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Preface 
This book has emerged from my lecture notes for an introductory course in compiler design at ETH 
Zürich. Several times I have been asked to justify this course, since compiler design is considered a 
somewhat esoteric subject, practised only in a few highly specialized software houses. Because 
nowadays everything which does not yield immediate profits has to be justified, I shall try to explain 
why I consider this subject as important and relevant to computer science students in general. 

It is the essence of any academic education that not only knowledge, and, in the case of an 
engineering education, know-how is transmitted, but also understanding and insight. In particular, 
knowledge about system surfaces alone is insufficient in computer science; what is needed is an 
understanding of contents. Every academically educated computer scientist must know how a 
computer functions, and must understand the ways and methods in which programs are 
represented and interpreted. Compilers convert program texts into internal code. Hence they 
constitute the bridge between software and hardware. 

Now, one may interject that knowledge about the method of translation is unnecessary for an 
understanding of the relationship between source program and object code, and even much less 
relevant is knowing how to actually construct a compiler. However, from my experience as a 
teacher, genuine understanding of a subject is best acquired from an in-depth involvement with 
both concepts and details. In this case, this involvement is nothing less than the construction of an 
actual compiler. 

Of course we must concentrate on the essentials. After all, this book is an introduction, and not a 
reference book for experts. Our first restriction to the essentials concerns the source language. It 
would be beside the point to present the design of a compiler for a large language. The language 
should be small, but nevertheless it must contain all the truly fundamental elements of programming 
languages. We have chosen a subset of the language Oberon for our purposes. The second 
restriction concerns the target computer. It must feature a regular structure and a simple instruction 
set. Most important is the practicality of the concepts taught. Oberon is a general-purpose, flexible 
and powerful language, and our target computer reflects the successful RISC-architecture in an 
ideal way. And finally, the third restriction lies in renouncing sophisticated techniques for code 
optimization. With these premisses, it is possible to explain a whole compiler in detail, and even to 
construct it within the limited time of a course. 

Chapters 2 and 3 deal with the basics of language and syntax. Chapter 4 is concerned with syntax 
analysis, that is the method of parsing sentences and programs. We concentrate on the simple but 
surprisingly powerful method of recursive descent, which is used in our exemplary compiler. We 
consider syntax analysis as a means to an end, but not as the ultimate goal. In Chapter 5, the 
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transition from a parser to a compiler is prepared. The method depends on the use of attributes for 
syntactic constructs. 

After the presentation of the language Oberon-0, Chapter 7 shows the development of its parser 
according to the method of recursive descent. For practical reasons, the handling of syntactically 
erroneous sentences is also discussed. In Chapter 8 we explain why languages which contain 
declarations, and which therefore introduce dependence on context, can nevertheless be treated as 
syntactically context free. 

Up to this point no consideration of the target computer and its instruction set has been necessary. 
Since the subsequent chapters are devoted to the subject of code generation, the specification of a 
target becomes unavoidable (Chapter 9). It is a RISC architecture with a small instruction set and a 
set of registers. The central theme of compiler design, the generation of instruction sequences, is 
thereafter distributed over three chapters: code for expressions and assignments to variables 
(Chapter 10), for conditional and repeated statements (Chapter 11) and for procedure declarations 
and calls (Chapter 12). Together they cover all the constructs of Oberon-0. 

The subsequent chapters are devoted to several additional, important constructs of general-
purpose programming languages. Their treatment is more cursory in nature and less concerned 
with details, but they are referenced by several suggested exercises at the end of the respective 
chapters. These topics are further elementary data types (Chapter 13), and the constructs of open 
arrays, of dynamic data structures, and of procedure types called methods in object-oriented 
terminology (Chapter 14). 

Chapter 15 is concerned with the module construct and the principle of information hiding. This 
leads to the topic of software development in teams, based on the definition of interfaces and the 
subsequent, independent implementation of the parts (modules). The technical basis is the 
separate compilation of modules with complete checks of the compatibility of the types of all 
interface components. This technique is of paramount importance for software engineering in 
general, and for modern programming languages in particular. 

Finally, Chapter 16 gives a brief overview of problems of code optimization. It is necessary because 
of the semantic gap between source languages and computer architectures on the one hand, and 
our desire to use the available resources as well as possible on the other. 
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Preface to the Revised Edition of 2011 
This book appeared first in 1976 in German. The source language used as a simple example was 
PL0, a subset of Pascal. The target computer had a stack architecture similar to the P-code 
interpreter used for many Pascal implementations. A strongly revised edition of the book appeared 
in 1995. PL0 was replaced by Oberon-0, a subset of Pascal's descendant Oberon. In the target 
computer a RISC architecture replaced the stack architecture. Reduced instruction set computers 
had become predominant in the early 1990s. They shared with the stack computer the underlying 
simplicity. The generated RISC-code was to be interpreted like the P-code by an emulator program. 
The target computer remained an abstract machine. 

In the present new edition Oberon-0 is retained as the source language. The instruction set of the 
target computer is slightly extended. It is still called RISC, but the instruction set is complete like 
that of a conventional computer. New, however, is that this computer is available as genuine 
hardware, and not only as a programmed emulator. This had become possible through the use of a 
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field programmable gate array (FPGA). The target computer is now specified as a text in the 
language Verilog. From this text the circuit is automatically compiled and then loaded into the 
FPGA's configuration memory. The RISC thereby gains in actuality and reality. This in particular, 
because of the availability of a low-cost development board containing the FPGA chip. Therefore, 
the presented system becomes attractive for courses, in which hardware-software codesign is 
taught, where a complete understanding of hardware and software is the goal. 

May this text be instructive not only for future compiler designers, but for all who wish to gain insight 
into the detailed functioning of hardware together with software. 

Niklaus Wirth, Zürich, February 2014 

http://www.inf.ethz.ch/personal/wirth/Oberon/Oberon07.Report.pdf 
http://www.inf.ethz.ch/personal/wirth/FPGA-relatedWork/RISC.pdf 
http://www.digilentinc.com/Products/Detail.cfm?Prod=S3BOARD 
http://www.xilinx.com/products/silicon-devices/fpga/spartan-3.html 

Preface to the Revised Edition of 2017 
In the last years, the Oberon System had been revised and implemented on an FPGA-development 
board  featuring the RISC Computer. The Oberon-0 compiler has been adapted accordingly, as iIt 
does not make sense to provide an interpreter for RISC on a RISC itself. The compiler therefore 
now generates code in the format required by the regular Oberon loader. 
The language Oberon-0, a subset of Oberon, remains unchanged with the exception of input and 
output statements. They now embody the successful Oberon scanner concept. Execution is 
triggered by the Oberon concept of commands. 
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1. Introduction 
Computer programs are formulated in a programming language and specify classes of 
computing processes. Computers, however, interpret sequences of particular instructions, but 
not program texts. Therefore, the program text must be translated into a suitable instruction 
sequence before it can be processed by a computer. This translation can be automated, 
which implies that it can be formulated as a program itself. The translation program is called a 
compiler, and the text to be translated is called source text (or sometimes source code). 

It is not difficult to see that this translation process from source text to instruction sequence 
requires considerable effort and follows complex rules. The construction of the first compiler 
for the language Fortran (formula translator) around 1956 was a daring enterprise, whose 
success was not at all assured. It involved about 18 man years of effort, and therefore figured 
among the largest programming projects of the time. 

The intricacy and complexity of the translation process could be reduced only by choosing a 
clearly defined, well structured source language. This occurred for the first time in 1960 with 
the advent of the language Algol 60, which established the technical foundations of compiler 
design that still are valid today. For the first time, a formal notation was also used for the 
definition of the language's structure (Naur, 1960). 

The translation process is now guided by the structure of the analysed text. The text is 
decomposed, parsed into its components according to the given syntax. For the most 
elementary components, their semantics is recognized, and the meaning (semantics) of the 
composite parts is the result of the semantics of their components. Naturally, the meaning of 
the source text must be preserved by the translation. 

The translation process essentially consists of the following parts: 

1. The sequence of characters of a source text is translated into a corresponding sequence of 
symbols of the vocabulary of the language. For instance, identifiers consisting of letters and 
digits, numbers consisting of digits, delimiters and operators consisting of special characters 
are recognized in this phase, which is called lexical analysis. 

2. The sequence of symbols is transformed into a representation that directly mirrors the 
syntactic structure of the source text and lets this structure easily be recognized. This phase 
is called syntax analysis (parsing). 

3. High-level languages are characterized by the fact that objects of programs, for example 
variables and functions, are classified according to their type. Therefore, in addition to 
syntactic rules, compatibility rules among types of operators and operands define the 
language. Hence, verification of whether these compatibility rules are observed by a 
program is an additional duty of a compiler. This verification is called type checking. 

4. On the basis of the representation resulting from step 2, a sequence of instructions taken 
from the instruction set of the target computer is generated. This phase is called code 
generation. In general it is the most involved part, not least because the instruction sets of 
many computers lack the desirable regularity. Often, the code generation part is therefore 
subdivided further. 

