Software—Concepts and Tools (1996) 17: 6-12

Software—Concegts and Tools
© Springer-Verlag 1996

Tasks versus Threads: An Alternative Multiprocessing Paradigm

Niklaus Wirth

ETH Ziirich, Institut fiir Computersysteme, CH-8092 Ziirich, Switzerland

e-mail: wirth@inf.ethz.ch

Abstract. An alternative to threads is presented as a
paradigm for single-processor muliti-tasking systems. It
avoids complex and hidden mechanisms for process
scheduling, and is therefore particularly suitable for real-
time systems requiring fast response times, and for small
systems in general. The essence of the alternative is to
base processes (called sasks) on subroutines instead of
coroutines. Tasks are classified according to their
priority. A task may preempt, i.e., temporarily suspend,
any task of lower priority. However, apart from temporary
suspension, tasks run to completion. As a consequence,
such a system operates with a single workspace (stack),
on which workspaces of interrupted tasks are stacked. This
makes the system’s use of storage highly economical and
efficient. We present an implementation of this concept
requiring a few changes only to the basic Oberon System,

Keywords: multiprocessing discipline, real-time,
thread, Oberon, task priority

Background

Most modern computing systems include some
support for multi-tasking. Programming languages
feature constructs to express concurrency, and operating
systems include routines to allocate resources to
parallel processes. Since parallelism intreduces a
considerable amount of complications and pitfalls
unknown in conventional programming, it is
appropriate to ask for reasons for and justifications of
parallelism.

Parallelism was first introduced into programming
languages to model and simulate systems characterized
by multiple actors whose behaviour could be described
as sequences of discrete events. These patterns of
behaviour can be mapped directly inte programs called
parallel processes. Any problems arising from the fact
that they are “parallel” are not associated with
programming, but rather with the modelled system,
The task of the underlying operating system is merely

to allocate resources (memory, processors) to the
processes. If the number of processors—usually 1—is
smaller than that of processes——typically many—the
former are time-shared among the latter. Real time and
system time are distinct entities.

The second reason for introducing parallelism was
the emergence of systems with multiple processors in
large computing systems to be utilized by multiple
users in the most effective way. Also, input/output
devices became regarded as concurrently active
processors. Optimal scheduling of processes and
optimal allocation of processors became an important
and difficult problem in operating system design.
Many of the concepts of simulation systems could be
adopted.

The third reason for parallelism became relevant
only recently. It is simply the demand for extreme
speed of computation made possible by systems with a
large number of identical processing elements for
performing a single, common task. Here, genuinely
concurrent processing is present, whereas in the former
cases concurrency is mostly simulated with the intent
that the programmer may view the processes as being
executed simultaneously, as if the computer was
equipped with as many processors as there are
processes.,

In this paper, we will focus on systems belonging
to the second category, where the number of processors
is smaller than that of processes. In fact, we will
consider single-processor systems only. Is a further
consideration of such systems at all justified in view
of the ready availability of cheap processors? The
answer is clearly affirmative in view of the flexibility
of software compared to that of dedicated special
hardware. And after all, in most cases the power of a
single processor is (imore than) adequate.

Thus, systems to be considered here are characterized
by the switching of a processor among processes.
Since switching typically occurs quite frequently, it
must be fast. Early multi-tasking systems were
designed to run processes (jobs) submitted by different



Wirth: Tasks versus Threads: An Alternative Multiprocessing Paradigm 1

users. The system must guarantee the absence of
interference of processes, even under the presence of
programming errors in the user programs. The
necessary safety measures turn out to be a serious
impediment to fast switching. Hardware provides
address mapping, letting every programmer view the
program tc be executed in a memory disjoint from
those of all other tasks. Therefore, task switching
must include the reloading of registers used for address
mapping.

As a result, the switching overhead is intolerably
large for all purpeses except for switching among
disjoint jobs in multi-user systems, which appear as
somewhat old-fashioned in the era of personal
computers. Switching among processes within the
same address space, however, can be implemented
much more efficiently. Such processes are known as
light-weight processes or threads [2]. Like a (heavy-
weight) process, a thread is a single, sequential flow of
control, and it is implemented as a coroutine. The
thread represents a much more convenient abstraction
than the coroutine, because in the latter the destination
of a process switch must be explicitly specified as a
coroutine jump. Coroutines display a character like
jumps. Processes abstract from coroutines in the same
way as for example while statements abstract from
jumps.

