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Abstract

Three sample programs are developed and explained with the
purpose to demonstrate the use of the programming language
Modula. The examples concentrate on the uses of modules,
concurrent processes, and synchronizing signals. In particular,
they all focus on the problems of operating periphsral devices,
The concurrency of their driver processes has to occur in real
time. The devices include a typewriter, & card reader, a line
printer, a disk, a terminal with tape cassettes, and a graphical
display unit, The three programs are listed in full.
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IHE USE OF MODULA
1. INTRODUCTION

The purpose of this paper is to describe three sample programs
written in the programming language Modula, thereby to
demonstrate techniques of multiprogramming, and to display the
language’s flexibility. These examples are by no means parts of
"real” systems; on the contrary, the posed problems are
constructed to condense typical multiprocessing problems into a
nuteshell, and in particular to demonstrate the use of Modula’'s
facilities to operate a computer’s various devices. The first
program uses four devices concurrently: a typewriter keyboard
and printer, a card reader, &and &a line printer. The second
program transfers files from a terminal with cassette tapes to a
disk store and vice-versa, and the third program operates a
graphical display unit.

"

2. IHE PR AM TREAMS "

Our objective 1is to design a system which represents two data
streams. Stream 1 originates at the keyboard and flows to the
typewriter printer. Stream 2 leads from the card reader to the
line printer. Both streams are sequences of characters (ASCII
code), and 8ll four devices are to be buffered, The streams are
to flow independently; hence, the system consists of two
entirely independent, uncoupled parts. Each part is represented
by a system consisting of three processes and has the structure
shown in Fig.1.

hput ihpuk outbput output
medium #  buffer > buffer medium

oukpuk
device
clriver

input
device
driver

Fig.1, Data flow and system structure

The buffers (and their asscciated variables) constitute the
interfaces between the processes. Hence, it 1s appropriate to
postulate two interface modules. The buffers and the routines
depositing and fetching data in and from the buffers are the
natural components of each interface module which provides
mutual exclusion of interacting processes. Since each buffer is
associated with & unique device, and therefore also with a
device driver process, the interface module is declared as a
device module (whose servicing priority is defined by the PDP-11
hardware). According to the rules of Modula, & process is



declared entirely within the interface module, if it is a driver
process,

Normal buffer interface module:

interface module M;
var buffer: T;
procedure deposit( ): ... (*used by producer process¥)
procedure fetch( ); ... (*used by consumer process¥)
end M

Buffer interface module, if the consumer process is a driver
process:

device module M [priorityl:

procedure deposit( ): ... (¥used by the producer*)
process consumer:;
begip initialise;

logp fetch:

initiate consumer device; doio

end

end consumer

end M
Buffer interface module, if the producer is a driver process:

device module M [priority}:
procedure fetch( ); ... (¥used by consumer¥)
process producer:
begin initialise;
logp initiate producer device;
doio; deposit

end
gnd producer
end M
2.1. The kevboard to tvpewriter stiream.

This example shows the simplest possible case. Its simplicity is

threefold:

1, Both devices use the same encoding of information (ASCII).

2. Both devices operate on the basis of single character trans-
mission.

3. The devices reguire no status interrogation.

The main process is chosen to be as simple as possible. Its sole

obligation is to transfer individual characters from the input

buffer to the output buffer. The only additional duty is to

recognise carriage return control characters (er), and to

generate an additional line feed character (1f) following each

Lr.

Each of the two interface modules contains a data buffer; these
buffers are used as cyclic buffers., With each buffer are
associated & variable n indicating the number of currently
filled buffer elements, and two indices (inx and outx)
designating the locations of the next characters to be fetched



and deposited (see Fig.2). Also associated are two signals. The
signal “nonempty” is sent each time & character is put into the
buffer and implies the condition n > #, and “nonfull” is sent
each time a character is taken from the buffer and implies
n < N, where N is the buffer’s size..

oukx thx

Fig.2, Cyclic buffer with B slots

The typewriter stream part is represented by the two device
modules "keyboard” and “typewriter”, each containing a buffer
and a device driver, and of the main process "stream 1",

Each of the two buffers is accessed by a producer and a consumer
process; n denotes the number of characters in the buffer,

Producer: logn produce a character;
if n = N then waeit(nonfull) end:
deposit the character in buffer;
inc(n): send(nonempty)

end

Consumer: lpop if n = @ then wait(nonempty) end;
fetch next character from buffer;
dec(n); send(nonfull):
consume the character

end

The last three lines of the Producer and the first three of the
Consumer are formulated as parts of a device interface module to
ascertain mutual exclusion.

The important property of this solution is that no reference to
machine and device dependent facilities is made outside the
device modules, and that even within these modules the programs
are straight-forward, referring to hardware defined facilities
only in & few instances.

These are:

1. the device Status registers KBS and TWS,

2. the device Buffer registers KBB and TWB,

3. the device interrupt addresses 6@B and 648B,

4. the interrupt priority 4.

Bit 6 in each status register is the interrupt enable bit., The
statement xx5[6] := true (preceding “deic”) enables, the state-
ment xxS[6] := false (following "doio”) disables interrupts.

Of course, in realistic applications the drivers are very short
programs compared to the remainder of the system. Here the



opposite 1is true, because the most trivial case of a main
process was chosen in order to be able to concentrate on
demonstrating Modula's capability to express driver processes
and device operations in a readable, “high-level” programming
style (see program at the end of this chapter).

2.2. IThe card reader tp line printer stream

The mechanism for the transmission of data from a card reader to
a line printer is more complicated, although based on the same
principle of buffering for each device. There exist four reasons
for complications:

1. The line printer uses the 7-bit ASCII encoding of characters,
whereas the card reader delivers a differsnt encoding. We
shall let the drivers accept and deliver data encoded as
dictated by their devices, and let the main process perform
the task of translation (see procedure convert).

2. The card reader, once activated, reads a full card, i.e. a
portion of 88 characters. Hence, the buffer space reservation
scheme must be somewhat different from the one used above.

3. If data transfer rates are high, it dis 1inappropriate to
exchange synchronization signals after each character trans-
mission, Data are “"blocked” and signals are sent only after
transfer of each block. We demonstrate this solution in the

case of the line printer, where each 1line is taken as a
block.

4, The card reader status must be interrogated before and after
reading each card, If it is 1in the “not ready” state,
interrogation must be repeated periodically, because the card

reader does not send a signal when returning to the ready
state.

We notice that all four complications are not just due to the
programmer s like for sophistication, but are caused by the
inherent characteristics of the various devices and data
carriers, We first describe the modifications to +the input
buffer scheme.

The circumstance that input data are delivered in portions of 8@
characters requires that before starting the card resader, space
for at 1least 8@ characters must be free in the buffer. This
entire portion must be reserved to the reader process during the
time of reading the card. At the same time, the remainder of the
filled buffer should be accessible to ths consumer. Hence, a
single variable n to indicate the number of filled elements does
not suffice, since the number of empty portions is not
necessarily N-n, when N is the total buffer size. In place of a
single counter n, two variables nf and ne are introduced to
denote the numbers of filled and empty slots respectively. The
invariant

Nemi1-m2 < ne+nf < N
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holds at all times, where m1 and m2 are the portion sizes
claimed by producer and consumer respectively. (Actually mi1 =
81, since each card end is represented by a marker), In“order to
reduce the number of signalling operations, the sleeping
barber” scheme is used [2). It is sketched by the following
program excerpt:

Producer: logp dec(ne,ml); if ne < @ then wait(nonfull) end:
- deposit portion with size m1;
inc(nf,m1) : if nf > @ then send(nonempty)gnd
end

Consumer: Jloop dec(nf,m2): if nf < B then wait(nonempty) end;
fetch portion with size m2;:
inc(ne,m2): if ne > @ then send(nonfull) end
end

In the card reader driver the statement CRS := [0,6] sets the
interrupt enable bit and at the same time initiates the reader
motion. A completion interrupt is sent after receiving each
column in CRB., This is represented by the statement doio in the
usual way. It 1is followed by a test of bits 14 and 15, the
former indicating that the end of the card is reached and a next
card is in the hopper, the latter indicating that an "abnormal”
condition exists, such as an empty hopper. Before starting a
card motion, status bits B and 9 are tested., If bit B8 is set,
the reader is not ready. It becomes ready when the operator
pushes the RESET button. This action, however, does not send an
interrupt signal to the computer. Hence, the status has to be
polled repeatedly. Such & nglling crocess is easily expressed by
a statement of the form

while test fails dg wait(s) end

if one can assume the availability of a signal & that is sent
periodically at certain time intervals,

Such periodic signals are customarily produced by so-called
clocks, i.e. devices that interrupt the processor at given
intervals, wusually that given by the line frequency. (5@ or 6@
cycles/sec). In the present program, the "clock” appears as a
device 1like other peripherals. However, it does not have to be
triggered into producing the next pulse: instead, the driver
process merely needs to wait for the next pulse to occur. This
waiting is expressed by the statement “"doio” (which in this case
is obviously a misnomer). As a consequence, the process merely
consists of the statement

loop doio: send(tick) end

We are now tempted to substitute the clock signal (which is
appropriately called “tick”) for the signal s. However, this
would violate the (peculiar) implementation restriction of
Modula which specifies that no signal sent by a device process
may be received by a device process., The difficulty is resolved
by inserting yet another process - which is not a device process
- between the sender and the receiver. This process 1is called



“"clock”™, The clock driver process is enclosed in a device module
(called “"timing"), from which only the signal “tick" is
exported. Note that Modula specifies that no process may execute
& send operation wupon an exported signal; hence, the device
process is the only process that can send the tick signal,

The line printer buffering scheme is similar to that of the card
reader in so far as signals are exchanged after receiving
portions of data instead of after each character. In contrast to
the card reader, however, the portions do not have a fixed size.
We taeke the line as the natural choice of & portion, i.e. each
end of a 1line, represented by a line~feed control character,
causes a signal to be sent to the driver. Line printers usually
have their own “hardware” buffer, in which characters are
accumulated, until a line~feed character is received, whereupon
the actual printing occurs. This explains the property that
individual characters are accepted very guickly, i.e.
instantaneously, because they are only stashed away in the
internal buffer. As a consequence, it is unwise to wait for an
interrupt from the printer in this case. Instead, the status
register LPS is tested immediately after putting a character
into the buffer register LPB. If Bit 7 is not set, printing
takes place, and we may as well wait for the completion signal
(interrupt) by executing “doio”. (Note that printing is not
caused exclusively by line-feed, but also as soon as the line
buffer dis filled. Therefore the test for the necessity of
waiting must not depend on the value of the character output).

We presume, however, that the sender knows whether a special
line-feed is sent (a line is closed) or an ordinary character is
to be printed. The action of terminating & 1line is therefore
expressed by an explicit procedure “weol"” (write end of line),
that is used to send a signal to the <driver. The variable nf
does not count the number of single characters in the buffer
"buf”, but instead counts the number of lines.