A partitioning of the compilation process into as many parts as possible was the predominant 
technique until about 1980, because until then the available store was too small to 
accommodate the entire compiler. Only individual compiler parts would fit, and they could be 
loaded one after the other in sequence. The parts were called passes, and the whole was 
called a multipass compiler. The number of passes was typically 4 - 6, but reached 70 in a 
particular case (for PL/I) known to the author. Typically, the output of pass k served as input of 
pass k+1, and the disk served as intermediate storage (Figure 1.1). The very frequent access 
to disk storage resulted in long compilation times. 
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Figure 1.1. Multipass compilation. 

Modern computers with their apparently unlimited stores make it feasible to avoid intermediate 
storage on disk. And with it, the complicated process of serializing a data structure for output, 
and its reconstruction on input can be discarded as well. With single-pass compilers, 
increases in speed by factors of several thousands are therefore possible. Instead of being 
tackled one after another in strictly sequential fashion, the various parts (tasks) are 
interleaved. For example, code generation is not delayed until all preparatory tasks are 
completed, but it starts already after the recognition of the first sentential structure of the 
source text. 

A wise compromise exists in the form of a compiler with two parts, namely a front end and a 
back end. The first part comprises lexical and syntax analyses and type checking, and it 
generates a tree representing the syntactic structure of the source text. This tree is held in 
main store and constitutes the interface to the second part which handles code generation. 
The main advantage of this solution lies in the independence of the front end of the target 
computer and its instruction set. This advantage is inestimable if compilers for the same 
language and for various computers must be constructed, because the same front end serves 
them all. 

The idea of decoupling source language and target architecture has also led to projects 
creating several front ends for different languages generating trees for a single back end. 
Whereas for the implementation of m languages for n computers m * n compilers had been 
necessary, now m front ends and n back ends suffice (Figure 1.2). 

 
Figure 1.2. Front ends and back ends. 

This modern solution to the problem of porting a compiler reminds us of the technique which 
played a significant role in the propagation of Pascal around 1975 (Wirth, 1971). The role of 
the structural tree was assumed by a linearized form, a sequence of commands of an abstract 
computer. The back end consisted of an interpreter program which was implementable with 
little effort, and the linear instruction sequence was called P-code. The drawback of this 
solution was the inherent loss of efficiency common to interpreters. 

Frequently, one encounters compilers which do not directly generate binary code, but rather 
assembler text. For a complete translation an assembler is also involved after the compiler. 
Hence, longer translation times are inevitable. Since this scheme hardly offers any 
advantages, we do not recommend this approach. 

Oberon Modula Pascal 

ARM RISC MIPS 

Syntax tree 

lexical 
analysis 

syntax 
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code 
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Increasingly, high-level languages are also employed for the programming of microcontrollers 
used in embedded applications. Such systems are primarily used for data acquisition and 
automatic control of machinery. In these cases, the store is typically small and is insufficient to 
carry a compiler. Instead, software is generated with the aid of other computers capable of 
compiling. A compiler which generates code for a computer different from the one executing 
the compiler is called a cross compiler. The generated code is then transferred - downloaded - 
via a data transmission line. 

In the following chapters we shall concentrate on the theoretical foundations of compiler 
design, and thereafter on the development of an actual single-pass compiler. 
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2. Language and Syntax 
Every language displays a structure called its grammar or syntax. For example, a correct sentence 
always consists of a subject followed by a predicate, correct here meaning well formed. This fact 
can be described by the following formula: 

sentence  =  subject predicate. 

If we add to this formula the two further formulas 

subject  =  "John" | "Mary". 
predicate  =  "eats" | "talks". 

then we define herewith exactly four possible sentences, namely 

John eats Mary eats 
John talks Mary talks 

where the symbol | is to be pronounced as or. We call these formulas syntax rules, productions, or 
simply syntactic equations. Subject and predicate are syntactic classes. A shorter notation for the 
above omits meaningful identifiers: 

S  =  AB. L = {ac, ad, bc, bd} 
A  =  "a" | "b". 
B  =  "c" | "d". 

We will use this shorthand notation in the subsequent, short examples. The set L of sentences 
which can be generated in this way, that is, by repeated substitution of the left-hand sides by the 
right-hand sides of the equations, is called the language. 

The example above evidently defines a language consisting of only four sentences. Typically, 
however, a language contains infinitely many sentences. The following example shows that an 
infinite set may very well be defined with a finite number of equations. The symbol ∅ stands for the 
empty sequence. 

S  =  A. L = {∅, a, aa, aaa, aaaa, ... } 
A  =  "a" A | ∅. 

The means to do so is recursion which allows a substitution (here of A by "a"A) be repeated 
arbitrarily often. 

Our third example is again based on the use of recursion. But it generates not only sentences 
consisting of an arbitrary sequence of the same symbol, but also nested sentences: 

S  =  A. L = {b, abc, aabcc, aaabccc, ... } 
A  =  "a" A "c" | "b". 

It is clear that arbitrarily deep nestings (here of As) can be expressed, a property particularly 
important in the definition of structured languages. 

Our fourth and last example exhibits the structure of expressions. The symbols E, T, F, and V stand 
for expression, term, factor, and variable. 

E  =  T | A "+" T. 
T  =  F | T "*" F. 
F  =  V | "(" E ")". 
V  =  "a" | "b" | "c" | "d". 

From this example it is evident that a syntax does not only define the set of sentences of a 
language, but also provides them with a structure. The syntax decomposes sentences in their 
constituents as shown in the example of Figure 2.1. The graphical representations are called 
structural trees or syntax trees. 
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Figure 2.1. Structure of expressions 

Let us now formulate the concepts presented above more rigorously: 

A language is defined by the following: 

1. The set of terminal symbols. These are the symbols that occur in its sentences. They are said to 
be terminal, because they cannot be substituted by any other symbols. The substitution process 
stops with terminal symbols. In our first example this set consists of the elements a, b, c and d. 
The set is also called vocabulary. 

2. The set of nonterminal symbols. They denote syntactic classes and can be substituted. In our 
first example this set consists of the elements S, A and B. 

3. The set of syntactic equations (also called productions). These define the possible substitutions 
of nonterminal symbols. An equation is specified for each nonterminal symbol. 

4. The start symbol. It is a nonterminal symbol, in the examples above denoted by S. 

A language is, therefore, the set of sequences of terminal symbols which, starting with the start 
symbol, can be generated by repeated application of syntactic equations, that is, substitutions. 

We also wish to define rigorously and precisely the notation in which syntactic equations are 
specified. Let nonterminal symbols be identifiers as we know them from programming languages, 
that is, as sequences of letters (and possibly digits), for example, expression, term. Let terminal 
symbols be character sequences enclosed in quotes (strings), for example, "=", "|". For the 
definition of the structure of these equations it is convenient to use the tool just being defined itself: 

syntax = production syntax | ∅. 
production = identifier "=" expression "." . 
expression = term | expression "|" term. 
term = factor |  term factor. 
factor = identifier | string. 

identifier = letter | identifier letter | identifier digit. 
string = stringhead """. 
stringhead = """ | stringhead character. 
letter = "A" | ... | "Z". 
digit = "0" | ... | "9". 

This notation was introduced in 1960 by  J. Backus and P. Naur in almost identical form for the 
formal description of the syntax of the language Algol 60. It is therefore called Backus Naur Form 
(BNF) (Naur, 1960). As our example shows, using recursion to express simple repetitions is rather 
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detrimental to readability. Therefore, we extend this notation by two constructs to express repetition 
and optionality. Furthermore, we allow expressions to be enclosed within parentheses. Thereby an 
extension of BNF called EBNF (Wirth, 1977) is postulated, which again we immediately use for its 
own, precise definition: 

syntax = {production}. 
production = identifier "=" expression "." . 
expression = term {"|" term}. 
term = factor {factor}. 
factor = identifier | string | "(" expression ")" | "[" expression "]" | "{" expression "}". 

identifier = letter {letter | digit}. 
string = """ {character} """. 
letter = "A" | ... | "Z". 
digit = "0" | ... | "9". 

A factor of the form {x} is equivalent to an arbitrarily long sequence of x, including the empty 
sequence. A production of the form 

A  =  AB | ∅. 

is now formulated more briefly as  A = {B}. A factor of the form [x] is equivalent to "x or nothing", 
that is, it expresses optionality. Hence, the need for the special symbol ∅ for the empty sequence 
vanishes. 

The idea of defining languages and their grammar with mathematical precision goes back to N. 
Chomsky. It became clear, however, that the presented, simple scheme of substitution rules was 
insufficient to represent the complexity of spoken languages. This remained true even after the 
formalisms were considerably expanded. In contrast, this work proved extremely fruitful for the 
theory of programming languages and mathematical formalisms. With it, Algol 60 became the first 
programming language to be defined formally and precisely. In passing, we emphasize that this 
rigour applied to the syntax only, not to the semantics. 