With threads, the destination of a switch is implied
in synchronization operations. A possible set of such
operations are the signal and wait primitives operating
on conditions [4], or the P and V primitives operating
on semaphores [3]. These primitives imply some
overhead to determine the destination of the underlying
coroutine jump, t.e, for the implicit processor
scheduling.

Most modern systems feature threads as a
programming facility, and their indispensability has
been widely accepted {1]. However, threads have also
given rise to some curious phenomena. For example,
the inquisitive user of a workstation may find that in
the course of a session dozens if not hundreds of
threads had been generated which continue to coexist
without apparent reason. Even if they remain idle, they
burden a system considerably, because every thread
requires its own workspace, a stack of procedure
activation records. If stack size is (arbitrarily) fixed,
this represents a waste of memory space, and if stack
size is determined dynamically on demand, the
overhead in time is quite heavy. The thread facility
seduces programmers to its undeliberate use by
abdicating responsibility to hidden scheduling and
allocation mechanisms. We suspect the thread to be a
contributor to fat software [6].

So, we have been looking for an alternative to
threads, in spite of their popularity. The alternative
must be more transparent, free of implicit run-time

support of unknown complexity. It must allow
extremely fast process switching with an overhead
comparable to that of a procedure call. As a result, the
alternative should be attractive in particular to real-
time applications, where switching time must be at
most a few microseconds. We propose to use the old
concept of the interrupt handler in place of the thread.
Let us investigate the consequences.

Subroutines in Place of Coroutines

Let the following be the boundary conditions for the
alternative paradigm to be investigated:

* The system has a single processor.
* The system is primarily used by a single operator
pursuing various tasks.

Under these conditions, the following observation
holds:

¢ In the absence of real-time constraints, there is no
reason to consider parallelism.

Indeed, the various tasks pursued by the operator may
just as well be tackled sequentially, one after the other.
No speed is to be gained by introducing pseudo-
parallelism. On the contrary, frequent task switching is
counterproductive. This observation has been the basis
of the tasking concept of the Oberon system [5, 8]. Its
core contains an infinite loop in which input devices
are polled. If an input is sensed, a corresponding task
handler (a procedure called a command) is called, and it
runs to completion. Hence, task switching occurs
implicitly after task completion and return to the
central loop. A single workspace is sufficient.

However, postulating the absence of real-time
requirements is problematic as soon as a human user is
involved. The operator may well associate different
degrees of urgency to the tasks at hand, A stroke of the
keyboard should cause the character to be displayed
immediately; a query to a data base may take some
time. We conclude:

Introducing concurrency is justified only if tasks
have distinct priorities.

Priorities have discrete values, and there is a fixed
(small) number of priority levels. We may thus
characterize the alternative paradigm as follows:

Tasks are executed on each priority level in
sequential order, one after the other. The occurrence
of a condition, an event, introducing a task of higher
priority, temporarily suspends execution of the
current task, which is resumed after the higher-




8 Wirth: Tasks versus Threads: An Altemative Multiprocessing Paradigm

priority task has been completed. We say that tasks
may be preempred,

What is the right number of priority levels? In our case
study, which is a version of the Oberon system, we
have opted for three. First, because all concepts and
problems occuring with more levels are present with 3
levels, and second, because the number 3 can easily be
justified: On the first level, we find tasks of zero
urgency, and we therefore call them background tasks.
On the highest level reside tasks associated with input
and output devices requiring immediate response. We
call them real-time tasks. The middle level contains the
tasks requiring medium speed response, such as the
handling of input from the human user werking with
keyboard and mouse.

0. Background tasks, no priority.

1. Interactive tasks, preemptible only by real-time
tasks.

2. Real-time tasks, not preemptible,

Tasks versus Threads

The advantage of tasks over threads is the gained
simplicity in implementation and transparency in use,
as there is no hidden scheduling algorithm involved
that might produce unexpected behaviour or
unpredictable performance. Naturally, there is also a
price to be paid. Indeed, the coin might be flipped, and
the fact that threads remove processor scheduling from
the programmer’s considerations may be perceived as
an advantage. Threads in fact constitute a convenient
abstraction on a higher level. They let repetitive
processes be expressed as coherent programs interacting
with other processes through interchange of signals and
messages. In this way, processes are abstracted from
concrete processors, and their mapping in time onto
available processors is left to the implementation at
hand.