The main process “stream 2" merely receives characters from the
card reader and transmits them to the line printer. Its function
is to convert the character encodings. The line printer requires
ASCII code, whereas the card reader delivers integers. Their
binary representation is obtained in the way shown in Fig. 3
from the card heole combinations (this mapping is a hardware
facility):; the value x represents the position of a single punch
in zones 1 to 7,
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Fig.3, Card punch encoding

A special end-of-file card is recognised as one which has =&
7-8-9 hole combination in column 1. It is translated into an
integer value -1, and in turn to a form-feed character which
causes a page eject on the line printer.,

In order to show the convenience of the process and signal
facilities, we shall introduce yet another complication that
demonstrates & fregquently occurring situation and originates
from a very practical problem, We assume that the printer is " a
chain printer, and that the chain drive can be started and
stopped under program control, We pose the condition that the
chain motor is to be stopped, if no printing is requested for a
period longer than a certain time period t. This is desirable to
save the printer from undue wear. Naturally, the chain has to be
restarted as soon as information has to be printed. As the
starting of the chain is subject to & certain delay during which
the printer is inoperable, the idle periocd t has to be chosen
carefully., About 18 sec have proved to be & sensible value,

The “frequently occurring situation” referred to above is the
condition in which & "process” is waiting for any one of several
events. In our case it is the printer process having encountered
an empty buffer, which is waiting for either new information to
enter the buffer in order to be printed, or for the printer
chain to be stopped after the time interval t has elapsed. This
problem i1is solved in the following way: A new process is
introduced with the purpose to control the printer chain
movement, It is therefore called "chaincontrol”, and consists of
& simple loop containing two statements. The first of them,
called “testchain”, contains a wait statement, which “puts this
process to sleep” while the printer is active. As soon as the
printer driver recognises an empty buffer, it signals
chaincontrel to become active., A delay counter “del"” is
initialised which determines the number of times chaincontrol
executes its loop "testchain; wait(tick)". The second statement
is merely a delay (28 msec) and demonstrates another use of the
clock signal. If, during one of the executions of “testchain"”,
it is discovered that the printer has resumed operation by
finding nf > ¥, chaincontrol 1is immediately “put to sleep”
again. If, an the other hand, the printer had remained inactive
during the specifiesd number of tests, an appropriate control
character is output, causing the chain to stop, whereafter
chaincontrol, having performed its task, waits for the next time



the printer needs to be guarded. The system consisting of the
processes “chaincontrol” and printer driver assumes the
following possible states:

driver chaincontrol nf del chain
______________________________________________________ S
1 active wait(guard) >0 running
2 wait(nonempty) active <8 >@ running
3 wait(nonempty) wait(tick) <P >@ running
4 wait(nonempty) wait (guard) <P =@ stopped
5 active active >0 ‘ running

Transition 1 - 2 is caused by the driver sending the signal
“guard”, transitions 2 - 3 and 3 - 2 are implied by the
execution of the control process, the latter by receiving the
signal “tick"., 3 - 4 occurs through the signal tick, and the
control process issuing & dc4 character after decrementing del
to @. Transition 4 - 1 occurs if new information enters the
buffer, whereas 3 - 5 pccurs for the same reascn, but while the
chain had not been stopped yet.

prl’htcr printing

chain contrsl alive
(not waiting for guard)

chain running

Fig.4, State transitions of printer system

Note that the procedure "testchain” is an interface procedure,.
Therefore it is guaranteed that during its execution the driver
either waits (nf < @) or performs output operations (nf > 8).

We conclude the presentation of this program by a diagram
showing its wvarious processes and their interfaces represented
by buffers and signals,
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module datastreams:

canst 1f = 12C; ff = 14C; cr = 15C;
var crsig: signal:
device module timing [6]:
dafipe tick:
yvar tick: signal;
lcs [177546B]: bits:

progcess driver [1008B];

begin lcs[ 6] := true;
loop doio: send(tick)
end
end driver
begin driver
end timing
device mpdule keyboard [4];
define get;
const n = 16; esc = 33C:
var inx, outx, nf: integer;
nonfull, nonempty: signal;
buf: array 1:n gof char;

char);

nrocedure get(yar ch:

honfull

Interactions of processes via buffers and

signals

(*clock status*)



begi
if nf = B then wait(nonempty) end ;
ch := buf{outx]:; outx := (outx mad n) + 1;
dec(nf): send(nonfull)

end get ;

process driver [608B];
var kbs [177568B]: bits: (*status*)
kbb [177562B]: integer; (*buffer*)
ch: char;
begin
loop
if nf = n then wait(nonfull) end :
kbe[6] := true; doio: kbs[6] := false:
ch := char(kbb mod 2@@88):
if ch = esc then halt(8) end :
buf[inx] := ch; inx := (inx mod n) + 1;
inc(nf); eend{nonzmapty)
eng
end driver

begin inx t= 1; outx := 1; nf := f@: driver
end keyboard ;

device module typewriter [4]:
define put:
const n = 64; (*buffer size*)
yvar inx, outx, nf: integer:
nonfull, nonempty: signal;
buf: array 1:n gf char;

procedure put(ch: char);

begin
if nf = n then wait(nonfull) end :
bufl inx] := ch; inx := (inx mod n) +1;
inc(nf); send(nonempty)

end put

process driver [64B]:
yvar tws [177564B]: bits; (*status*)
twb [1775668B]: char: (¥buffer*)
begin
loop
if nf = @ then wait(nonempty) end :
twb := buf{outx]; outx := (outx mod n) + 1;
tws[6] := true: doio; tws[6] := false:
dec(nf); send(nonfull)
end
end driver

begin inx := 1; outx := 1; nf := P; driver
end typewriter ;

device module cardreader [6]:
defing read;
use crsig;
const n = 256; (#¥buffer size¥)
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yér inx, outx, ne, nf: integer;
nonfull, nonempty: signal;

buf: array 1:n gf integer:

procedure read(yar x: integer):
beginp dec(nf);
if nf < @ thep wait(nonempty) gnd :
x := buf{outx]; outx := (outx med n) + 1:
inc(ne); if ne >= 8 then send(nonfull) end :
end read ;

process driver [23@B]:

gconst m = 81: (*block size#)
var crs [ 177166B]: bits; (*status¥*)
crb [177164B]: integer; (*buffer*)
procedure put(x: integer):
begin buf{inx] = x: inx := (inx mad n) + 1:
ince(nf)
end put
begin

loop dec(ne,m);
if ne < @ then wait(nonfull) end :
while not off(crs, [8,9]) do wait(crsig) end :

crs := [B,6]: (*start card motion¥*)
loop doia:
when pot off{crs, [14,15]) exit
put(crb)
end

put(-1): crs[6] := false; (*end of line mark#*)
if nf >= B then send(nonempty) end
end
end driver

begin inx := 1: outx := 1; nf := @; ne := n; driver
end cardreader

device mpodule lineprinter [4];

define write, weol, testchain:

use 1f;

const n = 512; (*buffer size*)
dc3 = 23C; dcd4 = 24C;
chaindelay = 250 (* 18 sec *)

yar inx, outx, ne, nf, del: integer:
nonfull, nonempty, guard: signal:
buf: array 1:n gf char;
1ps [177514B): bits; (*status*)
1lpb [177516B]: char; (*buffer*)

brocedure write(ch: char):
begin dec(ne);

if ne < B then wait{nonfull) end ;
buflinx] := ch; inx := (inx mod n) + 1:
end write ;

orocedure weol; (*write end of line*)



begin inc(nf); send(nonempty)

end weol ;

procedure testchain:

begin

if nf >= @ thep wait(guard)

glse dec(del):

if del = 8 then
lpb = decd4:; wait(guard)

end
end
end testchain

process driver [
yar ch: char:

begin lpb := dc3
loog dec(nf):

2p@B] :

if nf < @ then
send(guard): wait(nonempty);
lpb t= dc3: del := chaindelay

end

repeat ch := bufloutx];

inc(ne); 1lpb := ch:
if not 1ps[?7] then
lps[6] := true; doio; 1lps[é] := false

end

until eh = 1f;
if ne >= @ then send(nonfull) end

end

end driver

begin inx := 1; outx := 1; ne t= n; nf t= @: driver

end lineprinter ;

process streami;
use get, put:
yar ch: char:
begin
loop get(ch);

(*keyboard to typewriter*)

if ch = cr then put(er); put(cr): put(lf)
else put(ch)

end
end
end streaml :

process stream2;
use read, write,
const eoi = 37B;
yvar x: integer:

t: array #:63 gf char;

z: grray #:

(*¥*cardreader to lineprinter¥*)
weol;

badchar = “?";

ch: char;

7 of integer;

procedure convert: (#x to ch*)
var zone, diglits: integer:

begin zone != x

div 32; digits := x mod 32:

zone := z[zonel;
if zonme < @ then ch := badchar glse

outx = {(outx mod n) + 1

(¥*translation table*)

.
’
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if digits >= 16 then digits =
ch = t[16*zone+digits)
end
end convert

begin

z[ B) := B : z[ 1] := 3 : z[ 2]
z2[ 4] = 1 ; z[ 5] := -1 ; z[ 6]
t[ B8] = ° °; t[ 1] = "17: t[ 2]
£ 4] = "4"; t[ 5] := °5°; t[ 6]
tf B8] := ‘8°; t[ 9] := "9°; t[18]
£{12] := “#°: t[13] := ‘€"; t[14]
t[16] 1= “+"; t[17] := "A°; t[18]
t{28] := ‘D°; t[21] := ‘E’; t[22]
t[24] := ‘H"; t[25] := "I°; t[26]
t[28] 1= ") ": tl[29] := "\"; t[30]
t[32] := "=°; t[33] := ‘J°; t[34]
t[36] 1= "M°; t[37] := "N"; t[38]
(48] = 'Q°; t{41] = ‘R’ tl[42]
t[44] = "*"; t£[45] 1= "17; t[46]
t[48] := ‘@°; t[49] := °/"; t[508]
t[52] := Uy t[53] := ‘V'; t[54]
t[56] = ‘Y"; t[57] 1= ‘Z°; t[58]
t[68] = "(": t[61]) 1= "_°: t[62]
loogp read(x);

if x = eoci ithen
repeat read(x) uptil x < @:
write(ff): (¥form feed¥*)
else
while x >= 8 do
convert; write{ch); read(x)
end;
write(lf); weol (*line feed*)
end ¢ '
end
gnd stream2 ;

process clock;
use tick, crsig:

begin
loop wait(tick); send(crsig)
end

end clock ;

Dbrocess chaincontrol;

begin
logp testchain; wait(tick)
end

end chaincontrol;

begin (*datastreams*)

stream1; stream2; clock; chaincontrol

end datastreams .
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3, THE P M_"

With the second program we continue and elaborate on the subject
of device handling and sequential data transfer. The devices
under consideration are a disk unit and a terminal containing
two tape cassette drives. These devices are in several respects
more complicated than those discussed in the preceding section,
and therefore require also some more sophistication in the
design of thelr operators. The equipment used in this particular
experiment consists of a DEC RK-11 disk cartridge unit end an
HP2644A terminal [3]. This terminal contains & microprocessor
that is used to send and receive instructions to operate the two
tape cassettes.

Let us first list the specifications of the program to be
designed.

1. Let the disk store consist of B files with a fixed maximum
length.

2, Commands are to be given from the terminal keyboard. There
shall be commands for copying a file from tape to disk, and
vice-versa, for rewinding, selecting, and marking tapes, and
for skipping files on a tape.

3. Specifically, the commands are
Rn: read tape onto disk file n (1 < n < 8).

Wn: write disk file n onto tape.
Cs: control operation; the character string s 1is determined
by the specifications of the HP terminal,

4, Every command is to be terminated by &a period. The system
obeys the commands as socon as the “command 1line” 1is
terminated (line~feed character). A line may contain several
commands,

5. When typing & command, the entire command 1line can be
cancelled by typing a backspace character.

The task thus defined appears as more difficult than the
preceding problem for several reasons.

1. Instead of a number of continuous data streams, there is
essentially one channel on which data are. transferred
according to input commands that must be interpreted.

2. The disk 1is a device which requires an address of the
location where the data are stored.

3. The disk is a device that can read and write data.

4, The disk transfer rate is so high that we must avoid entering
a device module for each character to be transferred.

5. The terminal is a device that reguires a certain prescribed
“protocol” to transfer data to and from the tapes. It also
requires initiation and acknowledgement messages (also called
"handshaking"” procedures).

The overall structure of this system is therefore given by the
devices involved. There are four processes: a terminal input, an
output, @a disk driver, and a main process controlliing tha
transfers. The structure is shown in Fig.6, and the main process
indefinitely repeats the following three statements:




loop read command;
interpret command;
acknowledge command

end
terminal aet main terminal
input process output
Mmodule module

disk
module

Fig.6. System structure with 3 device modulecs.

3.17. Module sfrycfure end interfaces

We start out by defining the interfaces between the modules,
i.e. the procedures by which communication takes place, The
terminal input module defines & procedure called get. It "gets"”
a charaecter from the terminal. Similarly the output module
defines &8 procedure puyt. The disk module, allowing transfers 1in
both directions, defines procedures rgad and write. Naturally,
these operations cannot be performed at the same time. The disk
either reads or writes: its state is chearacterised by a mode
varieble, The disk module therefore defines another procedure,
called gpen, to set this mode. Accordingly, & procedure glogse is
defined +to indicate termination of & file transfer, and to make
the disk avaeilable for further operations.