The use of the Chomsky formalism is also responsible for the term programming language, 
because programming languages seemed to exhibit a structure similar to spoken languages. We 
believe that this term is rather unfortunate on the whole, because a programming language is not 
spoken, and therefore is not a language in the true sense of the word. Formalism or formal notation 
would have been more appropriate terms. 

One wonders why an exact definition of the sentences belonging to a language should be of any 
great importance. In fact, it is not really. However, it is important to know whether or not a sentence 
is well formed. But even here one may ask for a justification. Ultimately, the structure of a (well 
formed) sentence is relevant, because it is instrumental in establishing the sentence's meaning. 
Owing to the syntactic structure, the individual parts of the sentence and their meaning can be 
recognized independently, and together they yield the meaning of the whole. 

Let us illustrate this point using the following, trivial example of an expression with the addition 
symbol. Let E stand for expression, and N for number: 

E  =  N | E "+" E. 
N  =  "1" | "2" | "3" | "4" . 

Evidently, "4 + 2 + 1" is a well-formed expression. It may even be derived in several ways, each 
corresponding to a different structure, as shown in Figure 2.2. 
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Figure 2.2. Differing structural trees for the same expression. 

The two differing structures may also be expressed with appropriate parentheses, namely as (4 + 
2) + 1 and as 4 + (2 + 1), respectively. Fortunately, thanks to the associativity of addition both yield 
the same value 7. But this need not always be the case. The mere use of subtraction in place of 
addition yields a counter example which shows that the two differing structures also yield a different 
interpretation and result: (4 - 2) - 1 = 1, 4 - (2 - 1) = 3. The example illustrates two facts: 

1. Interpretation of sentences always rests on the recognition of their syntactic structure. 
2. Every sentence must have a single structure in order to be unambiguous. 

If the second requirement is not satisfied, ambiguous sentences arise. These may enrich spoken 
languages; ambiguous programming languages, however, are simply useless. 

We call a syntactic class ambiguous if it can be attributed several structures. A language is 
ambiguous if it contains at least one ambiguous syntactic class (construct). 

2.1. Exercises 
2.1. The Algol 60 Report contains the following syntax (translated into EBNF): 

primary  =  unsignedNumber | variable | "(" arithmeticExpression ")" | ... . 
factor  =  primary | factor "↑" primary. 
term  =  factor | term ("×" | "/" | "÷") factor. 
simpleArithmeticExpression  =  term | ("+" | "-") term | simpleArithmeticExpression ("+" | "-") term. 
arithmeticExpression  =  simpleArithmeticExpression | 
 "IF" BooleanExpression "THEN" simpleArithmeticExpression "ELSE" arithmeticExpression. 
relationalOperator  =  "=" | "≠" | "≤" | "<" | "≥" | ">" . 
relation  =  arithmeticExpression relationalOperator arithmeticExpression. 
BooleanPrimary  =  logicalValue | variable | relation | "(" BooleanExpression ")" | ... . 
BooleanSecondary  =  BooleanPrimary | "¬" BooleanPrimary. 
BooleanFactor  =  BooleanSecondary | BooleanFactor "∧" BooleanSecondary. 
BooleanTerm  =  BooleanFactor | BooleanTerm "∨" BooleanFactor. 
implication  =  BooleanTerm | implication "⊃" BooleanTerm. 
simpleBoolean  =  implication | simpleBoolean "≡" implication. 
BooleanExpression  =  simpleBoolean | 
 "IF" BooleanExpression "THEN" simpleBoolean "ELSE" BooleanExpression. 

Determine the syntax trees of the following expressions, in which letters are to be taken as 
variables: 

x + y + z 
x × y + z 
x + y × z 
(x - y) × (x + y) 
-x ÷ y 

A 

A      +      A 

A     +    A 

4 2 

1 

A

A      +      A

A     +    A 4

2 1



 13

a + b < c + d 
a + b < c ∨ d ≠ e ∧ ¬ f ⊃ g > h ≡ i × j = k ↑ l ∨ m - n + p ≤ q 

2.2. The following productions also are part of the original definition of Algol 60. They contain 
ambiguities which were eliminated in the Revised Report. 

forListElement  =  arithmeticExpression | 
 arithmeticExpression "STEP" arithmeticExpression "UNTIL" arithmeticExpression | 
 arithmeticExpression "WHILE" BooleanExpression. 
forList  =  forListElement | forList "," forListElement. 
forClause  =  "FOR" variable ":=" forList "DO" . 
forStatement  =  forClause statement. 
compoundTail  =  statement "END" | statement ";" compoundTail. 
compoundStatement  =  "BEGIN" compoundTail. 
unconditional Statement  =  basicStatement | forStatement | compoundStatement | ... . 
ifStatement  =  "IF" BooleanExpression "THEN" unconditionalStatement. 
conditionalStatement  =  ifStatement | ifStatement "ELSE" statement. 
statement  =  unconditionalStatement | conditionalStatement. 

Find at least two different structures for the following expressions and statements. Let A and B 
stand for "basic statements". 

IF a THEN b ELSE c = d 
IF a THEN IF b THEN A ELSE B 
IF a THEN FOR ... DO IF b THEN A ELSE B 

Propose an alternative syntax which is unambiguous. 

2.3. Consider the following constructs and find out which ones are correct in Algol, and which ones 
in Oberon: 

a + b = c + d 
a * -b 
a < b & c < d 

Evaluate the following expressions: 

5 * 13 DIV 4  = 
13  DIV  5*4  = 
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3. Regular Languages 
Syntactic equations of the form defined in EBNF generate context-free languages. The term 
"context-free" is due to Chomsky and stems from the fact that substitution of the symbol left of 
= by a sequence derived from the expression to the right of = is always permitted, regardless 
of the context in which the symbol is embedded within the sentence. It has turned out that this 
restriction to context freedom (in the sense of Chomsky) is quite acceptable for programming 
languages, and that it is even desirable. Context dependence in another sense, however, is 
indispensible. We will return to this topic in Chapter 8. 

Here we wish to investigate a subclass rather than a generalization of context-free languages. 
This subclass, known as regular languages, plays a significant role in the realm of 
programming languages. In essence, they are the context-free languages whose syntax 
contains no recursion except for the specification of repetition. Since in EBNF repetition is 
specified directly and without the use of recursion, the following, simple definition can be 
given: 

A language is regular, if its syntax can be expressed by a single EBNF expression. 

The requirement that a single equation suffices also implies that only terminal symbols occur 
in the expression. Such an expression is called a regular expression. 

Two brief examples of regular languages may suffice. The first defines identifiers as they are 
common in most languages; and the second defines integers in decimal notation. We use the 
nonterminal symbols letter and digit for the sake of brevity. They can be eliminated by 
substitution, whereby a regular expression results for both identifier and integer. 

identifier  =  letter {letter | digit}. 
integer  =  digit {digit}. 
letter  =  "A" | "B" | ... | "Z". 
digit  =  "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9". 

The reason for our interest in regular languages lies in the fact that programs for the 
recognition of regular sentences are particularly simple and efficient. By "recognition" we 
mean the determination of the structure of the sentence, and thereby naturally the 
determination of whether the sentence is well formed, that is, it belongs to the language. 
Sentence recognition is called syntax analysis. 

For the recognition of regular sentences a finite automaton, also called a state machine, is 
necessary and sufficient. In each step the state machine reads the next symbol and changes 
state. The resulting state is solely determined by the previous state and the symbol read. If the 
resulting state is unique, the state machine is deterministic, otherwise nondeterministic. If the 
state machine is formulated as a program, the state is represented by the current point of 
program execution. 

The analysing program can be derived directly from the defining syntax in EBNF. For each 
EBNF construct K there exists a translation rule which yields a program fragment Pr(K). The 
translation rules from EBNF to program text are shown below. Therein sym denotes a global 
variable always representing the symbol last read from the source text by a call to procedure 
next. Procedure error terminates program execution, signalling that the symbol sequence read 
so far does not belong to the language. 

K Pr(K)   

"x" IF sym = "x" THEN next ELSE error END 
(exp) Pr(exp) 
[exp] IF sym IN first(exp) THEN Pr(exp) END 
{exp} WHILE sym IN first(exp) DO Pr(exp) END 
fac0 fac1 ... facn Pr(fac0); Pr(fac1); ... Pr(facn 
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term0 | term1 | ... | termn CASE sym OF 
    first(term0): Pr(term0) 
 |  first(term1): Pr(term1) 
 ... 
 |  first(termn): Pr(termn) 
 END 

The set first(K) contains all symbols with which a sentence derived from construct K may start. 
It is the set of start symbols of K. For the two examples of identifiers and integers they are: 

first(integer) = digits = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"} 
first(identifier) = letters = {"A", "B", ... , "Z"} 

The application of these simple translations rules generating a parser from a given syntax is, 
however, subject to the syntax being deterministic. This precondition may be formulated more 
concretely as follows: 

K Cond(K)  

term0 | term1 The terms must not have any common start symbols. 
fac0 fac1  If fac0 contains the empty sequence, then the factors must 
 not have any common start symbols. 
[exp]   or   {exp} The sets of start symbols of exp and of symbols 
 that may follow K must be disjoint. 

