siqnal operations [ 5] 

interface module resourcereservation; 
~~ semaphore,P,V,init; 
~ semaphore = record taken: Boolean; 

free: siqnal 
.§..0...Q: 

procedure P lli.s..r: s: semaphore); 

send 



- 28 -

~ ~L s.taken ~.b.wl wait(s.free) ~: 
s.taken .- true 

Ji.W1 p : 

procedure Vl\LJa.J::: s: semaphore): 
llw:Iia s.taken := false : 

send Cs . free) 
.lilll.ci. V: 

~~9...ld..r..§. init(~L s: semaphore): 
.bJllLin s.taken := false 
~ init; 

~ resourcereservation 

{'} interface module . bufferhandling: 
define get,put,empty: 
~~ nmax = 256: 
~ n,in,out: integer: 

nonempty, nonfull: signal: 
buf: ~ 1: nmax il,f char; 

procedure empty : Boolean: 
!:ullU.a, empty : = n = 0 
iUJ..ci. empty; 

proeedure put(eh: ehar); 
!:l..liill.i.a. ~Ln = nmax ~ wait(nonfull) ~w!: 

inc(n) ; 
buf( in] : = eh : in := (in m..c...Q nmax )+1 ; 
send(nonempty) 

~ put: 

~~ get(~ eh: ehar): 
.b..wU.n i..f n = 0 .ib..ao. wait(nonempty) .w:i.ci.: 

dee (n) : 
eh := buf(out]: out := (out m..c...Q nmax)+1: 
send(nonfull) 

.w:i.Q. get: 

!:ullU.a, n := 0; in := 1; out := 
~ bufferhandling 

interfaee module diskheadscheduler : 
define request,release: 
~ eylmax: (*no. of cylinders*) 
~ headpos : integer: 

up , busy: Boolean: 
upsweep , downsweep: signal; 

~roeedu r e request(dest: integer) : 
!2..wJ..i.o. 

ll busy then 



- 29 -

if headpos < dest then wait(upsweep,dest) 
~ wait(downsweep,cylmax-dest) .e.ru;l; 

busy := true; headpos := dest 
.filljj request; 

_grocedure release; 
~egin busy := false; 

.if. up .ihau 

.e.ru1 

.if. awaited(upsweep) ~h.a.o. send(upsweep) 
~ up := false; send(downsweep) 

.e.ru1 ~ 
if. awaited(downsweep) ~ send(downsweep) 
~ up := true; send(upsweep) 

.e.ru1 

..e.llll release; 

~ headpos := 0; up .- true; busy .- false 
.wJ.Q diskheadscheduler 

7. PPP -11 SPECIFIC FACI! ITIES 

All lanquage facilities described in section 5 and 6 are defined 
without reference to a specific computer, i.e. they are defined 
by this report alone. This is not the case for the additional 
facilities introduced in this chapter, for they refer to 
features particular to the PDP-11 computer family, and can only 
be fully understood by referrinq to a POP-11 description. They 
represent that computer's features for ~mynicating 1d...t.h 
perioheral devices. These languaqe facilities are available to 
the proqrammer only within modules specially designed as device 
modules. 

7.1 Oeyice modules .wiQ .Qrpcesses 

A device module is an interface module that interfaces one or 
more so-called device orocesses - also called drivers with 
other processes also called "reqular" processes. A device 
process is a process that contains operations that activate 
(drive) a peripheral device, and its headinq is marked by the 
prefix symbol Q..a.v.iJ;;,.fl.. Whereas regular processes are declared 
outside interface modules and interact via procedures declared 
within the interface module, device processes are entirely 
declared within the interface module (and hence need not be 
especially distinguished by a mark or symbol). They, and only 
they, may contain a statement denoted by the identifier .lliJ..i.o.. 
While executing this statement, the process relinquishes 
exclusive access to the module's variables (as in the case of 
wait and send). The doio statement represents that part of the 
device process that is executed by the peripheral device. 
Usually it is preceded by some statement initiating the device 



- 30 -

operation by accessinq a device reaister. 

The PDP-11 processor operates at a certain priority level. 
Accordinq to this level, interrupts from devices at lower levels 
are disabled and saved until the processor drops its level and 
"returns to duties of lower priority", The integer in the module 
headinq specifies that level (4 ~ L ~ 6), and signifies that all 
procedures and processes defined in this mndule are executed 
with this processor priority, The proqrammer is advised to 
include in a device module only operations on devices that have 
exactly that interrupt priority. 

priority = "[" inteqer "1" , 

If a device process sends a siqnal to a process of lower 
priority, t h e n the siqnallino process continues until it 
encounters ~ wait or a doio statement. This is an exception of 
the rule given in 6.4, wh ich specifies that the signalled 
process continues, Reqular processes have priority 0. 