The two modules which buffer the HP 2644A terminal are exactly
like the ones used in the progrem of chapter 2. They implement a
simple, cyclic buffer. Both buffers must be capable of holding
at least one line of text (which is the unit of data transferred
to and from tape at 2400 -baud).

Before embarking on the explanation of the disk module, we
explain the details of the main process. Because interpretation
of @& command shall begin only after the reading of an entire
command line, and because commands arrive from the same source
as the data to be transferred, a further buffering of commands
is evidently necessary. This calls for another module, which we
shall call scanner. It contains a buffer called line, and acts
not wunlike the scanner of a compiler, reading lines of text and
delivering a command each time called upon. This command is a
character sequence stored din the variable gpom. Note that the
scanner also takes care of system specification 5 which demands
that an input 1line <can be cancelled by typing a backspace
character, The variable n, appropriately hidden inside the
scanner, counts the number of commands in the line., k is the
index of the last character read from the command 1line. (See
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program at the end of this chapter.)

3.2. Interpretation of commands

We can now proceed to an explanation of the detailed operations
performed when interpreting a command. The first character
(R,W,or C) identifies the command. In the cases of the R and W
commands, the second character denotes the disk file to be
written or read. In order to understand the data transfer
mechanism, we must know the representation of text as received

from and as required by the terminal, The essentials are as
follows: .

Data are read from and written onto tape by sending & "command”
to the terminal. It consists of a =equence of characters
starting with an escape character. The sequence 1is therefore
called an gscape seouUence. The seguence

gsc & p @ R dgl

causes the terminal to read a line of text from the designated
tape and to send it to the computer. The line is terminated by a
&r and an 1f character, (We assume that the HP 2644A terminal is
strapped for line block trensfer with straps D, G in, E, H out
(4)). If the end of the file has been reached, & tape mark is
encountered, which results in the transmission of & "“line”
consisting of the cingle caontrol character rs (record
separator), followed by gr, 1f. Hence, it is always necessary to
check the firet character of each line received in order to
detect the end of the file.

When writing on a tape, the escape sequence
gsgc & p W

is used, It causes the terminal to accept & sequence of data
characters terminated by gr, 1f, dcl. Since we ehall store the
data on disk in exactly the form as received from the terminal,
we must again test the first character in each line. If it is
rs, then a file mark has to be written instead of transmitting
the "line”. This is done by sending the escape sequence

egsc & p 5 C del
After sending each line, an acknowledgement is reguested from
the terminal by sending a dg1 character. This acknowledgment
consists of a letter S (success) or F (failure), followed by
cr,1lf. In our program, the acknowledgement is not interpreted;
but it should obviously be done in a system acceptable for
practical purposes.

The third command (L) is introduced merely to make available in
a primitive manner the entire set of possibilities to control
the terminal from the computer. The command Cg, where @ stands
for any character sequence, is returned to the terminal as an
escape seguence
gsc & p s dgl

which may serve to designate source and destination tapes, to
rewind tapes, to mark them, or for many other operations [4].
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3.3. Ihe disk mopdule

Communication with the disk brings up two problems that have not
been encountered when dealing with strictly sequential, uni-
directional devices.

4. After transferring a file, the disk must be “released” in
order to become available for the execution of another file
transfer, whose direction may differ from the preceding one.

2. The high transfer rate of a disk reguires that its interrupts
be serviced with a high processor priority. It is desirable
that the processor enters that priority level as rarely as
possible. Communication with the device process must take
place at that level, and should therefore be necessary only
after transfer of relatively large blocks of date, and
certainly not for each character.

The frequently adopted solution to problem 1 d1is that instruc-
tions (reguests) for disk operations are gueued in a buffer
along with their paerameter (disk eddress, buffer address, mode
of transfer, etc.). We will refrain from request buffering, and
show & solution that requires a much stricter synchronization of
the two participating processes.

Assume that there are variebles to hold the 1instruction
parameters listed above, During an entire disk operation (file
transfer) they belong exclusively to the disk driver process,
Only after its termination and until the initiation of the next
operation do they belong to the reguestor (subsequently called
"user”), which at this time may assign the parameters of the
next request to them. This 41s an obvious situation where
semaphores [2] are used to delay & process before passing a
certain point, as 1s shown in Fig.7. We call the cemaphore that
delays the program before transmitting its next request
"diskfree"” (because the semaphore "opens” when the disk process
i=s free to accept the next regquest), and we call the semaphore
that delays the disk driver until the next request is deposited
“userfree”, because it opens when the user is free to work after
having deposited the request,

user work . ‘ E:;::; disk

Fig.7. Reguestor / acceptor synchronization with two
semaphores,

Acccrding. to Hoare [5], we express a (binary) semaphore by a
palr coneisting of & eignal and a Boolean variable which
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remembers whether & =signal had been sent., The semaphore
"diskfree" is represented by the signal of the same name and the
Eoolean variable "diegkbusy"” and the operations P and V become

P: if diskbusy then wait(diskfree) end; dickbusy := true
V: diskbusy := false; send(diskfree)

Similarly, the semaphore "userfree” iec represented by the signal
of the =same name and the Boolean variable “userbusy”. The two
procescses in Fig.7. are then expresced as follows:

user: loop if dieckbusy then wait(diskfree) gnd:
diekbusy := true:;
deposit disk request;
ueerbusy := false; send(userfree):
repgat produce/fetch data:
deposit/consume data
wntil end of file
end

disk: loop diskbusy := false; cend(diskfree);
(*now diek request paremeters are loaded by “user”#*)
if userbusy then wait(ucserfree) gnd:
userbusy = true:
repeat fetch/read data:
write/deposit data
wotdil end of file
end

We notice a strong symmetry between the two processes, although
in their roles they &are dissimilar: the disk process is the
slave of the user. In Modula, the disk process is formuleted as
a device procecsse. The fact that device processes are served with
a higher priority has in this case a notable consequence [7]:
The =send operation does not "release” the processor. Hence, no
action can possibly intervene before the succeeding statement
wait(userfree). We know that userbusy has the. value true,
because the only way it can obtain the value false 4is through
the wuser process having received the signal diskfree. The
consequence 1is that thHe variable userbusy can be deleted

entirelx, and the semaphore reduces to a signal, (which we
rename diskrequest”).

Programming experience has shown that the mistake to use a
simple signal where actually a semaphore would be needed, is one
of the most frequent sources of system deadlocks. The reason 1is
that a signal 1is only effective at the time it is sent; if no
process is waiting for it, the signal is forgotten. The Boolean
variable in the semaphore serves to remember that a signal was
emitted (the general semaphore even counts them). The deadlock
then arises when a process decides to wait for a signal that -
incidentally - had been sent already when there was no one to
receive it.

We now turn our attention to the second problem: avoiding to
enter the driver module for fetching or depositing each single
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character. We note that the disk reads and writes blocks of
characters, sp-called sectors with a fixed size of 512
characters (256 worde). Hence, the solution lies in nesting the
device module inside an interface module. The latter is entered
for each character transmitted, the former for each sector.

We first consider the device module called disk. It contains,
apart from the driver process, the three procedures opendisk,
transmitsector, and closedisk, and the variables np, nd, disk-
state, and the disk registers. The disk address register and the
dicskstate are initialised by the procedure opendisk. np and nd
replace the usual counters nf and ne, and denote the numbers of
sectors available to the progremm (user) and the disk respect-
ively., This change "in nomenclature is essential, because the
disk sometimes assumes the role of the producer, sometimes of
the consumer. Now each of the two partners operates in a fixed
way on its own counter, independently of the direction of data
transfer, Thie is epitomized by the single procedure "transmit-
cector” replacing a readsector /writesector pair. (Note that np
and nd do not include the sectors upon which the program or the
disk are currently operating.)

Whereas the disk module views the buffer as a collection of
sectors, the outer module, caelled diskin, views it as a buffer
of single characters. In particular, it contains &8 counter
variable nc counting the pumber of gharascters avallable for
reading, or of empty slots available for writing in the sector
currently belonging to the program. Once this count reaches
zero, @ new sector is transmitted (changes ownership). But only
in thie instance is the device module entered.

A few details may help the reader to comprehend the disk
modules: A variable "mode” denotes the current state of the disk
module (idle, reading, writing). It is used to set the value of
the device module’s analogous variable “diskstate”, and to
determine the actions needed upon closing a file., Moreover it
could serve for checking the legality of calls of the read and
write procedures,

The disk 1s dinitialised by setting the disk address register,
the buffer address register, a word counter, and the control and
command register. The latter requires setting of the following
bits: 6 for interrupt enable, 2 for reading, 1 for writing, and
# for starting the operation.

The disk driver needs to be able to recognise the last sector of
a file to be read or written. A simple solution lies in embed-
ding this information in the last sector itself. This is done in
our example by giving the last character of the last sector the
value fg (file separator), assuming that this character does not
otherwise occur. In writing a file, this character is inserted
by the procedure “close". It is recognised by the disk driver
upon reading and writing. Note that the variable “diskstate"
combines the functions of the Boolean “diskbusy” and of the
driver’s mode of operation.

The file system presented here is primitive with respect to disk
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store allocation. It assumes a fixed allotment of 48 sectors (=
24575 characters) per file, because it was not the purpose of
this exercise to develop a flexible storage allocator. T he
entire program is listed subsequently and is to be consulted for
further details; the overall process- and module structure 1is
ehown in Fig.8.

scanhey

line

terminal input terminal output

read | command

main

5&(? :\mesj Put &

9
write reacl

buf buf

diskio
disk
n
',’2;‘) i
mode N™
buf trangmit driver
xel
Aiskshate

Fig.8. Module and process interconnections

module disktape;

const 1f = 12C; cr = 15C; rs = 36C;: dc1 = 21C;
esc = 33C; bs = 18C:; bel = 7C; fs = 34C;

yar ch, fch: char;
i: integer:
com: array 1:88 af char: (*current command#*)

device module terminalinput [4];
define get;
use ch;
copnst del = 177C; bufsize = 256;
var n, in, out: integer:
nonempty, nonfull: signal;
buf: array 1:bufsize gf char:

arocedure get:

begin if n = @ then wait(nonempty) gnd 3
ch := buf[out]; out := (out mod bufsize) + 1;
dec(n); send(nonfull)

egnd get :

orocess driver [380B];
yvar te [175618B]: bits;
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tb [175612B): integer;
ch: char;
begin
loop if n = bufsize then wait(nonfull) end ;
ts[6] := true; doio: ts[é] := false;
ch := char(tb mod 20@B);
if ch = del then halt(#) end ;
buf[in] := ch: in := (in pod bufsize) + 1;
inc{n); send{nonempty)
end
end driver ;

begipn n := @: in := 1; out := 1: driver
end terminalinput

device module terminaloutput [4];
define put:
const bufsize = 256;
yar n, in, out: integer;
nonempty, nonfull: signal:
buf: array 1:bufsize gpf char;

orogedure put(x:char);

begin if n = bufsize then wailt(nonfull) gnd :
buf{in] := x:; in := (in mod bufsize) + 1;
inc(n); send(nonempty)

end put

progess driver [3p48];
var ts [175614B): bits:
tb [175616B): char:
begin

loop if n = @ thepn wait(nonempty) end :
tb := buflout]; out t= (out mod bufsize) + 1;
ts[6] := true: doio; ts(6] := false:
dec{n): send(nonfull)

end
end driver ;

begin n := @; in := 1; out := 1: driver
end terminaloutput : .

dinterface module diskioe;
define open, read, write, close:
use ch,fs;

Lopst neec = 4; (*no. of sectors#)
sectorsize = 512;
bufsize = 2@48;: (*bufeize = nsec*sectorsinze*)
maxsectors = 48; (*max no. of sectors per file*)
nfl = 8; (¥*no. of files*) .