These conditions are satisfied trivially in the examples of identifiers and integers, and 
therefore we obtain the following programs for their recognition: 

IF sym IN letters THEN next ELSE error END ; 
WHILE sym IN letters + digits DO 
 CASE sym OF 
    "A" .. "Z": next 
  | "0" .. "9": next 
 END 
END 

IF sym IN digits THEN next ELSE error END ; 
WHILE sym IN digits DO next END 

Frequently, the program obtained by applying the translation rules can be simplified by 
eliminating conditions which are evidently established by preceding conditions. The conditions 
sym IN letters and sym IN digits are typically formulated as follows: 

("A" <= sym) & (sym <= "Z") ("0" <= sym) & (sym <= "9") 

The significance of regular languages in connection with programming languages stems from 
the fact that the latter are typically defined in two stages. First, their syntax is defined in terms 
of a vocabulary of abstract terminal symbols. Second, these abstract symbols are defined in 
terms of sequences of concrete terminal symbols, such as ASCII characters. This second 
definition typically has a regular syntax. The separation into two stages offers the advantage 
that the definition of the abstract symbols, and thereby of the language, is independent of any 
concrete representation in terms of any particular character sets used by any particular 
equipment. 

This separation also has consequences on the structure of a compiler. The process of syntax 
analysis is based on a procedure to obtain the next symbol. This procedure in turn is based on 
the definition of symbols in terms of sequences of one or more characters. This latter 
procedure is called a scanner, and syntax analysis on this second, lower level, lexical 
analysis. The definition of symbols in terms of characters is typically given in terms of a 
regular language, and therefore the scanner is typically a state machine. 
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We summarize the differences between the two levels as follows: 

Process Input element Algorithm Syntax 

Lexical analysis Character Scanner Regular 
Syntax analysis Symbol Parser Context free 

As an example we show a scanner for a parser of EBNF. Its terminal symbols and their 
definition in terms of characters are 

symbol = {blank} (identifier | string | "(" | ")" | "[" | "]" | "{" | "}" | "|" | "=" | ".") . 
identifier = letter {letter | digit}. 
string = """ {character} """. 

From this we derive the procedure GetSym which, upon each call, assigns a numeric value 
representing the next symbol read to the global variable sym. If the symbol is an identifier or a 
string, the actual character sequence is assigned to the further global variable id. It must be 
noted that typically a scanner also takes into account rules about blanks and ends of lines. 
Mostly these rules say: blanks and ends of lines separate consecutive symbols, but otherwise 
are of no significance. Procedure GetSym, formulated in Oberon, makes use of the following 
declarations. 

CONST IdLen = 32; 
 ident = 0; literal = 2; lparen = 3; lbrak = 4; lbrace = 5; bar = 6; eql = 7; 
 rparen = 8; rbrak = 9; rbrace = 10; period = 11; other = 12; 

TYPE Identifier = ARRAY IdLen OF CHAR; 

VAR ch: CHAR; 
 sym: INTEGER; 
 id: Identifier; 
 R: Texts.Reader; 

Note that the abstract reading operation is now represented by the concrete call 
Texts.Read(R, ch). R is a globally declared Reader specifying the source text. Also note that 
variable ch must be global, because at the end of GetSym it may contain the first character 
belonging to the next symbol. This must be taken into account upon the subsequent call of 
GetSym. 

PROCEDURE GetSym; 
 VAR i: INTEGER; 
BEGIN 
 WHILE ~R.eot & (ch <= " ") DO Texts.Read(R, ch) END ;   (*skip blanks*) 
 CASE ch OF 
    "A" .. "Z", "a" .. "z": sym := ident; i := 0; 
   REPEAT id[i] := ch; INC(i); Texts.Read(R, ch) 
   UNTIL (CAP(ch) < "A") OR (CAP(ch) > "Z"); 
   id[i] := 0X 
 |  22X:  (*quote*) 
   Texts.Read(R, ch); sym := literal; i := 0; 
   WHILE (ch # 22X) & (ch > " ") DO 
    id[i] := ch; INC(i); Texts.Read(R, ch) 
   END ; 
   IF ch <= " " THEN error(1) END ; 
   id[i] := 0X; Texts.Read(R, ch) 
 |  "=" : sym := eql; Texts.Read(R, ch) 
 |  "(" : sym := lparen; Texts.Read(R, ch) 
 |  ")" : sym := rparen; Texts.Read(R, ch) 
 |  "[" : sym := lbrak; Texts.Read(R, ch) 
 |  "]" : sym := rbrak; Texts.Read(R, ch) 
 | "{" : sym := lbrace; Texts.Read(R, ch) 
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 |  "}" : sym := rbrace; Texts.Read(R, ch) 
 | "|" : sym := bar; Texts.Read(R, ch) 
 |  "." : sym := period; Texts.Read(R, ch) 
 ELSE sym := other; Texts.Read(R, ch) 
 END 
END GetSym 

 

3.1. Exercise 
Sentences of regular languages can be recognized by finite state machines. They are usually 
described by transition diagrams. Each node represents a state, and each edge a state 
transition. The edge is labelled by the symbol that is read by the transition. Consider the 
following diagrams and describe the syntax of the corresponding languages in EBNF. 

 

a ( x )

o 

a +

b

c *.
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4. Analysis of Context-free Languages 
4.1. The method of Recursive Descent 
Regular languages are subject to the restriction that no nested structures can be expressed. 
Nested structures can be expressed with the aid of recursion only (see Chapter 2). 

A finite state machine therefore cannot suffice for the recognition of sentences of context free 
languages. We will nevertheless try to derive a parser program for the third example in 
Chapter 2, by using the methods explained in Chapter 3. Wherever the method will fail - and it 
must fail - lies the clue for a possible generalization. It is indeed surprising how small the 
necessary additional programming effort turns out to be. 

The construct 

A  =  "a" A "c" | "b". 

leads, after suitable simplification and the use of an IF instead of a CASE statement, to the 
following piece of program: 

IF sym = "a" THEN 
 next; 
 IF sym = A THEN next ELSE error END ; 
 IF sym = "c" THEN next ELSE error END 
ELSIF sym = "b" THEN next 
ELSE error 
END 

Here we have blindly treated the nonterminal symbol A in the same fashion as terminal 
symbols. This is of course not acceptable. The purpose of the third line of the program is to 
parse a construct of the form A (rather than to read a symbol A). However, this is precisely the 
purpose of our program too. Therefore, the simple solution to our problem is to give the 
program a name, that is, to give it the form of a procedure, and to substitute the third line of 
program by a call to this procedure. Just as in the syntax the construct A is recursive, so is the 
procedure A recursive: 

PROCEDURE A; 
BEGIN 
 IF sym = "a" THEN 
  next; A; 
  IF sym = "c" THEN next ELSE error END 
 ELSIF sym = "b" THEN next 
 ELSE error 
 END 
END A 

The necessary extension of the set of translation rules is extremely simple. The only additional 
rule is: 

A parsing algorithm is derived for each nonterminal symbol, and it is formulated as a 
procedure carrying the name of the symbol. The occurrence of the symbol in the syntax is 
translated into a call of the corresponding procedure. 

Note: this rule holds regardless of whether the procedure is recursive or not. 

It is important to verify that the conditions for a deterministic algorithm are satisfied. This 
implies among other things that in an expression of the form 

term0 | term1 

the terms must not feature any common start symbols. This requirement excludes left 
recursion. If we consider the left recursive production 
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A  =  A "a" | "b". 

we recognize that the requirement is violated, simply because b is a start symbol of A (b IN 
first(A)), and because therefore first(A"a") and first("b") are not disjoint. "b" is the common 
element. 

The simple consequence is: left recursion can and must be replaced by repetition. In the 
example above  A  =  A "a" | "b"  is replaced by A = "b" {"a"}. 

Another way to look at our step from the state machine to its generalization is to regard the 
latter as a set of state machines which call upon each other and upon themselves. In principle, 
the only new condition is that the state of the calling machine is resumed after termination of 
the called state machine. The state must therefore be preserved. Since state machines are 
nested, a stack is the appropriate form of store. Our extension of the state machine is 
therefore called a pushdown automaton. Theoretically relevant is the fact that the stack 
(pushdown store) must be arbitrarily deep. This is the essential difference between the finite 
state machine and the infinite pushdown automaton. 