All processes defined within a device module are device. 
processes, and each such process is associated with a so-called 
interrupt vector, i.e. with all devices that are interrupting to 
one and the same store location. The address of that location 
(interrupt vector) is tobe specified in the device process 
heading (also enclosed in brackets). Interrupts must be disabled 
during the execution of wait statements, Two examples of device 
modules are given in Section 7.2, 

intvector = "[" integer "l" 

Restrictions: 
1. Device processes must not send signals to other device 
processes. 
2, Device processes must not call any nonlocal procedures. 
3. Dnly a single instance of a device process can be activated. 
Device processes are not "reentrant". 
4. Wait statements within device processes must not specify a 
rank. 

7.2 Qeyice xegister declarations 

Register declarations serve to introduce interface registers 
that are needed to communicate with peripheral devices. In the 
PDP-11 each device is associated with one or several registers. 
These registers have fixed store addresses which are to be 
specified in register declarations. 

A reqister apcears in a Modula program as a variable of the 
basic type specified in its declaration. Hence reqisters are 
also declared like variables by a variable declaration. Status 
registers are usually declared to be of type bits, whereas 



- 31 -

buffer reqisters are usually of type inteqer or char, 

The address of a reqister is prescribed by the hardware and it 
is specified immediately followinq the identifier and is 
enclosed in brackets. Hence, the syntax of variable declarations 
within a device module is sliqhtly extended as follows: 

variabledeclaration idP.nt [address l { "," ident [address] „ „ 
type • 

address = "[" integer "l ", 

Examples: 
T he following module defines two procedures, readch and writech, 
whieh input a eharacter from the typewriter keyboard and output 
a eharaeter to its printer, 8oth routines eommunieate with the 
deviees via deviee proeesses and data buffers. 

~~ JIW.Q..u..l.e typewriter [4]; 
define readeh ,writeeh 
~ n = 64; (*buffer size*) 
~ K8S [ 1775608] bi ts; (*keyboard 

K88 [ 17756281 ehar; (*keyboard 
PRS [ 1775648] bits; (*printer 
PR8 [ 1775668] ehar; (*printer 
in1,in2,out1,out2: inteqer; 

sta tus *) 
buffer*) 
status*) 
buffer*) 

n1,n2: inteqer; 
nonfull1,nonfull2,nonempty1,nonempty2: 
buf1,buf2: .ill:l:§.Y 1: n .o...f ehar; 

si_gnal; 

proeedur~ readeh(~.ill: eh: ehar); 
..Q~ 

.i.f n1 = 0 ~ wait(nonempty1) .wu;i; 
c h : = b u f 1 [ ou t 1 ] ; o u t 1 . - ( o u t 1 .!Il.ll!i n ) + 1 ; 
de c ( n 1 ) ; s e n d ( n o n f u 11 1 ) 

iUJ.Q readeh; 

procedure writech(ch: char); 
~ 

.if n2 = n ~hlill. wait(nonfull2) ~.o.Q; 
buf2[in2] :=eh; in2 := (in2 !!Wll n) + 1; 
inc (n2); send (nonempty2) 

~Q writech; 

.121:~~ keyboarddriver [608] 
~ 

l..w;J,.Q 

~.o.Q 

~L n1 = n ~ wait(nonfull1) ..e..o.Q ; 
K8S[6] := true; doio; K8S[6] := false; 
buf1[in1] := K88; in1 := (in1 fil.Q...Q. n) + 1; 
in c ( n 1 ) ; send (non e m p t y 1 ) 

lW...d. keyboarddriver; 



- 32 -

oroces~ orinb.J.:"dr ivs:' [ (48]; 
~ 

lJJ.w;i. 
.i.f. n2 = 0 ~.b.e.o. wait(nonempty2) .llllli: 
PRB : = buf2[ out2] ; out2 : = (out2 ID..Q..&[ n) + 1; 
PRS[6] := true; doio; PRS[6] := false; 
dec(n2); send(nonfull2) 

~.w.l. printerdriver; 

llll.n in1 := 1; in2 := 1; out1 := 1; out2 ,- 1; 
n1 := 0; n2 := 0; 
keyboarddriver; printerdriver 

.aw;1 typewriter 

The followino module defines a variable time that is incremented 
every 20 msec, a siqnal tick that is sent every 20 msec, and a 
orocedure pause(n) which delays the calling process by n*20 
msec. 

deyice modul e realtime [ 6] ; 
define time, tick, pause; 
:iLJill: time: inteqer; tick: signal ; 

LCS [ 17754681: bits; (*Line Clock Status*) 

procedure pause(n: intener); 
~~ delay: integer; 

llll.n delay := n; 
1Lhi..l.g delay > 0 Q.Q. 

wait(tick); dec(delay) 
~ 

.aw1 pause ; 

.PJ:~ clock [ 1008]; 
~ LCS[ 6] := true; 

.l..c..Q.Q doio; inc(time); 
~~ awaited(tick) Q.Q. send(tick) .aw;1 
~ 

..§..!l.11 clock ; 

~.in. time : = 0 · clock 
~ realtime 

Accordinq to 
neither wait 

Restriction 
for the signal 

procedure pause. 