var mode: integer: (*B=free, 1=read, 2=write*)
nc: integer; (¥*no. of chars in current sector*)
ns: integer: (*no. of sectors written*)
xp: integer: (¥buffer index of program*)
current: integer: (*index of current file#®)

file: grray 1:nfl gof
recogrd adr, size: integer
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end
buf: grray 1:bufsize gf char:

device module disk [S5];
define opendisk, transmitsector, closedisk:
wse buf, bufsize, cectorsize, nsec, fs;
var np, nd: integer: (*no. of sectors available*)
sp, sd: esignal;
diskstate: bits;
diskreq, diskfree: signal;

rkds [1774080B): bits: (#drive status¥)
rker [177482B): bits; (*error status#)
rkecs [1774048B]: blts: (*control status*)

rkwec [177486B]: integer: (*word count*)
rkba [177410BE): integer: (*buffer address¥)
rkda [177412B): integer; (*disk address*)

opendisk(m,a: integer):
(#¥initialise disk in mode m at address a¥*)
begin if diskstate(6] then wait(diskfree) gnd ;
if m = 1 then
diskstate = [8,2,6]; nd := nsec: np := @

diskstate := [0,1,6): nd = @: np := ncec
&nd
rkda = a + 200@PB; send(diskreqg):
dec(np); Aif np < @ then wait(sp) gnd
end opendisk

procedure transmiteector:

begin inc(nd): if nd >=0 thepn send(sd) end :
dec(np): if np < 2 then wait(sp) gnd

end transmitsector ;

Rrocedure closedisk:
begin inc(nd); if nd >=0 then send(s=sd) end
end closedisk ;

orocess driver [228B]; '
const wps = 256; (*wps = bufsize/2%)
yar endchar: char:
xd: integer; (*buffer index*)
begin
loop wait(diskreq); xd := 1;
repeat dec(nd):
if nd < B then wait(sd) end :
rkwc i= —-wps; rkba := adr(buflxd]);
rkcs := diskstate; doio; rkes[6] := false:;
if rkes[15] = 1 then halt(15) end :
inc(xd,sectorsize); endchar := buf[xd-1];
if xd > bufsize then xd := 1 end :
inc(np); if np >= @ then send(sp) gnd
until endchar = fs;
diskstate := []: send(diskfree)
end
end driver ;
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begin diskstate := []; driver
end disk ;

procedure open(m: integer: k: char):

(*open file k in mode m¥%)

begin mode := m: nc := sectorsize; ns = B; xp &= 1:
current := integer(k) - integer{(’8°);
if (m = 1) and (file[current].size = @) then halt(3)
opendisk(m, filel current].adr)

gnd open ;

brocedure write;
begin (*assume mode = 2, nc < sectorsize, ch <> fs¥)
buf[xp] := ch; inc(xp); dec(nc);
if nc = @ then
if xp > bufsize thegn xp := 1 end
transmitsector; nc := sectorsize;
inc(ns): if ns = maxsectore then halt(1) gnd
end
end write |

brocedure read;
begin (*assume mode = 1%)
Af nc = 8 then
A1f xp > bufsize then xp := 1 gnd :

transmitesector; nc := sectoresize

end
ch := buf[xpl; inc(xp); dec(nc)
end read ;

procedure close:
begin (*assume mode = 1 aor 2*%)
if mode = 2 then
buf xp+nc-1] = fs;
inc(ne); filelcurrent].size := ns
end ;
closedisk; mode := @
end close ;

begin (*interface module ‘diskio*)
mode i= @: current := nfl;
repeat filel[current].adr := current * 64;
file[ current].cize := @: dec(current)
until current = @
end diskio

modyle scanner;
define readcommand:
use ch, com, 1f, bs, get, put;
yvar k,n: integer:
line: array 1:88 gf char:

procedyre readline:
yar i: integer:
(*assume linelength <= B86%)



begin put("*°): i := 2; k 1= @;
repeat get;
if ch = bs then (*cancel*)
put("\"): i :="0;: n := @
glse
inc(i); line[i] := ch; put{ch);

.

if ch = °.° then inc(n) end

end
until ch = 1f
end readline

procedyre readcommand;
var Jj: integer;
begin
while n = @ do readline gnd :
dec(n); § := 0;
repeat inc(J): inc(k): com{ 3] t= line[k]
until linel[k] = °.°
end readcommand ;

begin n := @

end scanner ;

procedurg escseq;
begin put(esc): put(’67): put(’'p”)
gnd escseq

procedure acknowledge;

begin put(dc1): get:
Af ch <> ‘S’ then put(ch): put(bel) gnd ;
repeat get upntil ch = 1f

end acknowledge

begin (*main*)
loaop readcommand;
if com[1) = ‘C’ then (*control*)
escseq; 1 := 2;
while com[i] <> *.° do
put(com[i]}; inc(i)
end
acknowledge :
elsif com[1] = 'R’ then (¥*read tape¥*)
open(2,com[2]):
repeat (¥read a line*)
escseq; put(’8°): put(’R’);: put(dc1):
get; fch := ch; write:
repeat get;: write
until ch = 1f
until fch = rs;
close :
elsif com[{1]) = "W’ then (*write tape*)
open(1,com(2]): read:
while ch <> rs dan
escseq; put('w’): put(ch);
repeat read: put(ch)
until ch = 1f;

acknowledge; read
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end ., .
escseq; put{'5°); put('C’);: (¥*mark tape*)
acknowledge; close
end
put(bel)
end
end disktape .

4, THE PROGRAM "SPACERACE"™

This program represents a system containing m identical proc-
esses which may be thought as being “"vehicles” racing around on
a plane according to their own laws (algorithms) of motion. Each
of them ie characterised by a position on that plane,
represented by Cartesian coordinates, and a velocity. Another
process drives the display device which shows the plane, i.e.
its boundaries, and the m vehicles.

In order that these vehicles move on the screen "in real time”,
their coordinates are updated in discrete intervals of time
called the update interval. We let this intervel be (& multiple
of) the clock pulse interval dsefined by the computer’'s line
clock device (20 ms). A vehicle is thus described by & process
of the form

loop wait(tick): update coordinates gnd

This program differs from the previous program 1in several
significant aspects:

1. There are many replicas (instances) of the same process
pattern,

2., The interaction between the vehicles and the display driver
is quite etrong (all coordinates are shared interface
variables), but it does not require mutual exclusion: the
(refresh) display driver may easily access coordinates at the
same time as a vehicle is updating them.

3. It 1is convenient to represent the coordinates x and y of
vehicle i (1 < i < m) as elements of an array. Whereas each
vehicle process i accesses x[1i] and y[i] only, the display
driver accesses x[k] and y[k] for all k., It is therefore
impossible to represent these coordinates as simple variables
of a distinct interface module. Fortunately, it is also
unnecessary.

Let wus first define the process which constitutes the behaviour
of a vehicle. Each process is characterised by a position (x,y)
and a wvelocity (dx,dy) : dx is the amount by which x is incre-
mented after each (real) time interval d dictated by the
internal clock, In the same way dy is the increment of Y . As
soon as a vehicle hits the space boundary - we assume that the
area is a rectangle adapted to the display screen - it bounces
like a ball, This is represented by a sign inversion of the
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appropriate velocity component. Let the elapsing of a time

interval t be =signalled by a tick, then the process may be
formulated as follows:

process vehicle (i: integer);

begin (*assume x, y, dx, dy are initialised*)
loop wait(tick);
inc(x, dx);
if "x outeide boundaries”
dx := —dx: inc{x, dx) (*bounce¥*)
end:

inc}y, dy):
if "y outside boundaries"” then

dy := ~dy; inc(y, dy} (*bounce%)
end
end
end vehicle
The structure of the gdisplay driver (called “screen”) is again a

loop, expressing the repeated action of drawing the same picture
(refreshing). We assume that the delay between two drawings 1is
again given by the tick signal of the real time clock (it must
be no more than 40 me, because otherwise the screen starts to
flicker).

loop wait(tick):; 1 := m;
repeat dieplay picture of vehicle 1i; dec(i)
until 1 = 0

snd

The details of the statement "display picture of vehicle 1" are
determined by the peculiarities of the display processor GT 44,
Explanation of the most important principles may suffice at this
point; for further details the reader 1s referred to the
manufacturer’s manuals [6].

1. The display processor is initiated by 1losding a storage
address into the display program counter register (DPC). The
processor then starts interpreting a sequence of instructions

stored in consecutive locations starting at the given
address.

2. There are so=called mode instructions which bring the
processor into one of several modes for drawing lines,
displaying text, or moving the beam to specified coordinates.
Such coordinates are interspersed as data within the mode
instructions, and are interpreted according to the set mode.
(These data are absolute, there is no indexing. Hence the
display processor is programmed 1like a very old-fashioned
computer without index registers, conditional Jjumps, or
subroutines. Our program exhibits this sorry state by listing
display commands as octal numbers!)

3. There exists a halt instruction which causes the main
processor to be interrupted.

From these explanations it follows that a display code sequence
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muet be set up that defines the picture by which a vehicle shows
up aon the screen. We choose this to be & small square box
enclosing & letter which identifies the vehicle (A ... H for m =
8), but =shall not further describe the details of the display
code sequences. It is important to note, however, that the
coordinates of each vehicle must be inserted in the codﬁ before
the display processor is initiated. Hence the statement " display
picture of vehicle i" is expressed (refined) as follows:

Ffiglet] := x[i]; figle2] := yl[il:
figlc3] := code for letter i:
DPC := adr(fig); doio

The “system” developed so far 1s not a very exciting one,
because all vehicles move with fixed speed and fixed direction,
which is o©only changed when the vehicle bounces at a screen
(frame) boundary. We shall therefore seize the opportunity to
introduce one more complication: epeed and direction of the
vehicle movements are to be made variaeble. Specifically, they
shall be influenced by the interactive use of a Jlight pen.

For this purpose, we postulate that n "commands” are to be
displayed on the screen in addition to the vehicle (and the
frame) themselves. Let us postulate the following n = 8
commands:

1. increase speed in the x-direction.

2, increace speed in the y-direction.

3. decrease speed in the x=direction.

4. decrease speed in the y-direction.

5. increace the update-interval (del)

6. decrease the update~interval

7. reverse the direction of movement

8. halt the vehicle at its current position.

We represent these commands by appropriate pictures in a
(reserved) command area of the screen (see Fig 8).

PAN

FAST sLOwW Q——.——-D BACK HALT

A\ %4

Fig.B, Commands as displayed on screen

0f course, pointing to a command must affect a single wvehicle
only., Which one? We solve this didentification problem by
postulating that at all times one of the m vehicles be the
designated vehicle”. It is designated by being spotted by the
light pen. (Moreover, we shall ask that the letter identifying
the designated vehicle be blinking. This is easily accomplished
by an appropriate display instruction).
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These considerations lead to the introduction of & variable =z
denoting the index of the designated vehicle., But how do we
introduce the notion of the light pen seeing an item into our

program? The splution is remarkably simple: the pen 1is
represented by a pen_driver process (called "pen”). The process

waits for the pen catching sight by executing "doic”". Therefore
this process has once more a loop structure:

loop doio;
identify object seen and act accordingly
end

But how is the object seen identified? The hardware provides
registers which hold the coordinates of the point being seen.
But thie facility is rather unhelpful, because it requires an
elaborate back-translation of coordinates te point or line or
figure being identified. Therefore we ignore this facility and
choose &a much more effective solution. The identity of the
currently drawn item (frame, figure, or command) is eet and
retained by the screen process in the form of two variables,
"mode” tells whether the frame, a figure, or & command 1s
written (and therefore seen), and 1 tells which vehicle or
command. These two variables therefore belong to the interface
between the device processes “screen” and "pen”, which are
declared within the seme device module, The first action after
the pen has geen an object, is to determine the current mode, If
it is “figure”, the appropriate action is "z := 1", because the
seen vehicle becomes the designated vehicle. If the mode is
"command"”, then the designated vehicle’s speed dx[z] or dy[z] or
its update interval del[z] have to be changed appropriately (see
program).