The general principle which is suggested here is the following: consider the recognition of the 
sentential construct which begins with the start symbol of the underlying syntax as the 
uppermost goal. If during the pursuit of this goal, that is, while the production is being parsed, 
a nonterminal symbol is encountered, then the recognition of a construct corresponding to this 
symbol is considered as a subordinate goal to be pursued first, while the higher goal is 
temporarily suspended. This strategy is therefore also called goal-oriented parsing. If we look 
at the structural tree of the parsed sentence we recognize that goals (symbols) higher in the 
tree are tackled first, lower goals (symbols) thereafter. The method is therefore called top-
down parsing (Knuth, 1971; Aho and Ullman, 1977). Moreover, the presented implementation 
of this strategy based on recursive procedures is known as recursive descent parsing. 

Finally, we recall that decisions about the steps to be taken are always made on the basis of 
the single, next input symbol only. The parser looks ahead by one symbol. A lookahead of 
several symbols would complicate the decision process considerably, and thereby also slow it 
down. For this reason we will restrict our attention to languages which can be parsed with a 
lookahead of a single symbol. 

As a further example to demonstrate the technique of recursive descent parsing, let us 
consider a parser for EBNF, whose syntax is summarized here once again: 

syntax = {production}. 
production = identifier "=" expression "." . 
expression = term {"|" term}. 
term = factor {factor}. 
factor = identifier | string | "(" expression ")" | "[" expression "]" | "{" expression 
"}". 

By application of the given translation rules and subsequent simplification the following parser 
results. It is formulated as an Oberon module: 

MODULE EBNF; 
 IMPORT Viewers, Texts, TextFrames, Oberon; 

 CONST IdLen = 32; 
  ident = 0; literal = 2; lparen = 3; lbrak = 4; lbrace = 5; bar = 6; eql = 7; 
  rparen = 8; rbrak = 9; rbrace = 10; period = 11; other = 12; 

 TYPE Identifier = ARRAY IdLen OF CHAR; 

 VAR ch: CHAR; 
  sym: INTEGER; 
  lastpos: LONGINT; 
  id: Identifier; 
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  R: Texts.Reader; 
  W: Texts.Writer; 

 PROCEDURE error(n: INTEGER); 
  VAR pos: LONGINT; 
 BEGIN pos := Texts.Pos(R); 
  IF pos > lastpos+4 THEN  (*avoid spurious error messages*) 
   Texts.WriteString(W, "  pos"); Texts.WriteInt(W, pos, 6); 
   Texts.WriteString(W, "  err"); Texts.WriteInt(W, n, 4); lastpos := pos; 
   Texts.WriteString(W, "  sym "); Texts.WriteInt(W, sym, 4); 
   Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf) 
  END 
 END error; 

 PROCEDURE GetSym; 
 BEGIN ...  (*see Chapter 3*) 
 END GetSym; 

 PROCEDURE record(id: Identifier; class: INTEGER); 
 BEGIN (*enter id in appropriate list of identifiers*) 
 END record; 

 PROCEDURE expression; 

  PROCEDURE term; 

   PROCEDURE factor; 
   BEGIN 
    IF sym = ident THEN record(id, 1); GetSym 
    ELSIF sym = literal THEN record(id, 0); GetSym 
    ELSIF sym = lparen THEN 
     GetSym; expression; 
     IF sym = rparen THEN GetSym ELSE error(2) END 
    ELSIF sym = lbrak THEN 
     GetSym; expression; 
     IF sym = rbrak THEN GetSym ELSE error(3) END 
    ELSIF sym = lbrace THEN 
     GetSym; expression; 
     IF sym = rbrace THEN GetSym ELSE error(4) END 
    ELSE error(5) 
    END 
   END factor; 

  BEGIN (*term*) factor; 
   WHILE sym < bar DO factor END 
  END term; 

 BEGIN (*expression*) term; 
  WHILE sym = bar DO GetSym; term END 
 END expression; 

 PROCEDURE production; 
 BEGIN (*sym = ident*) record(id, 2); GetSym; 
  IF sym = eql THEN GetSym ELSE error(7) END ; 
  expression; 
  IF sym = period THEN GetSym ELSE error(8) END 
 END production; 

 PROCEDURE syntax; 
 BEGIN 
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  WHILE sym = ident DO production END 
 END syntax; 

 PROCEDURE Compile*; 
 BEGIN (*set R to the beginning of the text to be compiled*) 
  lastpos := 0; Texts.Read(R, ch); GetSym; syntax; 
  Texts.Append(Oberon.Log, W.buf) 
 END Compile; 

BEGIN Texts.OpenWriter(W) 
END EBNF. 

4.2. Table-driven Top-down Parsing 
The method of recursive descent is only one of several techniques to realize the top-down 
parsing principle. Here we shall present another technique: table-driven parsing. 

The idea of constructing a general algorithm for top-down parsing for which a specific syntax 
is supplied as a parameter is hardly far-fetched. The syntax takes the form of a data structure 
which is typically represented as a graph or table. This data structure is then interpreted by 
the general parser. If the structure is represented as a graph, we may consider its 
interpretation as a traversal of the graph, guided by the source text being parsed. 

First, we must determine a data representation of the structural graph. We know that EBNF 
contains two repetitive constructs, namely sequences of factors and sequences of terms. 
Naturally, they are represented as lists. Every element of the data structure represents a 
(terminal) symbol. Hence, every element must be capable of denoting two successors 
represented by pointers. We call them next for the next consecutive factor and alt for the next 
alternative term. Formulated in the language Oberon, we declare the following data types: 

Symbol = POINTER TO SymDesc; 
SymDesc = RECORD alt, next: Symbol END 

Then formulate this abstract data type for terminal and nonterminal symbols by using 
Oberon's type extension feature (Reiser and Wirth, 1992). Records denoting terminal symbols 
specify the symbol by the additional attribute sym: 

Terminal = POINTER TO TSDesc; 
TSDesc = RECORD (SymDesc) sym: INTEGER END 

Elements representing a nonterminal symbol contain a reference (pointer) to the data 
structure representing that symbol. Out of practical considerations we introduce an indirect 
reference: the pointer refers to an additional header element, which in turn refers to the data 
structure. The header also contains the name of the structure, that is, of the nonterminal 
symbol. Strictly speaking, this addition is unnecessary; its usefulness will become apparent 
later. 

Nonterminal = POINTER TO NTSDesc; 
NTSDesc = RECORD (SymDesc) this: Header END 
Header = POINTER TO HDesc; 
HDesc = RECORD sym: Symbol;  name: ARRAY n OF CHAR END 

As an example we choose the following syntax for simple expressions. Figure 4.1 displays the 
corresponding data structure as a graph. Horizontal edges are next pointers, vertical edges 
are alt pointers. 

expression = term {("+" | "-") term}. 
term = factor {("*" | "/") factor}. 
factor = id | "(" expression ")" . 

Now we are in a position to formulate the general parsing algorithm in the form of a concrete 
procedure: 
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PROCEDURE Parsed(hd: Header): BOOLEAN; 
 VAR x: Symbol; match: BOOLEAN; 
BEGIN x := hd.sym; Texts.WriteString(Wr, hd.name); 
 REPEAT 
  IF x IS Terminal THEN 
   IF x(Terminal).sym = sym THEN match := TRUE; GetSym 
   ELSE match := (x = empty) 
   END 
  ELSE match := Parsed(x(Nonterminal).this) 
  END ; 
  IF match THEN x := x.next ELSE x := x.alt END 
 UNTIL x = NIL; 
 RETURN match 
END Parsed; 

 

 
Figure 4.1. Syntax as data structure 

The following remarks must be kept in mind: 

1. We tacitly assume that terms always are of the form 

T  =  f0 | f1 | ... | fn 

where all factors except the last start with a distinct, terminal symbol. Only the last factor 
may start with either a terminal or a nonterminal symbol. Under this condition is it possible 
to traverse the list of alternatives and in each step to make only a single comparison. 
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2. The data structure can be derived from the syntax (in EBNF) automatically, that is, by a 
program which compiles the syntax. 

3. In the procedure above the name of each nonterminal symbol to be recognized is output. 
The header element serves precisely this purpose. 

4. Empty is a special terminal symbol and element representing the empty sequence. It is 
needed to mark the exit of repetitions (loops). 

 

4.3.  Bottom-up Parsing 
Both the recursive-descent and table-driven parsing shown here are techniques based on the 
principle of top-down parsing. The primary goal is to show that the text to be analysed is 
derivable from the start symbol. Any nonterminal symbols encountered are considered as 
subgoals. The parsing process constructs the syntax tree beginning with the start symbol as 
its root, that is, in the top-down direction. 

However, it is also possible to proceed according to a complementary principle in the bottom-
up direction. The text is read without pursuit of a specific goal. After each step a test checks 
whether the read subsequence corresponds to some sentential construct, that is, the right part 
of a production. If this is the case, the read subsequence is replaced by the corresponding 
nonterminal symbol. The recognition process again consists of consecutive steps, of which 
there are two distinct kinds: 

1. Shifting the next input symbol into a stack (shift step), 

2. Reducing a stacked sequence of symbols into a single nonterminal symbol according to a 
production (reduce step). 

Parsing in the bottom-up direction is also called shift-reduce parsing. The syntactic constructs 
are built up and then reduced; the syntax tree grows from the bottom to the top (Knuth, 1965; 
Aho and Ullman, 1977; Kastens, 1990). 