( 7. 1 ) ' 
tic_k. 

other device processes can 
nor can they call the 



UNSIGNEO C0NSTANT 

IDENT -

- INTEGER 

- t ; CHARACTER 0 

( ) 
-

( 
0CTALDIGIT 

) 
c 

[ C0NSTANT 

l 
: C0NSTANT 

f 
) 

' 

INTEGER 

( •I DIGIT 1 
J 

( •l 0CTALDIGIT 1 ) •(B 

IDENT 

LETTER 
1 

~ --! DIGIT 



STATEMENTSEQUENCE 

[ e{SJ]TEMENTJ J er. 

'--~~~~~---'c:Lri~~~~~~~~· 

FACT0R 

~.--------------------~UNSJGNED ClilNSTANTi--------------------~ 

~ „1 VARIABLE 1-----------------------'1 

1 JDENT >---------~ >-----~---~-- EXPRESS10N ,___~---~---­

VARIABLE 

>--------------- EXPRESS10N ,____ ___________ _.,.. 

~--------- NlilT FACT0R 1------------' 

TERM 

-------FACT0Rt------~~-----------------... 

r-----~-~ • l , „, FACT0R 



z 
!SI ...... 
(f) 
(f) 
UJ 
a:: 
Q... 

>< 
UJ 
UJ 
_J 
Q... 
::1: ...... 
(/) 

::1: 
a:: 
UJ 
1-

+ 

::1: a: 
UJ 
1-

z 
!SI 

Cf) 
Cf) 
UJ a: 
Q... 

>< 
UJ 

z 
!SI ..... 
(f) 
(f) 
UJ 
a: 
Q... 

>< 
UJ 
UJ 
_J 
Q... 
::1: ...... 
(f) 

z 
!SI ...... 
Cf) 
(f) 
UJ 
a: 
Q... 
X 
UJ 
UJ 
_J 
Q... 
::E: 

Cf) 



VARIABLE 

~..---------------------..-IDENT 1-----------------------r--. 
r------- VARIABLE 1--------------- >-------------- IDENT ,__ _____ , 
..___ ___ VARIABLE l „, i-----r----- EXPRESSI0N 1------..-----

TYPE 

~~---------------------IDENT >--------------------------,--. 

>--------~--------IDENT t-------~-------

.8B.!IBD ( •I C0NSTANT 1 •< l •t C0NSTANT 1 "i •(fil) •LD'..f:1. 1-------'1 

~--- REC0AOJ r i r-t ---··· l TYPE END t-----~ 

C0NSTANT 

1 ~ J o{]]![GEA 1 r 1 oi UNSl~ED C0NSTANT j 



STRTE"ENT 

CRSE 

EXPRESS 1 ilN 

STRT ~~~~·~ 1 

WITH) •I V~IABLE 1 •00 ,, ~TATf!'EW!ifll\tNf_.f 1 •crHID 1 





NTE'RfACE HOOOLE IOCNT 1 •< 

DEVICE t10DULE JOENT INTEGER 

) r •I BL0CK 1 • 

F0RMALPARAMETER 

--------.,..-----~~ IDENT i---.-----------

INIT IALVALUE 

~.----------------------eiC0NSTANTt---------------------~.-. 

) • ..1 INIT IALVALUE t-------...-------~ 

1-----..------e1 INTEGER ;...----~---..i >----------.t INITIAL VALUE ,___ ___ _.; 

l ..1 IDENT 1 J 



- 40 -

1, Brinch Hansen, P •• Concurrent Pascal Report, Calif. Inst, of 
Technoloqy. June 1975 

2. ----- The Solo operatinq system , Calif. Inst. of Tech nology, 
July 1975 

3. Brooks, F.P. Jr., The mythical man month, Addison-Wesley, 
R ea d i n q • M a s s • 1 9 7 5 

4. Oahl. D .-J •• M yhrhaug • B. • N ygaard • K •• The SIMULA 67 common 
base language. Norwegian Camp, Center , Oslo 1968, 

5. Hoare, C.A.R,, Monitors: An operatinq system strucpuring 
concept , Comm.ACM 12.10,549-557 (Oct. 1974) 

6, Jensen,K •• and Wirth, N •• PASCAL - User manual and report. 
S pri nq er-V erlaq, 1974 /5 . 