An inherent problem in the use of & light pen is that it has to
be disabled temporarily after having spotted an item, because
otherwise during the next refresh cycle it will see the same
item again. The disabling must last an appropriate time to allow
the withdrawal of the pen from the screen, whereupon it has to
be reenabled, In the DEC GT-44 system, the pen is ppt disabled:
instead, the entire display is stopped. It is up to the pen
process ta restart dit., This action must include the explicit
execution of a display- processor instruction that disables
interrupts due to the pen, because there is no status register
with an interrupt enable bit. (In our example, this instruction
is dincluded in the frame code.) This restart action of the
screen within the pen process reveals that the current hardware
is inappropriate to this method of structuring processes. The
display device deviates in several respects unnecessarily from
the comparatively regular and systematic handling of other
devices, and 1in particular the 1light pen appears 1like an
afterthought to the overall design. The present solution can at
best be called an "elegant paint job", but it cannot hide the
inherent incompatibility between the offered hardware and the
systematic method of identifying devices as processes., Having
executed the appropriate actions to interpret the seen command,
and after having restarted the display processor, the pen
process waits for an appropriate number of tick intervals, until
it reenables the pen interrupts. The pen rests inoperative for
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about 8.5 sec.

Fig. 9 displays the resulting process structure of ?he entire
system, and 1lists the respective interface variables and

eignals,

> .

itemt ° 0.

dx dy del

mode

pensig

Fig.9. Processes, signals and shared variables

module spacerace;
const m = 8; (*no. of vehicles on screen*)
yar i,x@,yP: integer;
scrsig, pensig: signal; .
Xy Yi arrav 1:m gf integer; (*coordinates*)
dx, dy: arrav 1:m of integer; (*¥increments¥*)
del: array 1:m gof integer; (*delay stepst)

device module display [4];
use x, y, dx, dy, del, pensig, scrsig, m;
canst n = 8; (*no. of commands*)
var mode: {(frame, figure, command):
i: integer:
z: integer; (*index of currently identified vehicle*)
dpc [172@80B]l: integer: (#*dieplay program counter*)

frm: array #:17 of integer: (*frame display code*)
fig: arrey B:13 gf integer; (*vehicle display code*)

com: grray 1:n, B:15 gf integer; (*command codes*)

‘process screen [32¢B);
begin
loop wait(scrsig):
mode := frame: dpc := adr(frm); doio:
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mode := figure; i 1= m;
repeat figl1] := x[4i); figl2] := y[il:
Figl11) := 64 + i
Aif i = z then fig[10] := 1¢3638E (#blink on*)
else figl1@] := 183628E (%#blink off*)
end
dpc = adr(fig); doio: dec(i)
until i = @;
mode := command; i := n;
repeat dpc := adr(com[il]); doio: dec(i)
until i = @
end
end screen
process pen [324B]:
var d: integer:
begin
logp frm[B] := 117164B;: doio: (#*wait until pen signals*)
frm[B] := 1171258:;
1f mode = figure then z := i
elsif mode = command then
casg 3 af
1: begin inc(dx[z]) gnﬂ
2: begin inc(dylz]) end
3: begin dec(dx[z]) god
4: begin dec(dylz]) end
5: begin inc(dellz]) gnd ;
6: begin dec(del{z]) gnd ;
7: beagip dx{z] := @; dy [z] = P dellz] := @
if.z-1.th.enhat(ﬂ)enﬂ
end
8: begin dx[2z] := -dx[z]: dyl[z] := -dylz] gnd :
end
end ¢
dpc := adr(frm); (#*restart display#*)
d 1= 25:
repeat wait(pensig);: dec(d) yntil d = @
end
end pen ;
egin (*diqDlay module;: see note following this program*)
frm[ P := 1171248; Frm[ 1] &= ge: frml 2] := gB:
frm[ 3] := 1100€08; frm[ 4] := B41777B; frm[ 5] := 2B
frm[ 6] := P4BPEPE; frm[ 7] := B8817778B; frm[ 8] := B8617778B;
frm[ 9] := gB; frm[10] := 240000B; frm{11] := 8217778;
frm[ 12] := gB; frm[13] := 0802¢PB; frm(14] := 0417778B;
frm[15] := 6B:; frm[16] := 173408¢8B;
figl B8] := 117824B;: fig[ 1] := pg; figl 2] := =
figl 3] := 1@04¢0@8; figl 4] := B5PPPEEB; figl 5] := E4BCGAEB;
figl 6] := p70@p@B; figl 7] := 0481488; fig[ B8] := 13000PB:
figl 9] := @@g22¢68; fig[18] := 1@3628B; fig[11] := PB;:
figl{12] := 1734p08;
com[1,8] := 1170248B;: com[1,1] := P@100@B; com(1,2] := @BB10EE;
com[1,3] := 184000B; com[1,4] := B56@008B; com[1,5] := B620108B;
com{1,6] := B48128B; com(1,7] := P42¢18B;: com[1,8] := 1734808B;
com[2,8] := 117824B; com{2,1] := B21808B; com[2,2] := @PP100B;
com[2,3] := 1¢400¢@B;: com([2,4] := B8468870B; com[2,5] := B621188B;
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com(2,6] := 044008B8: caom[2,7] := 062810B; com[2,8] := 1734008B:
com[3,0] := 117024B: com[3,1] := BE1PECB; com[3,2] := BAPIOAB:
com(3,3] := 1040008: com[3,4] := P7600PB: com[3,5] := g42@108;
com[3,6] := §481288; com[3,7] := P620108: com[3,8] := 1734068
com(4,8] := 117024E; com[4,1) := 0810088: com(4,2] := pep12eB;
com(4,3] := 10404p0B; com[4,4] := g4P1798; com[4,5] := B62010B;
com{4,6] := $44PPPB; com[4,7] = B62110B; com[4,B] := 1734008;
com{5,8] := 1176288B: com[5,1] := 3pgeB; com(5,2] := 788B:
com(5,3] := 10000PB; com[5,4] := B46123B: com[5,5] := 253517B:
com[5,6] := 17340PB;

com[6,B8] := 117620B; com[6,1] := 50¢8: com[6,2] := 788:
com[6,3] := 1080008; com[6,4] := D4PSPEB: com[6,5] := g521238B;
com[6,6] := 1734p@98:

com[ 7,8] := 1176208B; com[7,1] := 1296B; com[7,2] := 788B:
com[7,3] := 100000E;: com[7,4] := P4@5108; com[7,5) := 7521148
com[7,6] := 1734008B;

com[B,8]) := 11762¢B; com[B8,1] := 158¢B; com[8,2] := 788:
com[8,3] := 1¢000E8; com[B8,4] := P4B5082B: com[8,5] := P455p@38:

com[8,6] := 1734p08B:
mode i= frame; z := 1; screen; pen
end display ;

device moduyle timing [6]):
define tick;
y8r tick: signal;
lcs [177546B]: bite:

brocess clock [108B]:
begin lcs[6] := true:
logop doio;
while awaited(tick) dp cend(tick) epd
&nd
end clock:

begin clock
epnd timing

brocess vehicle(i: integer):
yar d: integer;
beaip
loop d := dell[i]: :
repeat wait(tick); dec(d)
until d < @;
inc(x[1i), dx[i]);
if (x[i] < 8) gr (x[i] > 17488B) then
dx[ 1] := -dx[1]; inc(x[1], dx[1])
end
inc(y[i], dy[1]):
if (y[i] < 2088) or (y[i] > 17408) then
dy[i] := -dy[i); inc(y[i], dy[i])
end
end
end item ;

Lrocess clock;
begin
loop weit(tick): send(scrsig); send(pensig)
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end
end clock ;
begin (*spacerace*) i := m;
x@ = 2000B/(m+1); yB := 22¢8:
repeat x[ il := i*x@; y[i) := y@:
dx[ 1] == B; dy[41] := @; del[i] := @;

vehicle(i); dec(i)
until i = #;
clock
end spacerace .

The arrays frm, fig, and com represent the code for the GT-44
display processor. Its “language” is not part of Modula, and the
commands are therefore denoted by octal numberse [6]. The
following alternative specifications (for frm and fig only)
should convey an idea of the nature aof this code.

picture frm; (*frame#*)

begin pointlintensity 4, blink off, solid linesl (2,8):
longvector(L,8)(@,L)(-L,8)(8,~L)(@,128)(L,¢)

end frm;

picture fig(x,y: integer; z: char); (*vehicle*)

begin pointlintensity 4, blink off, solid lines] (x,y):
shortvector(D,0)(2,0)(~-D,0)(2,-D);
relativepoint(9,6):
character[intensity 7, blink on)] 2z

end fig

L = 1923 is the frame width, and D = 32 1is the width of the
square depicting a vehicle.
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DESIGN AND IMPLEMENTATION QF MODULA

1. Introduction

In this report I shall try to do two things: to give an account
of how and why certain design decisions were made in the
development of the programming language Modula, and to explain
some details of its implementation on the PDP-11 computer., The
reader is referred to the defining report of Modula [1] which
also contains & brief overview of the language, and to the
companion paper illustrating some typical applications of Modula
[217.

The entire project started out with the modest aim to gain some
experience and insight in the field of multiprogramming and
device handling. Such insight, it was stipulated, could well
lead to a set of practical rules or guidelines for effective and
reliable multiprogram system design, that could ultimately
consolidate into a discipline. It scon became evident that the
creation of such a set of rules amounted to nothing 1less than
the design of a new “language”, i.e. a set of notations and
structures in terms of which design would proceed. Some programs
were developed in this way and formulated in assembly code. This
approach made it possible to experiment whith some proposed
elements on which the design discipline was to evolve, but more
significantly it also drove home a message that actually should
have been known already: that the mere proposal of an abstract
notational scheme to design systems (which thereafter must be
coded by hand in a low~level language) will neither lead to
reliable products nor to a significant saving in development
cost. The necessity of & high-level language with a fully
automated compilation process is unquestionable. The modest
learning effort in multiprogramming thus slowly evolved into
another exercise in language design and implementation.

Our desire to take over many familiar elements from Pascal 1is
understandable, After all, our aim was to concentrate on the
novel aspects due to multiprogramming, and not on the design of
an entirely new language in toto. Yet, the occasion was seilzed
te change several details, and in particular to omit certain
facilities that are either complicated to implement, or not
needed in the context of our original goal, or both. In
retrospect, Modula turned out to be a language considerably
smaller than Pascal. Yet it provides ample room for exper-
imenting and exploring good techniques of programming, for
committing blunders and recognising that multiprogramming is
truly difficult even with a neat and systematic tool at hand.

The development of the compiler was started when a sketchy
definition of the language had been laid out. The compiler was
written 1n Pascal as a one-pass cross—-compiler running on the
CDC 6400, This approach allowed a relatively guick adaptation to
language specification changes, which were rather frequent for a
considerable time. Yet the exercise proved once again that,
unless & very large part of the language is “"right"” at the
beginning, such a project has a small chance to survive. It 1is
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particularly dimportant to choose the right moment when a
language definition is to be stabilized, i.e. when a report is
to be released for programmers, and when & second effort is to
be launched aiming at a well-engineered, efficient compiler.

This paper discusses a few selected topics only, in particular
those that distinguish Modula from Pascal. These are the module
structure and all facilities concerned with concurrent pro-
cesses., The discussion of aspscts of implementation is restric-—
ted to the run-time organization; we refrain from commenting on
caompiler technology.

2. Modules

The block structure of Algol and Pascal with its facility to
declare local abjects does not adeguately cover the needs of
systems programming. In particular, it does not allow to hide
objects (or details about them), while they are still in
existence. Objects cease to exist, as soon as control leaves the
procedure (block) to which they are local, To some degree, the
own variables of Algol 6@ incorporate the desired information
hiding property. However, the gown concept has well-known
deficiencies, and a different solution has to be found,.

A very much more appropriate solution was offered by the glass
concept of GSimula as modified by Brinch Hansen and Hoare
[3,4,5]. The class definition defines a set of procedures
(operators) and a set of variables to which only these
procedures have access. The important aspect is that these
variables continue to exist, if control 1leaves any of these
procedures.