Once again, we demonstrate the process with the example of simple expressions. Let the 
syntax be as follows: 

E  = T | E "+" T. expression 
T  = F | T "*" F. term 
F  = id | "(" E ")". factor 

and let the sentence to be recognized be x * (y + z). In order to display the process, the 
remaining source text is shown to the right, whereas to the left the - initially empty - sequence 
of recognized constructs is listed. At the far left, the letters S and R indicate the kind of step 
taken 

  x * (y + z) 
S x   * (y + z) 
R F   * (y + z) 
R T   * (y + z) 
S T*      (y + z) 
S T*(     y + z) 
S T*(y       + z) 
R T*(F       + z) 
R T*(T       + z) 
R T*(E       + z) 
S T*(E+          z) 
S T*(E + z           ) 
R T*(E + F              ) 
R T*(E + T           ) 
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R T*(E           ) 
S T*(E) 
R T*F 
R T 
R E 

At the end, the initial source text is reduced to the start symbol E, which here would better be 
called the stop symbol. As mentioned earlier, the intermediate store to the left is a stack. 

In analogy to this representation, the process of parsing the same input according to the top-
down principle is shown below. The two kinds of steps are denoted by M (match) and P 
(produce, expand). The start symbol is E. 

 E x * (y + z) 
P T x * (y + z) 
P T* F x * (y + z) 
P F * F x * (y + z) 
P id * F x * (y + z) 
M    * F   * (y + z) 
M       F      (y + z) 
P       (E)      (y + z) 
M       E)       y + z) 
P       E + T)       y + z) 
P       T + T)       y + z) 
P       F + T)       y + z) 
P       id + T)     y + z) 
M           + T)          + z) 
M              T)             z) 
P              F)             z) 
P              id)             z) 
M                 )            ) 
M 

Evidently, in the bottom-up method the sequence of symbols read is always reduced at its 
right end, whereas in the top-down method it is always the leftmost nonterminal symbol which 
is expanded. According to Knuth the bottom-up method is therefore called LR-parsing, and the 
top-down method LL-parsing. The first L expresses the fact that the text is being read from left 
to right. Usually, this denotation is given a parameter k (LL(k), LR(k)). It indicates the extent of 
the lookahead being used. We will always implicitly assume k = 1. 

Let us briefly return to the bottom-up principle. The concrete problem lies in determining which 
kind of step is to be taken next, and, in the case of a reduce step, how many symbols on the 
stack are to be involved in the step. This question is not easily answered. We merely state 
that in order to guarantee an efficient parsing process, the information on which the decision is 
to be based must be present in an appropriately compiled way. Bottom-up parsers always use 
tables, that is, data structured in an analogous manner to the table-driven top-down parser 
presented above. In addition to the representation of the syntax as a data structure, further 
tables are required to allow us to determine the next step in an efficient manner. Bottom-up 
parsing is therefore in general more intricate and complex than top-down parsing. 

There exist various LR parsing algorithms. They impose different boundary conditions on the 
syntax to be processed. The more lenient these conditions are, the more complex the parsing 
process. We mention here the SLR (DeRemer, 1971) and LALR (LaLonde et al., 1971) 
methods without explaining them in any further detail. 

4. 4. Exercises 
4.1. Algol 60 contains a multiple assignment of the form v1 := v2 :=  ...  vn := e. It is defined by 
the following syntax: 
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assignment  =  leftpartlist expression. 
leftpartlist  =  leftpart | leftpartlist leftpart. 
leftpart  =  variable ":=" . 
expression  =  variable | expression "+" variable. 
variable  =  ident | ident "[" expression "]" . 

Which is the degree of lookahead necessary to parse this syntax according to the top-down 
principle? Propose an alternative syntax for multiple assignments requiring a lookahead of 
one symbol only. 

4.2. Determine the symbol sets first and follow of the EBNF constructs production, expression, 
term, and factor. Using these sets, verify that EBNF is deterministic. 

syntax = {production}. 
production = id "=" expression "." . 
expression = term {"|" term}. 
term = factor {factor}. 
factor = id | string | "(" expression ")" | "[" expression "]" | "{" expression "}". 

id = letter {letter | digit}. 
string = """ {character} """. 

4.3. Write a parser for EBNF and extend it with statements generating the data structure (for 
table-driven parsing) corresponding to the read syntax.  
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5. Attributed Grammars and Semantics 
In attributed grammars certain attributes are associated with individual constructs, that is, with 
nonterminal symbols. The symbols are parameterized and represent whole classes of 
variants. This serves to simplify the syntax, but is, in practice, indispensible for extending a 
parser into a genuine translator (Rechenberg and Mössenböck, 1985). The translation 
process is characterized by the association of a (possibly empty) output with every recognition 
of a sentential construct. Each syntactic equation (production) is accompanied by additional 
rules defining the relationship between the attribute values of the symbols which are reduced, 
the attribute values  for the resulting nonterminal symbol, and the issued output. We present 
three applications for attributes and attribute rules. 

5.1. Type rules 
As a simple example we shall consider a language featuring several data types. Instead of 
specifying separate syntax rules for expressions of each type (as was done in Algol 60), we 
define expressions exactly once, and associate the data type T as attribute with every 
construct involved. For example, an expression of type T is denoted as exp(T), that is, as exp 
with attribute value T. Rules about type compatibility are then regarded as additions to the 
individual syntactic equations. For instance, the requirements that both operands of addition 
and subtraction must be of the same type, and that the result type is the same as that of the 
operands, are specified by such additional attribute rules: 

Syntax  Attribute rule Context condition 

exp(T0) = term(T1)  | T0 := T1 
 exp(T1) "+" term(T2)  | T0 := T1 T1 = T2 
 exp(T1) "-" term(T2). T0 := T1 T1 = T2 

If operands of the types INTEGER and REAL are to be admissible in mixed expressions, the 
rules become more relaxed, but also more complicated: 

T0 := if (T1 = INTEGER) & (T2 = INTEGER) then INTEGER else REAL, 

T1 = INTEGER  or  T1 = REAL 
T2 = INTEGER  or  T2 = REAL 

Rules about type compatibility are indeed also static in the sense that they can be verified 
without execution of the program. Hence, their separation from purely syntactic rules appears 
quite arbitrary, and their integration into the syntax in the form of attribute rules is entirely 
appropriate. However, we note that attributed grammars obtain a new dimension, if the 
possible attribute values (here, types) and their number are not known a priori. 

If a syntactic equation contains a repetition, then it is appropriate with regard to attribute rules 
to express it with the aid of recursion. In the case of an option, it is best to express the two 
cases separately. This is shown by the following example where the two expressions 

exp(T0) = term(T1) {"+" term(T2)}. exp(T0) = ["-"] term(T1). 

are split into pairs of terms, namely 

exp(T0) = term(T1)  | exp(T0) =  term(T1)  | 
 exp(T1) "+" term(T2).  "-" term(T1). 

The type rules associated with a production come into effect whenever a construct 
corresponding to the production is recognized. This association is simple to implement in the 
case of a recursive descent parser: program statements implementing the attribute rules are 
simply interspersed within the parsing statements, and the attributes occur as parameters to 
the parser procedures standing for the syntactic constructs (nonterminal symbols). The 
procedure for recognizing expressions may serve as a first example to demonstrate this 
extension process, where the original parsing procedure serves as the scaffolding: 



 27

PROCEDURE expression; 
BEGIN term; 
 WHILE (sym = "+") OR (sym = "-") DO 
  GetSym; term 
 END 
END expression 

is extended to implement its attribute (type) rules: 

PROCEDURE expression(VAR typ0: Type); 
 VAR typ1, typ2: Type; 
BEGIN term(typ1); 
 WHILE (sym = "+") OR (sym = "-") DO 
  GetSym; term(typ2); 
  typ1 := ResType(typ1, typ2) 
 END ; 
 typ0 := typ1 
END expression 

5.2.  Evaluation rules 
As our second example we consider a language consisting of expressions whose factors are 
numbers only. It is a short step to extend the parser into a program not only recognizing, but 
at the same time also evaluating expressions. We associate with each construct its value 
through an attribute called val. In analogy to the type compatibility rules in our previous 
example, we now must process evaluation rules while parsing. Thereby we have implicitly 
introduced the notion of semantics: 

Syntax   Attribute rule  (semantics) 

exp(v0) = term(v1) | v0 := v1 
  exp(v1) "+" term(v2) | v0 := v1 + v2 
  exp(v1) "-" term(v2). v0 := v1 - v2 
term(v0) = factor(v1) | v0 := v1 
  term(v1) "*" factor(v2) | v0 := v1 * v2 
  term(v1) "/" factor(v2). v0 := v1 / v2 
factor(v0) = number(v1) | v0 := v1 
  "(" exp(v1) ")". v0 := v1 

Here, the attribute is the computed, numeric value of the recognized construct. The necessary 
extension of the corresponding parsing procedure leads to the following procedure for 
expressions: 

PROCEDURE expression(VAR val0: INTEGER); 
 VAR val1, val2: INTEGER; op: CHAR; 
BEGIN term(val1); 
 WHILE (sym = "+") OR (sym = "-") DO 
  op : = sym; GetSym; term(val2); 
  IF op = "+" THEN val1 : = val1 + val2  ELSE val1 := val1 - val2 END 
 END ; 
 val0 := val1 
END expression 

5.3. Translation rules 
A third example of the application of attributed grammars exhibits the basic structure of a 
compiler. The additional rules associated with a production here do not govern attributes of 
symbols, but specify the output (code) issued when the production is applied in the parsing 
process. The generation of output may be considered as a side-effect of parsing. Typically, 
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the output is a sequence of instructions. In this example, the instructions are replaced by 
abstract symbols, and their output is specified by the operator put. 