The fundamental difference between tasks and
threads is that the latter retain a state when suspended,
whereas task do not. This makes it necessary to assign
a private workspace to every thread. The task, on the
other hand, runs to completion and has no state when
terminated. If required, a thread can be represented by a
set of tasks, each task standing for that part of the
thread which lies between a pair of consecutive
breakpoints. The thread’s state is then to be held by
global variables. This should be the exception,
however, and if it occurs frequently in a design, then
threads are probably the more appropriate abstraction
to express the case. The paradigm of tasks is preferable
in relatively simple systems and has the advantage of
being fast. Hence, a likely case for its beneficial
application are real-time control systems, data

acquisition systems, embedded systems, smalier
systems in general, where economy of storage and
time are of paramount importance,

Task Creation and Activation

Every real-time task is associated with a device. It is
created—the technical term being installed—by calling
Install(P, devno), where P is the (parameterless) task
procedure and devno is a number associated with the
device. P is activated by an interrupt signal issued by
the device. This signal interrupts the task currently
being served and switches the processor to the real-time
task.

The set of interactive tasks is represented by a list
of task descriptors, each specifying a task handling
procedure. Tasks are created by inserting a descriptor T
into this list by calling Install(T), and they can be
removed from the list by calling Remove(T). The
tasks in this list are executed sequentially and
periodically in a fixed time interval. Every task
handling procedure has the form

IF condition THEN action END

The task action is executed not in each time interval,
but only when the program-specified activation
condition is met. A typical time interval is 20—40ms,
implying reactivation 25—50 times per second.

Background tasks are also represented by a list of
descriptors. A task is submitted for execution by
inserting a descriptor, and it is automatically removed
from the list upon completion. Background tasks are
inserted by the operator activating {(mouse clicking) the
command

Submit P x0 x1 ...

written in some window (viewer), where P is a
procedure (command) name and x0, x1, ... are P’s
parameters. In contrast to interactive tasks, background
tasks are executed only once, and not repeated until
removed. The background facility may be regarded like
a batch processing operation where jobs are submitted
and executed in the sequence of their submission,

Task Interaction

So far, we have ignored potential problems arising
from task interaction. Every facility for
synchronization and communication between tasks
incurs a certain overhead. Worse, however, is the fact
that tasks may be blocked. Blocking in a single-
processor system requires task switching, an action
that we have explicitly excluded by postulating that
tasks run to completion, and as a consequence of



Wirth: Tasks versus Threads: An Alternative Multiprocessing Paradigm 9

replacing coroutines (with suspension and resumption
points) by subroutines (procedures). At this point, our
attempt to find an alternative paradigm to threads
seems to be doomed to failure, Let us therefore find the
origin of the presumed difficulties.

A widely accepted paradigm for synchronization and
communication in multi-tasking systems is message
passing. Here, data exchange implicitly also serves for
synchronization. The alternative is the use of global,
shared variables, which is the obvious solution in the
case of shared memory systems, and in particular in
the case of single-processor systems. Here, we
differentiate between variables shared for
synchronization (such as general semaphores) and
those for protecting against unwanted interference
when accessing shared variables (such as binary
semaphores). Let us consider the problem of mutual
exclusion first.

A facility for mutual exclusion satisfying the
requirements of structured design is the monitor [4]. It
may be considered as a module containing a number of
procedures operating on a shared resource, What makes
the module a monitor is that every procedure is
enclosed in a pair of lock and unlock statements
operating on a hidden binary semaphore associated
with the monitor, thus goaranteeing that at most one
process may operate on any of the procedures in the
monitor, thereby providing interference-free access to
the monitor’s variables. Here we recall that we focus
on single-processor systems. An attempt of the
processor to reenfer a monitor can only arise if a
process executing a monitor procedure is interrupted,
and if the interrupting process calls a procedure of the
same monitor. This case can easily be prevented by
replacing the semaphore operations by operators
disabling and enabling interrupts, fast operations
available in every computer’s instruction set. The
interrupt enable bit (typically contained in a status
register) may be regarded as a global lock semaphore,
and its use may be judged as a drastic and rather
indiscriminate solution. However, it becomes
acceptable considering that monitor operations are very
short and fast. An improved solution consists of
disabling only those interrupts that may cause
reentering of the particular monitor. It requires an
appropriate hardware support in the form of a prioriry
interrupt system as present in many process control
computers of older provenance. Such systems do not
shut out all interrupts when one is accepted, but only
those of lower priority.