Why then, did we not adopt the class structure in Modula? The
primary reason is that the wunit of program which has to
encapsulate information from its environment - now called a
module - appears to be of relatively 1large size in systems
programming, and that usually only one instance of such a module
exists. This is in contrast to the original aim of the class
concept, where there exist many such objects of identical
structure, They form a class . The class embodies the idea of an
abstract data type to be declared in conjunction with its
appliceble operators [6,7]. The module, however, rather pursues
the aim of an adequate facility to declare such entities as, for
example, a scanner in a compiler, a disk store manager in an
operating system, or a communication 1line handler in a data
station, Hence, the module has somewhat different objectives
than the «class, and it would therefore be misleading to claim
that the module concept replaces the class concept, although it
can be shown that formally the former covers the latter. We
shall show how a class definition can be represented by a module
declaration, and then discuss the advantages and disadvantages
of the two structures.
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Consider the following class definition [4]:

type C = glass

This is expressed in terms of a module as follows:

module M:
define R,q,s:
tvpe R = record x.,y: T gnd:

procedure p(yvar r: R; U);
begin ... god p:

procedure qlyar r: R; V):
begin ... end g:

procedyre s{yar r: R);
begin
end:

end M

The advantage of the class is evident, if we create several
instances of the data structure, each consisting of the two
compenents x and y:

xar a,b: C

Thereby the initialization statement 6 is implicitly invoked
once for a and once for b. An invokation of procedure q, applied
to a8 is expressed conveniently as

a.gl(v)

where a appears as & parameter in a distinguished position. In
the case of the module structure, the two variables are declared
as

yar a,b: R
and the call as
gla,v)

Initialization must be stated explicitly as s(a). The principal
advantage of the class notation appears, if there are several
classes, perhaps with the same identifiers for some of their
individual operators: their names are entirely local, and their

idgntity is determined by the prefixed parameter, whose type
uniguely specifies one class.

It is not our intention to belittle these advantages, but the
sophisticated combination of wusing =a distinguished parameter
position to identify the scope in which its operator is defined

.
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is of much lesser importance in the application area envisaged
for modules. It seems only natural that the designer of a system
chooses unigque names for all operators exported from different
(parallel, not nested) modules. The primary advantage is then
one of conceptual simplification: the module has one and only
one function, namely to establish a static scope of identifiers,
whose acrossboundary visibility of identifiers is strictly under
the programmer’'s control. Export (and import) rules are not
restricted to some operators (procedures), but apply identically
to names of any kind of object, such as constants, types,

variables. This generality of scope rules has in practice proved
to be highly valuable,

If only one instance of a class variable is to appear, then of
course the module notation is equally simple, if not simpler.
The declaration

module M;
define g;
xar x,y: T;
orocedure ql(Vv);

begin S
gnd M

replaces both the class definition and its instantiation a:C,
and the call g(v) replaces a.q(v). In the case of multiple
instances the module notation is more cumbersome, but also
provides some additional possibilities, such as, for example,
the introduction of variables common ¢to all class dinstance

operators declared in the module heading and initalised in its
body.

Implementation of the module 1is, considering the additional
possibilities, simpler than that of the class. After all, the
only conceptual innovation of the module lies in delimiting the
scope of identifiers. In the compiled code, there appears no
trace of the module structure itself, Nevertheless, the
additional sophistication of the compiler’s symbol table
mechaniem is rather considerable, and in any case greater than
anticipated. It weighs particularly in the case of multipass
compilers, Unfortunately, it appears to be almost impossible to
avoid &a multi-pass scheme. This not only in view of Modula’s
application to minicomputers with 1limited store size, but
primarily because of the potential desirability of cross
references of objects defined in different modules.

There are two issues that gave rise to some discussions: the
read-only nature of exported variables, and the intransparency
of exported types. The latter stems from the desire to match the
class definition’s power of internal structure hiding. Hence, a
programmer using an exported type (e.g. R in the above example)
cannot wuse any knowledge about the details of R, not even does
he "know"”, for example whether R is a record or an array
structure.
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The decision to declare every exported variable to be a read-
only variable is based on the view that variables belonging to a
module actually should not be exported at all. Making them
exportable as read-only variables, however, avoids the
cumbersome declaration of function procedures that merely yield
a variable’s value.

3. Geperal Processes

The most important and predominant decisions to be taken in the
design of a multiprogramming language implementation are those
concerning storage allocation end processor management (sched-
uling). The guiding criteria in the decisions taken here were
efficiency and simplicity of addressing (of variables) and of
signalling operations. The 1latter are the only programmed
operators that may cause the processor to switch from one pro-
cess to another. Another objective was a minimal run-time
support routine.

3.%. Storage lavout

The language Modula projects a view of systems consisting of a
fixed number of concurrently active processes, This concept
eliminates the need for & dynamic storage management scheme
among proctesses. But even for primitive systems, this view of an
entirely static world is somewhat too simplicistic: even simple
systems, upon "deadstart”, grow from an initial nucleus to their
“"operating” complexity. Modula therefore supports the possi-
bility of dynamic process generation (and allocation of their
workspace). However, it does not support the notion of their
dissolution. (In fact, a process may terminate, but this does
not imply the recycling of its store). Modula restricts the
ability to generate new processes to the main program part. This
brings twe advantages. First, all complications arising from
processes having "sons" (which perhaps survive their ancestors)
are avoided. Second, after the main program has reached a
specific point (usually the end), it is guaranteed that no
storage overflow can occur. This is crucial in all process
control systems, where the main program part assumes the role of
an initialization phase. During this phase, storage is allocated
sequentially as needed by newly generated processes, Each data
segment contains a header containing a link to another process,
All processes are thus linked in a single ripg. This header,
called the progess descriptor also represents the state of the
process when 1t is not being served by the processor.
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CP .
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Fig.1. Workspaces of processes linked in & ring.

Naturally, each process has its own stack (work space). Each
stack is of fixed size. This slize wmay be computed by the
compiler, provided that no procedure is sctivated recursively.
Modula, however, does aliow recursion. In this case, a compiler
directive must indicate the maximum depth of the recursion,

3.2; Addressing of variables

A dominant problem is the addressing of variables, and the
efficiency of the overall implementation crucially depends on
the quality of its solution. Global variables (i.e. those
declared in the main program block) can be addressed directly,
as their location is known at compile time. Variables local to @&
process must be addressed relative to that data segment’s
origin. Since such references occur frequently, it is important
that their access is efficient. Therefore, the origin of the
segment of the currently running process is held in a processor
register (called CP for Current Process).

Variables 1local to & procedure must be addressed relative to
that procedure’s data segment (also called activation record).
The common solution is to stack ‘these segments in the workspace
(stack of the process), and to access segments via a descending
link chain originating from a register pointing to the topmost
segment, This solution guarantees most efficient access te local
variables and 1less efficient access to variables local to sur-
rounding procedures, As such accesses are much less frequent,
this kind of sacrifice seems tolerable. If 1t is not, the
mechanism of a Display can be introduced which, however, incurs
some overhead upon procedure calls. The chief drawback of the
described method is that a special register is required along

with instructions to change its value upon each procedure call
and exit.

The PDP-11 subroutine call mechanism uses @& stack address
register, and it happens that this register may also be used as
a relative address for accessing local variables., The compiler
is able to determine its value at each point, and hence also the
offset of any variable. This technique makes variable address-—
ing, even with the use of recursion, very simple and efficient.
But there is, alas, again a hitch: If & program fails, then it
is virtually impossible to generate & symbolic post-mortem—-dump
without the presence of a register containing the base address
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of the most recently called procedure., If, due to these
considerations, we reserve not only a register CP (current
process), but also a register PP (procedure pointer), we obtain
the following addressing modes:

1. Global variables: direct
2. Variables local to a process: relative to CP
3. Variables local to procedure p
a, accessed within p: relative to PP
b. accessed from procedures local to p: indirect via PP
3.3. Operations on sigpnals

A process can be in any one aof three distinct states, It can be
under execution by the processor (or a processor); then it is
called running. Or it can be waiting to be executed (resumed):
then 1t is called regady. Or it can be waiting for a signal s to
be sent; it is called wajiting on s. If Modula 1is to be
implemented on a single-processor computer - and we henceforth
presume this to be the case - we need not distinguish between
the former two as far as state representation by the descriptor
is concerned. If a process is waiting on s, its descriptor is
linked into the queue of descriptors originating at variable s=.
It follows that signals are implemented very simply as variables
with pointer values. (see Fig.2).

e e ) e )
PC P
Ps Fs
4 stack stack 4
rin5 R | 0 r,‘hs JR— r
Fing ] =~ ting
——] o——
0 [3 > o

Fig.2. Process descriptors representing ready and waiting
processes respectively.

Both in the ready and waiting states, the descriptor represents
the state of the process. (Note: PC (program counter) and PS
(processor status) are not deposited in the descriptor itself,
but instead on the top of the (current) stack., The descriptor
contains, however, the stack pointer S5P), The operations of

sending and waiting for a signal & are now guite straight-
forward.

Send(s): The PC and PS are dumped on the stack (e.g. by a trap
instruction). Then SP is stored in the descriptor, the status
field is set to #, indicating "ready"”. Then the first descriptor
in the gueue s is delinked, and CP is made equal to s. At last,

8P, PC and PS are loaded from the delinked process segment, the
latter two by an RTI instruction.
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Wait(s,k): Again, PC and PS5 are dumped on the stack, and SP is
stored in the descriptor. The status field obtains the positive
value k (denoting “waiting"”), and the 1last field dis wused to
insert the descriptor in the gueue starting from s. Insertion
has to occur at a place determined by the waiting rank k. After
this operation, any ready process is searched in the ring. The
ring guarantees a fair scheduling strategy, because each process
gets its turn. In particular, the one entering the waiting state
automatically becomes the last one to be resumed.

In principle one could replace the ring by a queue of ready
processes, Jhis solution is better, if the number of processes
in a system is large (and most of them are waiting most of the
time). But otherwise, the overhead in delinking and reinserting
descriptors in queues is a significant disadvantage.

Awaited(s): This is a simple test for the gqueue s to be empty,
i.e., & test for the address value pnil.

3.4. Interface Modules

The definition of an interface module specifies that at any
moment at most one process may be executing some procedure
defined in the wmodule, “Executing” here means "actively
executing”, for the definition allows an exception: while a
process is actively executing some interface procedure, other
processes may be waiting, i1.e. "“executing” a wait statement
within the module. Hence, wait statements represent some
singular points within the module that are exempted from the
strict mutual exclusion principle.

The reasoning for this rule, according to Hoare [3], goes as
follows: If several processes simultaneously access common
variables, the rules - in particular verification rules - of
ordinary programming no longer apply. If accesses to common
variables are restricted to specific areas - critical section,
monitors, interface modules - and if mutual exclusion of simul-
taneous entry to such sections is guaranteed, then we can again
deal with the common rules and 1laws of uniprogramming. In
general, an invariant condition is established for an interface
module that holds on entry, exit, and for each wait statement.
Let us denote this condition with I, If a communication need
arises between two processes P1 and P2, then this is because a
certain other, supplementary condition B has arisen in, say 1,
that needs to be communicated to P2; a signal is sent from P11 to
P2, Hence we can write

P1: I an

jul

B {send(s)} I

The signal s may reactivate another process that is waiting for
the signal, We must insist that the receiving process P2 can
rely on B to hold when it resumes, for this is essentially the

message carried by the signal. Hence the verification condition
is

P2: T {wait(s)} I and B
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Since the wait and =signal statements occur in an interface
module, we insist that P2 must continue, while P1 is delayed
until P2 either leaves the module or "drops into” another wait
statement. Hopare insists that at this point P1 is immediately
resumed, because it seems intuitively right that an interface
module (being a “critical region”) should be "occupied” as
rarely as possible. (see Fig.3) (Note that the post-condition of
the send statement does not include B. This is because we wish

to allow P2 tg invalidate B after it has resumed upon receiving
the signal,)

In our implementation, we have not obeyed this advice. Instead,
we have exempted send statements from the mutual exclusion rule
like wait statements. This solution has several advantages, but
its consequences have not been fully explored. We merely wish to
point out, that no difference arises between our treatment of
send statements and that of Hoare, if a send statement is the
last statement of an interface procedure. And this is the case
in most examples that are commonly cited.

inlerface

region

P1
Fig.3 Processes with signal exchange

The advantage gained by exempting send statements from the
mutual exclusion condition is that no mechanism for generating
the signal s° (see Fig.3) is needed, and that no implicit
protessor switching occurs. A processor switches from one
process to another only if executing an explicit wait or send
statement, In fact, this is not only & definite implementation

simplification, but also an easily comprehensible and helpful
language rule,

The mechanism to assure mutual exclusion is now quite simple,
and even trivial if Modula is implemented on a single-processor
machine: no such mechanism is needed at all. If switches are
restricted to wait and send statements, all processes except the
One currently being served by the single processor are
positioned at either a wait or a send statement. Since exactly
these statements are exempted from mutual exclusion, no
violation of the (relaxed) mutual exclusion rule can occur. (We

have so far l1eft out interrupts from our considerations on
purpose.)