Syntax  Output rule  (semantics) 

exp = term - 
  exp "+" term put("+") 
  exp "-" term. put("-") 
term = factor - 
  term "*" factor put("*") 
  term "/" factor. put("/") 
factor = number put(number) 
  "(" exp ")". - 

As can easily be verified, the sequence of output symbols corresponds to the parsed 
expression in postfix notation. The parser has been extended into a translator. 

Infix notation Postfix notation 

2 + 3 2 3 + 
2 * 3 + 4 2 3 * 4 + 
2 + 3 * 4 2 3 4 * + 
(5 - 4) * (3 + 2) 5 4 - 3 2 + * 

The procedure parsing and translating expressions is as follows: 

PROCEDURE expression; 
 VAR op: CHAR; 
BEGIN term; 
 WHILE (sym = "+") OR (sym = "-") DO 
  op := sym; GetSym; term; put(op) 
 END 
END expression 

When using a table-driven parser, the tables expressing the syntax may easily be extended 
also to represent the attribute rules. If the evaluation and translation rules are also contained 
in associated tables, one is tempted to speak about a formal definition of the language. The 
general, table-driven parser grows into a general, table-driven compiler. This, however, has so 
far remained a utopia, but the idea goes back to the 1960s. It is represented schematically by 
Figure 5.1. 

 
Figure 5.1. Schema of a general, parametrized compiler. 

Ultimately, the basic idea behind every language is that it should serve as a means for 
communication. This means that partners must use and understand the same language. 
Promoting the ease by which a language can be modified and extended may therefore be 
rather counterproductive. Nevertheless, it has become customary to build compilers using 
table-driven parsers, and to derive these tables from the syntax automatically with the help of 
tools. The semantics are expressed by procedures whose calls are also integrated 
automatically into the parser. Compilers thereby not only become bulkier and less efficient 
than is warranted, but also much less transparent. The latter property remains one of our 
principal concerns, and therefore we shall not pursue this course any further. 

 

Syntax Type rules Semantics

Generic compiler
Program Result
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5.4. Exercise 
5.1. Extend the program for syntactic analysis of EBNF texts in such a way that it generates 
(1) a list of terminal symbols, (2) a list of nonterminal symbols, and (3) for each nonterminal 
symbol the sets of its start and follow symbols. Based on these sets, the program is then to 
determine whether the given syntax can be parsed top-down with a lookahead of a single 
symbol. If this is not so, the program displays the conflicting productions in a suitable way. 

Hint: Use Warshall's algorithm (R. W. Floyd, Algorithm 96, Comm. ACM, June 1962). 

TYPE matrix = ARRAY [1..n],[1..n] OF BOOLEAN; 

PROCEDURE ancestor(VAR m: matrix; n: INTEGER); 
(* Initially m[i,j] is TRUE, if individual i is a parent of individual j. 
 At completion, m[i,j] is TRUE, if i is an ancestor of j *) 
 VAR i, j, k: INTEGER; 
BEGIN 
 FOR i := 1 TO n DO 
  FOR j := 1 TO n DO 
   IF m[j, i] THEN 
    FOR k := 1 TO n DO 
     IF m[i, k] THEN m[j, k] := TRUE END 
    END 
   END 
  END 
 END 
END ancestor 

It may be assumed that the numbers of terminal and nonterminal symbols of the analysed 
languages do not exceed a given limit (for example, 32).  
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6. The Programming Language Oberon-0 

In order to avoid getting lost in generalities and abstract theories, we shall build a specific, concrete 
compiler, and we explain the various problems that arise during the project. In order to do this, we 
must postulate a specific source language. 

Of course we must keep this compiler, and therefore also the language, sufficiently simple in order 
to remain within the scope of an introductory tutorial. On the other hand, we wish to explain as 
many of the fundamental constructs of languages and compilation techniques as possible. Out of 
these considerations have grown the boundary conditions for the choice of the language: it must be 
simple, yet representative. We have chosen a subset of the language Oberon (Reiser and Wirth, 
1992), which is a condensation of its ancestors Modula-2 (Wirth, 1982) and Pascal (Wirth, 1971) 
into their essential features. Oberon may be said to be the latest offspring in the tradition of Algol 60 
(Naur, 1960). Our subset is called Oberon-0, and it is sufficiently powerful to teach and exercise the 
foundations of modern programming methods. 

Concerning program structures, Oberon-0 is reasonably well developed. The elementary statement 
is the assignment. Composite statements incorporate the concepts of the statement sequence and 
conditional and repetitive execution, the latter in the form of the conventional if-. while-, and repeat 
statements. Oberon-0 also contains the important concept of the subprogram, represented by the 
procedure declaration and the procedure call. Its power mainly rests on the possibility of 
parameterizing procedures. In Oberon, we distinguish between value and variable parameters. 

With respect to data types, however, Oberon-0 is rather frugal. The only elementary data types are 
integers and the logical values, denoted by INTEGER and BOOLEAN. It is thus possible to declare 
integer-valued constants and variables, and to construct expressions with arithmetic operators. 
Comparisons of expressions yield Boolean values, which can be subjected to logical operations. 

The available data structures are the array and the record. They can be nested arbitrarily. Pointers, 
however, are omitted. 

Procedures represent functional units of statements. It is therefore appropriate to associate the 
concept of locality of names with the notion of the procedure. Oberon-0 offers the possibility of 
declaring identifiers local to a procedure, that is, in such a way that the identifiers are valid (visible) 
only within the procedure itself. 

This very brief overview of Oberon-0 is primarily to provide the reader with the context necessary to 
understand the subsequent syntax, defined in terms of EBNF. 

ident  =  letter {letter | digit}. 
integer  =  digit {digit}. 

selector  =  {"." ident | "[" expression "]"}. 
number  =  integer. 
factor  =  ident selector | number | "(" expression ")" | "~" factor. 
term  =  factor {("*" | "DIV" | "MOD" | "&") factor}. 
SimpleExpression  =  ["+"|"-"] term {("+"|"-" | "OR") term}. 
expression  =  SimpleExpression 
 [("=" | "#" | "<" | "<=" | ">" | ">=") SimpleExpression]. 

assignment  =  ident selector ":=" expression. 
ActualParameters  =  "(" [expression {"," expression}] ")" . 
ProcedureCall  =  ident selector [ActualParameters]. 
IfStatement  =  "IF" expression "THEN" StatementSequence 
 {"ELSIF" expression "THEN" StatementSequence} 
 ["ELSE" StatementSequence] "END". 
WhileStatement  =  "WHILE" expression "DO" StatementSequence "END". 
RepeatStatement  =  “REPEAT” Statement Sequence “UNTIL” expression. 
statement  =  [assignment | ProcedureCall | IfStatement | WhileStatement]. 
StatementSequence  =  statement {";" statement}. 
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IdentList  =  ident {"," ident}. 
ArrayType  =  "ARRAY" expression "OF" type. 
FieldList  =  [IdentList ":" type]. 
RecordType  =  "RECORD" FieldList {";" FieldList} "END". 
type  =  ident | ArrayType | RecordType. 
FPSection  =  ["VAR"] IdentList ":" type. 
FormalParameters  =  "(" [FPSection {";" FPSection}] ")". 
ProcedureHeading  =  "PROCEDURE" ident [FormalParameters]. 
ProcedureBody  =  declarations ["BEGIN" StatementSequence] "END" ident. 
ProcedureDeclaration  =  ProcedureHeading ";" ProcedureBody. 
declarations  =  ["CONST" {ident "=" expression ";"}] 
 ["TYPE" {ident "=" type ";"}] 
 ["VAR" {IdentList ":" type ";"}] 
 {ProcedureDeclaration ";"}. 
module  =  "MODULE" ident ";" declarations 
 ["BEGIN" StatementSequence] "END" ident "." . 