7. Parnas. D .L ., Information distribution aspects of desiq n 
methodoloqy, IFIP Conqress 71, Booklet TA-3, pp,26-30, 

8. Sandmayr, H •• Strukturen und Konzepte zur Multiproqrammieru n g 
und ihre Anwendunq auf ein System für Datenstationen 
(Hexapus) , ETH-0 i sserta tion 5537. 

9. Wirth, N ,, On multiproqramming , machine coding, and computer 
organization, Comm.ACM J..2,9,489-498 (Sept.1969) 

10. ---- The programminq languaqe Pascal, Acta Informatica j, 35 
- 63, (1971) 

Acknowledgem.e..o..t 

I wish to thank U .~nn. J ,1:-f~e, y .K .L e. and R .S .choenberaer 
for their contributions to · the experimental Modula 
implementation. Thanks are due to H .Sa ndm ayr for many valuable 
sugqestions. and to J ,Spill mann for the preparation of the 
proqram to draw syntax diaqrams automatically, 



- 4 1 

Berichte des I nstituts für I nform a tik 

Nr. Niklaus Wirth: 

Nr. 2 Niklaus Wirth: 

Nr. 3 Peter Läuchli: 

Nr. 4 Walter Gander, 
Andrea Mazzario: 

Nr. 5 Niklaus Wirth: 

Nr. 6 C.A.R. Hoare, 
Niklaus Wirth: 

Nr. 7 Andrea Mazzario, 
Luci ano Molinari: 

Nr. 8 E. En geler, 
E . Wiedmer, 
E. Zachos: 

Nr. 9 Hans-Peter Frei: 

The Pro gramming Language Pascal (out of print) 

Program development by step - wise refinement 
(out of print) 

Reduktion elektrischer Netzwerke und 
Gauss ' sch e Elimination 

Numerische Pro z eduren I 

The Programming Language Pasca l (Revised 
Report) (out of print) 

An Axi omat i c De finition of the Language 
Pascal (out of print) 

Numerische Prozeduren II 

Ein Einblick in die Theorie der Berechnunge~ 

Computer Aided Instruction: The Author 
Language and the System THALES (out of print) 

Nr.10 K.V. Nori, The PASCA L 'P' Compiler: Implementation Notes 
U. Amm ann, K.Jensen , 
H.H. Nägeli : 

Nr.11 G.I. Ugron , 
F.R. Lüthi: 

Nr.12 Niklaus Wirth: 

Nr.13 U. Ammann: 

Nr.14 Karl Lieberherr: 

Nr.15 E. En geler: 

Nr.16 W. Sucher: 

Nr. 1 7 Niklaus Wirth: 

Nr.18 Niklaus Wirth: 

Das Informations - System ELS BETH 

PASCAL - S : A Subset and its Implementation 

Code Generation in a PASCAL Compiler 

Toward Feasible Solutions of NP - Complete 
Problems 

Structural Relations between Programs and 
Prob lems 

A contribution to solving large linear systems 

Programming languages: what to demand and how 
to assess them and 
Professor Cleverbyte's visit to heaven 

MODULA: A language for modular multiprogramming 


	P 713 228_18_0001
	P 713 228_18_0002
	P 713 228_18_0003
	P 713 228_18_0004
	P 713 228_18_0005
	P 713 228_18_0006
	P 713 228_18_0007
	P 713 228_18_0008
	P 713 228_18_0009
	P 713 228_18_0010
	P 713 228_18_0011
	P 713 228_18_0012
	P 713 228_18_0013
	P 713 228_18_0014
	P 713 228_18_0015
	P 713 228_18_0016
	P 713 228_18_0017
	P 713 228_18_0018
	P 713 228_18_0019
	P 713 228_18_0020
	P 713 228_18_0021
	P 713 228_18_0022
	P 713 228_18_0023
	P 713 228_18_0024
	P 713 228_18_0025
	P 713 228_18_0026
	P 713 228_18_0027
	P 713 228_18_0028
	P 713 228_18_0029
	P 713 228_18_0030
	P 713 228_18_0031
	P 713 228_18_0032
	P 713 228_18_0033
	P 713 228_18_0034
	P 713 228_18_0035
	P 713 228_18_0036
	P 713 228_18_0037
	P 713 228_18_0038
	P 713 228_18_0039
	P 713 228_18_0040
	P 713 228_18_0041
	P 713 228_18_0042
	P 713 228_18_0043