Although our solution to the mutual exclusion
problem appears as straight forward, caution is
recommended. Operating systems are inherenily
managers of shared resources to which access is
requested very frequently. If every access to the storage
manager and every access to a file—files are global

when registered in a directory—causes interrupis to be
shut out, the functioning of the overall system is
impaired, and in particular real-time response limits
can no longer be guaranteed.

If neither protection against mutual interference nor
efficiency and fast response are to be sacrificed, the
only option remaining is to postulate a number of
restrictive rules about accessing resources, that is,
some sacrifice of generality. We propose the following
set of rules as a basis, and have found that except for
pathological constructions they do not représent any
serious hinderance to programming and system design,

1. Real-time task (level 2) refrain from using

— dynamic storage management {procedure NEW)
- file and file directory access
— window management

2. Background (level 0) tasks do not make use of
display and window management. Instead, the
system provides a specific log text displayed in a
window exclusively reserved for background tasks.

3. Files cannot be changed (written) once they have
been registered in the directory.

Rule 1 bars real-time tasks from using global resources
except global variables explicitly declared for the task’s
communication with other tasks. The rule’s benefit is
that when lower priority tasks access global facilities,
only the interrupts activating interactive tasks (level 1)
must be disabled, thus allowing real-time interrupts to
be still serviced. Evidently, we postulate a two-level
priority interrupt scheme.

Rule 2 has the effect that the display areas used by
interactive tasks are disjoint from that used by
background tasks. As they are statically disjoint, no
provision is needed at run-time against interference .
The frequent display operations need not involve any
locks. .

Rule 3 prevents writable files to appear under
different variable names. If a file is accessible under
different names, the danger is that it becomes
inconsistent. For example, one task associating a file
with variable F, while another task associates the same
file with variable G, might lead to data inconsistency
unless writing of F and G were prohibited.

F := Files.Old{"Agenda.Text"); ...
G := Files.Old(“Agenda.Text"); ...

The benefit of Rule 3 is that no special precautions are
required to assure file consistency. In particular, write
operations need not involve locks.

As a consequence of the imposed restrictions, it
suffices to disable interrupts activating interactive
tasks in the following cases:




10 Wirth: Tasks versus Threads: An Alternative Multiprocessing Paradigm

¢ access to storage management (NEW, GC)
* access to file directory (Search, Insert, Delete)

It is quite obvious that the postulated rules, although
no serious impediment to system design, drastically
reduce the machinery necessary to exclude unwanted
interference among processes.

Task Synchronization

Synchronization and communication between tasks is
achieved in our model through the use of global, shared
variables. Synchronization can be achieved through
general semaphores represented by the INC and DEC
operators acting on integers, assuming that these two
operations are atomic, i.e., cannot be interrupted. The
following example stands for the frequent and typical
case of sequential data buffering with a finite, cyclic
buffer B. n is the number of elements in B, and it is
the only critical variable. No mutual exclusion guard is
required, since n is changed by the atomic INC and
DEC operators only. Variables in and B[in .. out-1]
“belong” to the producer (Handler), out and B[out .. in-
1] to the consumer (Read), indices taken modulo N.

MODULE Input;
IMPORT SYSTEM, Kemel;
CONST N =64; (*buffer capacity™)
VAR n™: INTEGER; ("0 <=n<=N")
in, out: INTEGER; (*buffer indices®)
B: ARRAY N OF CHAR; (*buffer”)
overrun®; BOOLEAN;

PROCEDURE+ Handler;
BEGIN (*real-time task™)
IFn<NTHEN
SYSTEM.GET(devAdr, B[in)]);
in = (in+1) MOD N; INC(n)
ELSE overrun := TRUE
END
END Handler;

PROCEDURE Read*(VAR ch: CHAR);
BEGIN (*no mutex required®)

REPEAT (*idle*) UNTIL n > 0;

ch := Blout]; out := (out+1) MOD N; DEC(n}
END Read;

BEGIN (*init*)
n:=0; in := 0; out := 0; overrun := FALSE;
Kernel.Install(Handler, chanNo)

END Input.

When this module is loaded, a real-time task called
Handler is installed. It is reactivated whenever the
associated device can deliver a next character. Procedure
Read is called from lower-priority tasks to fetch the
characters from the buffer.