In Principle, the interface module is therefore identical to a
regular module (if implemented on & single~processor machine),
It was originally introduced by Hoare (as a "monitor”) with the
intent that access to variables shared by several processes
would be restricted to statements within the module. A compiler
may easlly check this rule. Again, we have not adopted it,
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because =~ as shown by the Spacerace program - there are
legitimate applications where such a 1language rule would be
unnecessarily restrictive. In most cases it is not, and
therefore the rule that accesses to shared variables be

collected in an interface module is highly recommended as a
programming principle (rather than & strictly enforced law).

4, Device Progesses

An important goal in the development of Modula was to facilitate
the effective programming of peripheral devices. Such devices
usually operate concurrently and therefore not only reqguire
facilities for genuine multiprogramming but often also
constitute the source of real-time programming problems.
Processor and devices communicate via signals, e.g. starting
pulses to initiate a device operation, and interrupts to signal
the completion of a device operation., The interrupt now appears
as an important hardware concept that must be dealt with, but
cannot be directly expressed in a high-level language based on
the notion of coherent sequential processes, Instead of trying
to “"make available” the interrupt in the undisguised form of
some sort of Jjumps, &actions executed by peripheral devices
should be described by an explicit device statement (syntac-
tically indistinguishable from “ordinary” statements). The
compiler, knowing that such & statement is performed by a
device, compiles code that initiates the device operation, sets
up the interrupt return address, and releases the central
processor., The address is such that an interrupt causes the pro-
cess to resume with the statement following the device
statement, Sandmayr [B] has adopted this strategy and provides
two kinds of device statements, reflecting the simplicity of
device handling available on his computer (HP 2115). We deviate
from this scheme only slightly: The device statement does not
include device initiation, which instead is expressed by separ-
ate, preceding commands. Hence, it suffices to introduce a
single, parameterless device statement for all purposes, We
shall call it “doio”.

So far, processes could assume two possible states: ready and
waiting (for a signal). Now a third state must be added: waiting
for an interrupt (device signal). Such a simple approach should
however be rejected, because the operation of processor switch-
ing due to an interrupt should be kept minimal, i.e. should not
be augmented by additional "overhead” incurred merely because of
an enforced mechanism of process administraticon. Interrupt
handling in Modula should be precisely as efficient as 1if
programmed in machine code. Efficiency can be improved by the
following consideration: usually a whole sequence of device
operations acknowledged by interrupts follow in short succession
(e.g. reading all characters in a line). Hence, &a process
description may be 1left in the special third state until the
entire sequence of interrupts has been received. This idesa led
to the device-control statement in [8], whose component
statement S is executed without leaving the third state.

under dev control S end
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S may contain loops, but is subjected to some obvious restric-
tions, such as exclusion of wait and send st?tements. T he
process state description then changes from “ready” to under
interrupt contrel” upon entry to the device control statement,
and back upon exit. (The indicated device dev determines the
interrupt location to be used within S).

The solution adopted in Modula goes even one step further in

this direction: each statement S to be executed “under device
control” must be declared as a_process of its own. Of course,

send and wait statements must then be admitted. A compiler must
handle them in & different, special way that is designed to
achieve the desired efficiency. Such processes are then called
device processes. It follows that each such process is attached
to a single device (whose associated interrupt location (or in-
terrupt identification) is specified in its heading.) This
concept reflects the customary practice of asscciating a single
driver with each device. The driver or device process corre-
sponds to the familiar concept of an interrupt routine. T he
driver is enclosed in an interface module (called a device mod-
ule) together with all routines that communicate with the device
and &2ll details that are pertinent to the device. The module
then serves to hide these details from the remainder of the
program.

4,1, Progess representation

The following details apply to the chosen strategy of a Modula
implementation:

Device processes are identified by a descriptor similar to those
of regular processes. However, they are not 1linked into the
Ring. Their three states are described in Figs. 4 and 5.

This solution has the additional advantage that the number of
registers to be saved upon an dinterrupt can be kept fairly
small. The compiler may be advised, for example, to utilise only
2 or 3 work registers in device processes. Moreover, switching
of regular processes may be performed without any work register
saving and restoring whatsoever,

D W N M
sP > Funhing registers
device.
process :‘CS'
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interruphe
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Fig.4. Device process in running state
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Fig.5. Device process in "waiting for signal” and
waiting for interrupt” states

4,2. Mutual exclusion, sigpalling. end process priorities

It 4is customary that during the execution of an interrupt
routine further interrupts are withheld (delayed). An obvious
approach to implement mutual exclusion in connection with device
processes is therefore to simply shut off interrupts whenever a
piece of program within & device module is executed. (Remember
that a device module is automatically assumed to be an interface

module.) Does this extremely simple and efficient seolution
suffice?

It does, provided the processor is returned to the interrupted
process whenever the device process decides to release it. In
principle, it must be released in three circumstances only: upon
executing a doio, & wait, or a send statement. If the latter two
are implemented accordingly - and they can be handled differ-

ently from waits and sends in regular processes - the soclution
is safe.

Many computers, including the PDP-11, feature an interrupt
priority system. Each device is given (usually by the hardware)
a fixed priority level. An interrupt from a device at level i
then shuts out interrupts at levels j 2 i (i.e. not necessarily
all interrupts), until the program takes appropriate action.
This notion is rather important in real-time programming, and
must not be hidden by a high~level language.

The fact that a device has a certain interrupt priority i in ef-
fect means that its associated process has a priority i for ob-
taining the processor. Such a priority is therefore indicated in
Modula in the heading of each device module. It signifies (in
the PDP-11 implementation) that all program pieces within the
device module are to be executed with that specified processor
priority level., (This is another reason why device modules
cannot be nested.)

The concept of a process priority railses another aspect about
the rules of signalling. It was argued above that a process
sending a signal must release the processor and pass it on to
the receiving process. Should this also be true, if the sender
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is & device process, i.e. one with & higher priority than the
receiver? This would at least be counter-intuitive. We have
therefore adopted the rule that a send statement executed by a
driver does not release the preocessor, but merely marks the
receiver as "ready”. The above guoted axioms about wait and send
statements therefore hold only provided the device process does
not itself invalidate the condition signalled. We may formulate
this restriction by the following general rule: a (device)
process must never invalidate a condition signalled to a process
of lower priority. This, however, does not appear as a handicap,
if a driver operates in a simple producer/consumer
constellation., And drivers usually satisfy this constraint. On
the other hand, the advantage gained by this solution is
significant, because the number of process switchings is thereby
reduced, and the driver incurs no delay in reactivating its
device, Perhaps the morale of this story is that in real-~time
multiprogramming the same verification axioms may be applied,
provided certain additional constraints or rules of programming
discipline are observed.

The different handling of regular and of device processes makes
it necessary for a sender to be able to determine the category
of the receiver., This requires a test of a descriptor bit. This
test could be saved, if the compiler would be enabled to perform
it. This would, however, require the introduction of a second
kind of signals., We would then distinguish between signal
variables upon which only regular processes may wait, and those
on which device processes wait. Many programming applications
have led to the assumption that such & restriction is in
practice observed anyway. It even appears advisable to bind
every device signal variable to one specific process.

5. Ihe Nucleus

We caell that part of a Modula program the Nucleus, which is
identical for every program and resides permanently in the
computer’s main store. It is that part which embodies the
mechanism for process administration including the routines for
wait and send statements,

It must be the goal of any language (and of its implementation)
for general systems programming to keep its nucleus very small.,
The structure and mechanism of the nucleus determines the
overall concept of the language, and the bigger it is, the more
does it restrict +the flexibility of programs written in the
languege. A large nucleus is also an unmistakable symptom for

built-in overhead. Nucleus routines should be minimal both in
number and in size.

Modula has been designed with this advice in mind. Its nucleus
consists of routines for the starting of processes, and for the
wait and send statements. Moreover it contains some code for
system initialization. The sizes of these routines are
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routine no, of instr. no. of words
start 18 24
wait 27 (21) 38
send 16 ( 9) 20
initial 13 24

Hence the Nucleus has a total size of 98 words. (We do not
consider the process descriptors as belonging to the Nucleus,
although they are accessible to Nucleus routines only. Each
descriptor occupies 4 words.,) The lengths of +the calling
sequences of these routines are

routine no, of instr. nos of words
start 4 7
wait 3 5
send 4 5

The length of the calling sequence for the send routine contains
a test for the signal value "not awaited”, This aveids a call
instruction 1in case the signal is not expected by any process.
It appears essential that signalling is very cheap, if it has no
effect.

The code representing the send, wait, and doio statements within
device processes is expanded inline, and hence does not reqguire
any nucleus code. Its length is

necro no., of instr,. no. of words
start S5+n 12+n
wait B+n 16+ n
send 5 6

doio 8+2n 14+2n

(n denotes the number of work registers available to device pro-
cesses, They are saved and restored upon interrupt.)

Considering the brevity of this Nucleus, one 1is tempted to
regard the Nucleus as a fix of the given hardware to accommodate
the desired multiprogramming concept, rather than as a resident
sof tware support. It might very well be implemented by suitable
microprograms (if that facility is available).

6. Miscellaneous Desion Considerations

In this chapter, several issues will be discussed briefly that
arose during the design of the language Modula and its first im-
plementation. The list of these issues is neither exhaustive nor
ordered according to their length of debate. (Neither did the
length of discussions have a significant correlation to the im-
portance of the issues.)
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6.1. Statement structures

As far as the syntax is concerned, Modula deviates from its
ancestor Pascal in an essential respect: statement structures
consistently follow a single guiding rule. Every structured
statement begins with a keyword (uniguely identifying the kind
of structure) and ends with a closing symbol. The effect 1is
shown for the while statement:

Pascal: Modula:

while B dao § while B dp § end

while B do while B do S1:; S2 end
begin S1; 52 end

The decisive consideration was that, if a statement 1s to be
inserted in & program, no other symbols (such as a begin) would
have to be inserted (deleted) in addition to the statement it~
self. The rule that every structured statement had to end with a
closing symbol (usually end) had, however, the following
consequence: Consider the frequent case of & cascaded con-
ditional such as (written in Pascal or Algol 6@)

if B1 then 51 else
if B2 then S2 else

if Bn fthen Sn else S
This now has to be expressed by the awkward construct

if B1 then S1 glse
Aif B2 then 52 else
if Bn then Sn else S
end

end

It is quite natural in this cese to introduce a construct that
avoids the nesting of structures and eliminates the sequence of
end symbols:

if B1 then S1
elsif B2 then 52
elsif Bn then Sn
else §

end

Note that this represents a genuine, clean solution in contrast
to the fixup rule that "multiple ends” may be merged into a
single end symbol,
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6.2. Jumps and loop structures

The decision to omit jumps (gotoc statements) from Modula was @&
deliberate one; its aim is to explore the practicality of goto-
free programming., It was taken without any claim to be the last
word (and acknowledging the plain fact that many programmers
will be happier and more at ease when a jump 1s available to
them). It was evident, however, that at least one repetitve
structure had to be included (in return), namely @&a loop
statement allowing for one or several exits anywhere within the
sequence of repeated component statements. The chosen form of
such & loop statement appears as somewhat barogque. In its favor
it can be stated that it allows the obvious representation of
virtually all 1loop constructs (including exit actions specific
to each exit point), and that its implementation is quite
straight-forward. It has practically eliminated the need for
labels and jumps. A very important use of the loop statement is
the expression of a non-terminating repetition.

6.3, The dete tvpe bits

A conceptually appealing and efficient representation of bit-
strings has been included in Pascal: the set structure. It is
absent from Modula. This calls for an explanation. Beservations
against adopting the set structure in Modula arocse from the
short wordlength in minicomputers, which is a natural limit for
the cardinality of sets, if an efficient implementation is
desired. A representation using multiple words for set variables
was finally rejected, not so much on grounds of principle, but
because of the desire to keep language size and compiler
development effort in proportion to the availeble resources.

