Базовые паттерны циклов

Взято с: http://forum.oberoncore.ru/viewtopic.php?p=28238#p28238. Оригинальный материал: http://www.inr.ac.ru/~info21/08.pdf

Схема "полный проход"

Итак, полный проход — есть некая последовательность… чего угодно. Элементов, шагов, ситуаций… Длина не известна, но известно условие проверки её окончания. Т.е. имеет место вот эта самая «обратная связь» - продвинулись на шаг, проверили, не достигнута ли ещё цель.

взять_первую_ситуацию;
WHILE ~конец_ситуаций (* т.е. "удалось взять очередную ситуацию" *) DO
  (* Предусловие: имеем текущую ситуацию, подлежащую обработке *)
  полезное_действие_в_текущей_ситуации;
  переход_к_следующей_ситуации
END

Если видим полный проход в задаче, то сводим его строго к такому шаблону, без фантазий.

Пример с потоковым чтением. Правильно организованный интерфейс потокового чтения предоставляет функцию «считать очередной элемент» и признак, который показывает, было ли считывание успешным.

reader.Read(elem);
WHILE reader.Done() DO
  ...работаем с elem...
  reader.Read(elem)
END

Очевидно, что попыток чтения и должно быть на одну больше, чем оборотов цикла с полезным действием. И «дублирование» как раз по этой причине возникает, и любые попытки его «убрать» не приведут к прояснению ситуации, а только к запутыванию и потере прозрачности.

В других случаях начальное действие и переход могут быть разными:

it := items;
WHILE it # NIL DO
  ...работаем с it...
  it := it.next
END

Действия «взять_начальную», «перейти_к_следующей», не говоря про само полезное действие, могут быть сколь угодно необычными, самое главное — узнать саму семантику полного прохода, и без фантазий написать по шаблону.

Схема "линейный поиск"

Та же история — последовательность чего угодно… Задача — найти такую ситуацию, которая удовлетворяет условию поиска, или показать, что её нет (достигли конца последовательности).

взять_первую_ситуацию;
WHILE ~конец_ситуаций & ~( ... условие поиска ..) DO
  ... возможно, но не очень часто встречается  - действие над текущей ситуацией ...
  взять_следующую_ситуацию
END;
IF ~конец_ситуаций THEN
  ... нашли, делаем что надо, с той ситуацией, на которой остановился цикл...
ELSE
  ... не нашли, делаем что-то, если нужно
END

Важно, чтобы & вычислялся сокращённо (в нормальных языках так и есть), т.к. условие поиска может не иметь смысл в случае конец_ситуаций.

Касательно Дракона — там не нужно повторять IF после цикла, там за счёт разделения конъюнкции WHILE на две последовательных проверки получается два параллельных исхода из цикла — «нашли» и «не нашли», на которые и нанизываем дальнейшие действия. Очень выразительно. http://forum.oberoncore.ru/viewtopic.php?p=21377#p21377

Касательно этого был ещё тут пример — http://forum.oberoncore.ru/viewtopic.php?f=7&t=1443 Про то, что как только узнали стандартную схему, дальше лучше «без фантазий».

Пример с "узнаванием" линейного поиска

Ермаков И.Е.: «Из программки одного моего студента».

Имеется граф потока вычислений. Т.е. ориентированный граф без циклов, вершина — это операция, по дугам входят аргументы. Его можно обсчитывать в режиме потока данных (распространяя «волну» от аргументов к результатам), а можно «лениво» (от интересующего нас конечного узла запрашивая рекурсивно назад). Если считаем в первом режиме, то возникает «фронт волны» (или ещё говорят «рабочая стопка», workpile). Так вот, на каждом витке workpile-алгоритма мы ищем в стопке те узлы графа, для которых уже готовы все аргументы.

Нужно написать для узла графа функцию ReadyForCalc(node): BOOLEAN. Понимающий студент сразу видит, что это = «для любого непосредственного предка node выполнено defined». Т.е. A anc : anc IN Ancestors(node) : anc.defined, где A — квантор всеобщности, A. Точно так же он знает, что это эквивалентно ~ ( E anc : anc IN Ancestors(node) : ~anc.defined, т.е. «среди предков не существует такого, для которого ~defined». Т.е. чтобы доказать, что «для любого…» нужно построить «опровергающий» линейный поиск обратного условия и вернуть отрицание результата этого поиска. Ну и конкретно это отображается в код (граф хранится на квадратной матрице, так, как его вводят в редакторе — для простоты, чтоб не грузить студента ещё задачей авторазмещения элементов на листе):

   PROCEDURE ReadyForCalc (g: Flow.Grid; ref: Flow.Ref): BOOLEAN;
      VAR j: INTEGER; cell: Flow.Cell;
   BEGIN
      (* A cell : cell IN Anc(g[ref]) : cell.defined *)
      (* ~ ( E cell : cell IN Anc(g[ref]) : ~cell.defined *)
      (* т.е. линейный поиск ячейки с ~cell.defined. RETURN поиск_не_удался *)
      ASSERT (g[ref.x, ref.y].argCount > 0, 20);
      cell := g[ref.x, ref.y];
      j:= 0;
      WHILE (j < cell.argCount) & g[cell.args[j].x, cell.args[j].y].defined DO
         INC(j);    
      END;
      RETURN j = cell.argCount
   END ReadyForCalc;

Вот эта вот задача — проверка выполнения какого-то условия для всех ситуаций — тоже часто встречается, её надо узнавать и по такой схеме трансформировать в «опровергающий» линейный поиск.

Наконец, и сам цикл продвижения волны по графу тоже сводится к шаблонному полному проходу, надо только понять, какая тут последовательность ситуаций. За ситуацию примем набор необсчитанных пока вершин, хранящихся в рабочей стопке (фронте). Т.е. инвариантом цикла будет (* INV: в front находятся ещё не обсчитанные вершины, ~defined *).

При этом очевидно, что целесообразно хранить в стопке непосредственно только те вершины, которые имеют шанс стать обсчитанными на очередном витке.

Заведём две операции: Calc ищет в стопке те узлы, которые ReadyForCalc и выполняет расчёт их значений. Step ищет в стопке обсчитанные вершины (они там могут оказаться в середине витка цикла, когда инвариант временно нарушен после Calc), выбрасывает их из стопки, а взамен помещает их непосредственных последователей (тех, которые ещё не попали). Имеем полный проход:

поместить_в_стопку_начальные_аргументы;
Step;
WHILE количество_в_стопке > 0 DO
  Calc;
  Step
END

Как всегда, с помощью первой части тела цикла мы продвинулись вперёд, но нарушили соотношение-инвариант, с помощью второй — восстановили инвариант, после чего идёт проверка условия окончания.

Подробнее об инварианте цикла

Инвариант — «рельсы», по которым он едет — что истинно до начала цикла («поставили на рельсы») и в конце каждого витка. (А раз в конце каждого витка, то и после завершения цикла тоже. Вот ещё одна причина не делать досрочных выходов из цикла. Тогда пишущему и читающему придётся дополнительно убеждаться, что в каждом месте цикла, где он прерывается, инвариант восстановлен.)

Ещё об инварианте: http://forum.oberoncore.ru/viewtopic.php?p=21375#p21375

© 2005-2024 OberonCore и коллектив авторов.