A similar but presumably more sophisticated
example is a network interface, where the level-2 task

(interrupt handler) accepts arriving packets under
stringent real-time constraints and deposits them in a
buffer. The consumer is typically another task of level-
1 priority, i.e., a recurring task, whose activation
condition is “buffer nonempty”. The sender of packets
must lock out all interrupts in order to comply with
timing specifications for synchronous data
transmission. Locking and unlocking is specified by
calling a new predeclared procedure LOCK(TRUE) and
LOCK(FALSE).

Our third example shows how “busy waiting” for
responses from peripheral devices is avoided. Here, a
document file is to be printed. We propose the
following scheme: Let printing jobs be represented by
descriptors in a queue, each denoting a file. Let print-
task A be classified as a level-1 task with activation
condition “print queue nonempty”. It picks the first
descriptor from the print queue and opens the denoted
file. It then replaces itself with print task B in the list
of level-1 tasks. Task B’s activation condition is
“printer ready™. It reads data from the file and generates
the bitmap for the image of the first page and
terminates by triggering the printing engine. Now the
processor is free for other tasks. It returns to the
printing activity through a timer interrupt, and when
scanning level-1 tasks finds the printer to be idle. Then
the next page is processed, and this proceeds until the
last page has been handled, whereupon task B reinstalls
task A, which picks the next print job from the queue,
if there is one. Note that no background tasks are
involved in this example either.

An Implementation

The described model has been implemented on the
same computer (Ceres-2 with NS32000 processor)
which had originally served as platform for the Oberon
system. The adaptation required surprisingly few
changes.

Tasks of level 2 are implemented as parameterless
procedures using an unpublished compiler option. This
option (indicated by a + sign following the symbol
PROCEDURE), causes (1) the saving of some re-
gisters upon entry and their restoring upon exit, and
(2) to end the code with a return interrupt instead of
return subroutine instruction. Procedure
Kernel.Install(P, n) assigns P’s address to the
computer’s interrupt vector with index n.

Tasks at level 1 are essentially keyboard and mouse
handlers, apart from additional ones to be provided by
the system’s users. The set of tasks is triggered by a
timer interrupt (tick) once every 40ms. This scheme
has the advantage that—in the absence of a priority
interrupt system—all interactive tasks are interrupt
protected by a single instruction stopping the timer.
The timer interrupt handler is shown below:



Wirth: Tasks versus Threads: An Alternative Multiprocessing Paradigm 11

PROCEDURE Tick;
VAR x, y: INTEGER,; keys: SET; ch: CHAR;
M: InputMsg; V: Viewers.Viewer; T: Task;
BEGIN
IF Input.Available() > 0 THEN (*keyboard task*)
Input.Read(ch);
M.id := consume;
M.ch := ch; FocusViewer.handle{FocusViewer, M)
END;
Input.Mouse(keys, x, y);
IF (keys # (}) OR MouseMoved THEN (*mouse task*)
V := Viwers.This(x, y); M.id := track;
M.x :=x; M.y := y; V.handig(V, M)
END;
T := NextTask;
WHILE T # NIL DO (*other level-1 tasks®)
IF T.time < Time(} THEN T.handle END ;
T = T.next
END
END Tick

FocusViewer is a global variable designating the
viewer (window) holding the keyboard focus visualized
by the caret. NextTask is a global variable representing
the head of the list of interactive tasks, Each task is
represented by a descriptor:

Task = POINTER TO TaskDesc;
TaskDesc = RECORD
handler: PROCEDURE;
time: LONGINT;
next: Task
END

A task is activated only if the value of its field time is
less than the current time provided by the timer.
Thereby the programmer may determine the frequency
by which a task is reactivated. In the Ceres system, the
maximum frequency is set to 25 Hz, and the timer
value increments every 3.3ms. Hence, it is possible to
implement interactive tasks requiring frequent attention
such as keyboard input, mouse handling and cursor
update, as well as tasks to be reactivated rarely, such as
a clock update every minute.