An analysis of the use of set structures in system programming
indicated that access to individual bits is primarily needed for
the following two purposes:

1. Operations on device registers, whose structure is defined by
the hardware

2. Boolean arrays, such as storage reservation tables.
This led to the adoption of the single standard data type
bits = array #:15 of Boolean

instead of a general set structure., Thereby the introduction of
vet another concept is avoided. All ogperations applicable to
Boolean arrays apply to bits. A compiler can easily recognise
them as a case where dense date packing and use of particular
instructions are applicable. As an extension, Modula admits the
Boolean operators not only to components of bit variables, but
to bit variables themselves, implying that they are executed
(pairwise) on all components. This makes the direct use of the
PDP~11 bit-instructions BIC, BIS, BIT and XOR possible.

The acceptance of a standard array type also calls for a de-
notation of array constants. We have restricted such an array




- 52 -

constructor facility to the standard type bits, and instead of
the obvious notation

[cﬂy C17 LA k4 C15]

where ci denotes the value of component i, we have retained the
notation of sets, where

[Xg1 x17 ;-- v Xn]

denotes the indices xi of all components having the value true.
Moreover, this constructor is restricted: ¢the xiI must be
constants. Therefore a compiler can always perform the test
B < xi < 15 for all elements, and it can directly construct an
appropriate bitstring.

6.4. Integer division

The axiom of division
x/(-y) = (=x)/y = =(x/y) ,

specifies symmetry relative to @ and is, to the author’'s
knowledge, observed by all computers that feature a division
instruction. It now happens that most divisions in system
programming have a small constant as divisor; most frequent is a
small power of 2. In these cases, a compiler should be able to
employ & shift instruction for reasons of efficiency. But
herewith &arises a problem: if a computer uses two's complement
representation for negative numbers, then division of negative
dividends 1is not symmetric with respect to zero. There are the
following possibilities for the language designer:

1. Test for the sign of the operand, i.e. compile code which
includes the test(s) and corrects the quotient by adding or
subtracting 1, if necessary.

2. In order to make the use of shift operations possible,
eliminate the inconsistency by forbidding negative operands.

3. Introduce two distinct division operators in your language.

Solution 1 is wunacceptable, because it more than offsets the
efficiency gained by the use of a shift instruction. Solution 2
appears as uncunningly restrictive. Hence, there remains
solution 3. In Modula, "reguler” division is denoted by / and
the division that can be implemented by shifts by div. Let
x div ¥y = g be the quotient and x mgd y = r be the remainder.

Then this division satisfies the following axiom for all
integers x:

X = g¥y + r and B < r < vy

Note that the divisor must be strictly positive. Efficient
compilation is now possible in those cases where it is most
needed: division by small constants. Then the compiler can check
y >®% , it can check whether the use of shift is possible, and
otherwise use a division instruction with an appropriate correc-
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tor. This is necessary for both the diy and mnod operations,

An important application of the pod instruction is the stepping

of an index in a tyclic buffer with N elements. If the origin
index is @, then

i := (i+1) mod N
i 1= (i=-1) mod N

represent the stepping up and down of the index respectively. A
single masking instruction can be used, if N is a power of 2.

6.5. A_cC i ae?

Most modern computers feature a device that interrupts the pro-
cessor in fixed time intervals, usually that of the 1line fre-
guency. In the usual jargon, this device is called a clock. How
should the clock be represented in a high-level language?

The most obvious way in Modula is to introduce a device module
containing a “driver”  oprocess that periodically waits for the

“"clock interrupt” (denoted by “"doio"™) and then sends a signal.
For example:

loop doio:; send(tick) end

One is very much tempted to declare such a process and the
signal variable "tick™ as standard caomponents of Modula that are
implicitly available. We have not done so, because frequently a
clock process of a more complicated form, e.g.

loop deoio: inc(time):
while awaited{(tick) dg send(tick)
end

end

might be preferred (or be necessary). By not declaring the tick
signal to be a standard variable, the Modula programmer has the
freedom (and the ©burden) to define his own clock process
explicitly.

Remark concerning the PDP-11 implementation:
The restriction that signals must not be exchanged between
device processes usually necessitates a second, regular clock
process., Ihe standardization of a minimal clock driver as a
device process would therefore be even more Jjustified.
However, this consideration is particular to our PDP-11
implementation.

We have refrained from introducing & standard signal “tick™,
8lso because another solution might appear as more convenient
for the programmer, namely the use of a standard procedure
pause(n) that delays the calling process by n tick intervals.
This procedure incarnates the genuine purpose of using a clock,
namely the delaying of a process by a given time., The principal
advantage of the pause procedure over the tick signal as a
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predefined object is found in the reduction of the number of
process switchings, if properly incorporated in the Nucleus.

When considering implementation techniques, an immediate
temptation lies in introducing a third process state in addition
to “"ready” and “waiting” (we may call it “delayed”). The
parameter n could be stored in a fifth field of the process
record, and upon each clock interrupt, 1its value would be
decremented for all delayed processes. A simpler solution 1lies
in introducing & hidden signal variable (call it tick), and in
interpreting each pause(n) as a wait(tick,n) statement. The
clock interrupt routine then merely needs to decrement the delay
ranks in all 1linked records, and to reactivate the first
process, when its rank has reached @. (The wait statement
performs the insertion at the appropriate place.)

7. Comments on the PDP-11

Every Modula program constitutes an abstract machine that (apart
from some isolated perts called device modules) is defined
entirely by the definition of the language Modula. Hence, what
we call “language” 1is in effect an infinite collection of
abstract machines or, more appropriately, & tool kit out of
which arbitrary abstract machines can be engineered. We wish to
make availabe a universal interpreter of these machines, and
therefore build a compiler that enables an existing computer, in
our case & PDP-11, to function as universal interpreter. The
question then arises, to which degree the given computsr is
suitable for this purpose, or how natural the structure of the
real machine is to mirror that of the abstract machine.

We have chosen the tool-kit Modula to reflect the dominant
structural aspects of present computers quite truthfully, and to
hide their peculiarities to a large degree, thereby creating a
more systematic tool that is easier to comprehend and manage.
Our subsequent considerations therefore focus on particular
characteristics of the PDP-11 rather than its overall structure.

Some dimportant points have already been mentioned by Bron [9],
notably the well-designed subroutine call mechanism using a
stack, and the old-fashioned concept of the condition codes. We
give some further comments on these issues, and add a few items
to the “negative 1ist” 4in the hope that the criticism be
understood as constructive and that it may help designers of
hardware to recognize the issues.

The wvirtues of the subroutine call instruction JSR are that it
performs what is needed (stacking the return address) and
(almost) no more. JSR can be used to stack any register R and to
place the return address into R. This is of some advantage when
constant parameters are placed immediately following the Jump
instruction. This technique stems from practices of assembly
coding and cannot be used in general. Our compiler does
therefore not fully wutilise +the capabilities of the JBA
instruction, since it always generates JSR PC,x. One detrimental
effect in designing the JSR instruction 'more complicated than
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needed, together with the desire for & matching return
instructiaon, is the MARK instruction. Used in conjunction with
RTS and added in later PDP-11 models as an afterthought, it is a
beautiful example of poor "fixup engineering”.
If a procedure p in a device module has to be called, then the
current priority level of the processor must be saved before the
jump is executed. The call is implemented by the 2 instructions

MOV PS5,-(8P) ;stack PS
JSR PC,p sstack PC and jump

It appears that a single instruction to obtain this effect is
guite obviously missing, because the complementary instruction
RTI (which unstacks PC and PS) 1is present. (The 4 (!) trap
instructions appear identical to the proposed new instruction
with the restriction that they jump to a fixed address.)

The concept of & caondition code register serves to record
certain frequently used predicates of every computed result. As
such, we have no objections to it. Objectionable, however, is
the 1lack of a suitable instruction that readily transfers these
predicate values into data registers, preferably in the form of
& Boolean value. Such a simple instruction would facilitate the
compilation of Boolean expressions very considerably.

Apart from this, it appears that the PDP-11 structure is almost
ideally suited for the efficient realization of the Modula
concept of multiprogramming. This is mainly due to the ideas of
8 stack and SP-register and the way interrupts are implemented.

A few more remarks are in order concerning the gperating of
devices. The rule that each device has its own interrupt address
is eminently sound and crucial. Also, the noticn of priority
levels and its realization are most appropriate. The desire to
impose a systematic approach to device command and status
representation is laudable. Nevertheless, in experimenting with
various devices, I found it rare that knowledge in operating one
device was immediately applicable +to handling another. In
particular, we found the following rules crucial, and postulate
them as “"axioms” for & sound concept of device handling:

1. Each device command (operation) is known to produce either no
interrupt, or at least one interrupt.

2. Upon interruption, the interrogatable device status indicates
whether or not ancother interrupt will follow.

3. Each interrupt is due to a distinct, preceding device
command, (In other words: no interrupt arrives unexpectedly.)

4, Each device has one unigue interrupt location. (A multiplexor
handling several terminals, for example, may be considered as
a single device.)

Unfortunately, the PDP-11 and/or its devices disregard these
rules quite frequently and thereby often relegate the art of
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device programming into the domain of heuristic experimentation.
For example, we have a printer that requires a dg3 character to
start its printchain drive. Sending & dg3 is acknowledged by an
immediate interrupt (what for?), and a gecond interrupt follows
when the chain has reached its regular speed, but only if the
chain had not been running in the first place. There is no way
to interrogate the chain drive status. Most output devices
violate Rule 3: they interrupt the processor when the interrupt
is initially enabled. Also, the card reader sends an unexpected
interrupt when it is switched on. These cases have caused us to
adopt the strict rule to switch off the interrupt enable bit
after every interrupt (doio)., This simply should not be
necessary.

Because the PDP-11 attempts to systematise and unify device
handling more than e&ny other computer known to the author,
deviations from the basic scheme are particularly visible and
annoying. One such device 1is the GI-40 display unit. Its
interrupts can trap to different locations (Rule 4), whether an
interrupt is sent after device completion cannot be determined
by the main processor, and interruptability cannot be enabled or
disabled by setting or resetting a bit in a device register. The
display unit’s and the main processor’s designs not only seem to
originate from different engineers, but also from different eras
of programming and different epoches of computer architecture.

The last point of criticism does not reflect so much on problems
of computer design as on corporate attitude. I refer to the
allocation of device registers in the regular storage addressing
space, (The highest 4K addresses refer automatically to - mostly
not installed - device interface registers instead of =~ often
installed - memory.) As a result, if a customer decides to
augment his PDP-11’s store from 16K to 32K, he is sold 4K of
store that he 1s prevented from using. (He is also told that
buying 16K is cheaper than 12K!) Such an architectural decision
betrays & company’s low esteem of its customers: “they will buy
even what they cannot use”. The sad fact is of course that the
customer’s attitude Justifies that decision: they do not dare to
complain even if organised in big user unions. Is this a symptom
of resignation, or incompetence, or simply indifference?

8. In Retrospect

I have tried to report on project Modula by not merely offering
the final result (which may be not so final after all), but by
describing the deliberations and considerations that led to it.
In retrospect I recognise how ambitious this aim was. The design
of a programming language and its compiler is a very large task
in general. But if the subject is new, largely missing & solid
scientific basis, and influenced by many rapid developments in
technology, such a project is a risky foray with many surprises.
Hence, its evolution cannot progress in a straight line. It is
characterised by many short paths of exploration followed by
retreats. In writing a report as this, one is not only tempted
but forced to ignore many of these "incidents”™, although some of
them still leave their traces. I should therefore warn the
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reader that the development has not been as straight as it may
appear from this a&account, and that many design decisions had
been preceded by long argumente who helped to make us conscious
of the motivations underlying the various alternatives.

The most dimportant 1lesson perhaps is that conscious design
decisions based on conscious motivations are very strongly
influenced by the intended field of application. Being unable to
consciously delimit this intended space of application 1is
possibly the dominant reason for uncontrollable growth of
language diversity and complexity [18]. If a language proves to
be only marginally suitable for some application that was
obviously not envisaged by its originator, we should muster the
courage to bulld a new, truly adeguate tool, instead of Jjust
grafting a fix onto the existing one.
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