Interactive tasks are installed and deleted by the
following system procedures:

PROCEDURE Install* (T; Task);
VAR t: Task;
BEGIN t := NextTask;
IF t # NIL THEN
WHILE (t.next# NIL)& (¢t # T) DO
t :=t.next END;
IF t# T THEN t.next := T END
ELSE NextTask :=T
END
END Install;
PROCEDURE Remove* (T: Task);
VAR t: Task;

BEGIN t := NextTask;
IF t # NIL THEN
IF t = T THEN NextTask := t.next
ELSE
WHILE (t.next # NIL) & (t.next # T) DO
t ;= t.next END;
IF t.next = T THEN t.next := T.next END
END
END
END Remove;

Tasks at level 0 (background) are activated by the
Oberon system’s central loop, which receives control
when all interrupt-triggered task are completed. Tasks
are picked from the fifo queue whose root is
NextBTask:

LOOP T := NextBTask;
IF T # NIL THEN NextBTask := T.next; T.handle END
END

Our implementation differs slightly from this obvious
and expected solution. It takes into account that
background tasks are typically submitted by the
workstation’s operator invoking (clicking) a submit
command of the form

System.Submit M.P x0 x1 ... xn

Hence, the background task descriptor does not specify
a procedure (handle), but rather the text following
“System.Submit”, from which not only the task’s
body (M.P) but also its parameters can be derived.

BTask = POINTER TO BTaskDasc;
BTaskDesc = RECORD next: BTask;
text: Texts.Text;
pos: LONGINT
END

PROCEDURE Loop*;
VAR this: BTask; S: Texts.Scanner;
BEGIN (*background process, central loop*)
LOOP
IF ActCnt <= 0 THEN
Kermel.GC; ActCnt ;= BasicCyele END ;
this := NextBTask;

IF this # NIL THEN
NextBTask := this.next; Call(...) END
END
END Loop;

PROCEDURE Submit* (T: Texts.Text; pos: LONGINT);
VAR Q, q: BTask;
BEGIN
NEW(Q); Q.next := NIL; Q.text := T,
Q.pos := pos; q := NextBTask;
IF ¢ = NIL THEN NextBTask := Q

ELSE
WHILE qg.next # NIL DO q := q.next END ;
q.next ;= Q
END
END Submit;




12 Wirth: Tasks versus Threads: An Alternative Multiprocessing Paradigm

Summarizing, the adaptation of the Oberon System to
the described multitasking paradigm consists of the
following steps:

0. Global variables are localized, except when
representing genuine global resources (such as the
root of the viewer structure, the root of the file
directory, etc.) or when representing global status
(such as CurFont, CurColor etc.).

1. A timer interrupt is introduced to trigger interactive
tasks periodically.

2. The body of the central loop is moved to the timer
interrupt handler.

3. The central loop is changed to handle background
tasks.

4, Mutual exclusion guards are inserted in certain
global procedures of storage, viewer and file
directory management.

Conclusions

Tasks can be used as alternative to threads in the
formulation of concurrency. They are procedures that
run to completion except when interrupted (temporarily
suspended) by a task of higher priority. In contrast to
threads, which are based on the coroutine concept and
require private workspaces, tasks share a single stack as
their workspace. Since task switching is triggered by
interrupt signals, no complex, hidden scheduling
mechanism is required, resulting in quick response and
low overhead. The task concept therefore appears as

particularly attractive for real-time systems with
stringent timing requirements, and for small systems
in general, such as embedded applications, where
econemy of storage and time are important. An
adaptation of the Oberon operating environment has
demonstrated the viability of the concept. Tasks, called
commands, are a conceptual pillar of the Oberon
operating environment. Making them interruptible adds
significant power to the concept and is shown to
require surprisingly few changes and additions to the
existing system, hence retaining its basic compactness
and efficiency.

References

1. Andrews GR, Schneider FB (March 1983) Concepts
and Notations for Concurrent Programming. ACM
Comp. Surv,, 15, 1, 3-43

2. Birrell AD (1989) An Introduction to Programming
with Treads. Digital, Systems Research Center, Palo
Alto, Report No. 35

3. Dijkstra EW (September 1965) Cooperating
Sequential Processes. TU Eindhoven

4. Hoare CAR (October 1974) Monitors: An Operating
Systems Structuring Concept. Comm. ACM 17, 10,
549-557

5. Reiser M (1991) The Oberon System. Addison-
Wesley

6. Wirth N (February 1995) A Plea for Lean Software.
IEEE Computer

7. Wirth N, Gutknecht J (September 1989) The Oberon
System. Software—Practice and Experience, 19, 9,
857-893

8. Wirth N, Gutknecht J (1992) Project Oberon.
Addison-Wesley