The following example of a module may help the reader to appreciate the character of the 
language. The module contains various, well-known sample procedures. It also contains calls to 
specific, predefined procedures OpenInput, ReadInt, WriteInt, WriteLn, and eot() whose purpose is 
evident. Note that every command which asks for input, must start with a call to OpenInput. 

MODULE Samples; 

PROCEDURE Multiply*; 
  VAR x, y, z: INTEGER; 
BEGIN OpenInput; ReadInt(x); ReadInt(y); z := 0; 
  WHILE x > 0 DO 
   IF x MOD 2 = 1 THEN z := z + y END ; 
  y := 2*y; x := x DIV 2 
 END ; 
 WriteInt(x, 4); WriteInt(y, 4); WriteInt(z, 6); WriteLn 
END Multiply; 

PROCEDURE Divide*; 
  VAR x, y, r, q, w: INTEGER; 
BEGIN OpenInput; ReadInt(x); ReadInt(y); r := x; q := 0; w := y; 
  WHILE w <= r DO w := 2*w END ; 
  WHILE w > y DO 
  q := 2*q; w := w DIV 2; 
  IF w <= r THEN r := r - w; q := q + 1 END 
 END ; 
 WriteInt(x.4); WriteInt(y, 4); WriteInt(q, 4); WriteInt(r, 4); WriteLn 
END Divide; 

PROCEDURE Sum*; 
 VAR n, s: INTEGER; 
BEGIN OpenInput; s:= 0; 
 WHILE ~eot() DO ReadInt(n); WriteInt(n, 4); s := s + n END ; 
 WriteInt(s, 6); WriteLn 
END Sum; 

 
END Samples. 
 

Corresponding commands are: 
Samples.Multiply 7 9 
Samples.Divide 65 7 
Samples.Sum 1 2 3 4 5~ 

6.1. Exercise 
6.1. Determine the code for the computer defined in Chapter 9, generated from the program listed 
at the end of this Chapter.  
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7. A Parser for Oberon-0 
7.1. The Scanner 
Before starting to develop a parser, we first turn our attention to the design of its scanner. The 
scanner has to recognize terminal symbols in the source text. First, we list its vocabulary: 

*  DIV  MOD  &  +  -  OR 
=  #  <  <=  >  >=  .  ,  :  )  ] 
OF  THEN  DO  UNTIL  (  [  ~  :=  ; 
END  ELSE  ELSIF  IF  WHILE  REPEAT 
ARRAY  RECORD  CONST  TYPE  VAR  PROCEDURE  BEGIN  MODULE 

The words written in upper-case letters represent single, terminal symbols, and they are called 
reserved words. They must be recognized by the scanner, and therefore cannot be used as 
identifiers. In addition to the symbols listed, identifiers and numbers are also treated as terminal 
symbols. Therefore the scanner is also responsible for recognizing identifiers and numbers. 

It is appropriate to formulate the scanner as a module. In fact, scanners are a classic example of 
the use of the module concept. It allows certain details to be hidden from the client, the parser, and 
to make accessible (to export) only those features which are relevant to the client. The exported 
facilities are summarized in terms of the module's interface definition: 

DEFINITION OSS;  (*Oberon Subset Scanner*) 
 IMPORT Texts; 
 CONST IdLen = 16; 
  (*symbols*) null = 0; times = 1; div = 3; mod = 4; 
  and = 5; plus = 6; minus = 7; or = 8; eql = 9; 
  neq = 10; lss = 11; leq = 12; gtr = 13; geq = 14; 
  period = 18; int = 21; false = 23; true = 24; 
  not = 27; lparen = 28; lbrak = 29; 
  ident = 31; if = 32; while = 34; 
  repeat = 35; 
  comma = 40; colon = 41; becomes = 42; rparen = 44; 
  rbrak = 45; then = 47; of = 48; do = 49; 
  semicolon = 52; end = 53;  
  else = 55; elsif = 56; until = 57;  
  array = 60; record = 61; const = 63; type = 64; 
  var = 65; procedure = 66; begin = 67;  module = 69; 
  eof = 70;  

 TYPE Ident = ARRAY IdLen OF CHAR; 

 VAR val: INTEGER; 
  id: Ident; 
  error: BOOLEAN; 

 PROCEDURE Mark(msg: ARRAY OF CHAR); 
 PROCEDURE Get(VAR sym: INTEGER); 
 PROCEDURE Init(T: Texts.Text; pos: LONGINT); 
END OSS. 

The symbols are mapped onto integers. The mapping is defined by a set of constant definitions. 
Procedure Mark serves to output diagnostics about errors discovered in the source text. Typically, a 
short explanation is written into a log text together with the position of the discovered error. 
Procedure Get represents the actual scanner. It delivers for each call the next symbol recognized. 
The procedure performs the following tasks: 

1. Blanks and line ends are skipped. 
2. Reserved words, such as BEGIN and END, are recognized. 
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3. Sequences of letters and digits starting with a letter, which are not reserved words, are 
recognized as identifiers. The parameter sym is given the value ident, and the character 
sequence itself is assigned to the global variable id. 

4. Sequences of digits are recognized as numbers. The parameter sym is given the value number, 
and the number itself is assigned to the global variable val. 

5. Combinations of special characters, such as := and <=, are recognized as a symbol. 
6. Comments, represented by sequences of arbitrary characters beginning with (* and ending with *) 

are skipped. 
7. The symbol null is returned, if the scanner reads an illegal character (such as $ or %). The 

symbol eof is returned if the end of the text is reached. Neither of these symbols occur in a well-
formed program text. 

7.2. The parser 
The construction of the parser strictly follows the rules explained in Chapters 3 and 4. However, 
before the construction is undertaken, it is necessary to check whether the syntax satisfies the 
restricting rules guaranteeing determinism with a lookahead of one symbol. For this purpose, we 
first construct the sets of start and follow symbols. They are listed in the following tables. 

S First(S)  

selector .  [ * 
factor (  ~  integer  ident 
term (  ~  integer  ident 
SimpleExpression +  -  ( ~  integer  ident 
expression +  -  ( ~  integer  ident 
assignment ident 
ProcedureCall ident 
statement ident  IF  WHILE REPEAT * 
StatementSequence ident  IF  WHILE REPEAT * 
FieldList ident * 
type ident  ARRAY  RECORD 
FPSection ident  VAR 
FormalParameters ( 
ProcedureHeading PROCEDURE 
ProcedureBody END  CONST  TYPE  VAR  PROCEDURE  BEGIN 
ProcedureDeclaration PROCEDURE 
declarations CONST  TYPE  VAR  PROCEDURE * 
module MODULE 

S Follow(S)  
selector *  DIV  MOD  & +  -  OR =  #  <  <=  >  >=  ,  )  ]  :=  OF  THEN  DO  ; 
 END  ELSE  ELSIF  UNTIL 
factor *  DIV  MOD  & +  -  OR =  #  <  <=  >  >=  ,  )  ]  OF  THEN  DO  ; 
 END  ELSE  ELSIF  UNTIL 
term +  -  OR =  #  <  <=  >  >=  ,  )  ]  OF  THEN  DO  ;  END  ELSE   
 ELSIF  UNTIL 
SimpleExpression =  #  <  <=  >  >=  ,  )  ]  OF  THEN  DO  ;  END  ELSE  ELSIF  UNTIL 
expression ,  )  ]  OF  THEN  DO  ;  END  ELSE  ELSIF  UNTIL 
assignment ;  END  ELSE  ELSIF  UNTIL 
ProcedureCall ;  END  ELSE  ELSIF  UNTIL 
statement ;  END  ELSE  ELSIF  UNTIL 
StatementSequence END ELSE ELSIF  UNTIL 
FieldList ;  END 
type )  ; 
FPSection )  ; 
FormalParameters ; 
ProcedureHeading ; 
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ProcedureBody ; 
ProcedureDeclaration ; 
declarations END  BEGIN 

The subsequent checks of the rules for determinism show that this syntax of Oberon-0 may indeed 
be handled by the method of recursive descent using a lookahead of one symbol. A procedure is 
constructed corresponding to each nonterminal symbol. Before the procedures are formulated, it is 
useful to investigate how they depend on each other. For this purpose we design a dependence 
graph (Figure 7.1). Every procedure is represented as a node, and an edge is drawn to all nodes on 
which the procedure depends, that is, calls directly or indirectly. Note that some nonterminal 
symbols do not occur in this graph, because they are included in other symbols in a trivial way. For 
example, ArrayType and RecordType are contained in type only and are therefore not explicitly 
drawn. Furthermore we recall that the symbols ident and integer occur as terminal symbols, 
because they are treated as such by the scanner. 

 
Figure 7.1. Dependence diagram of parsing procedures 

Every loop in the diagram corresponds to a recursion. It is evident that the parser must be 
formulated in a language that allows recursive procedures. Furthermore, the diagram reveals how 
procedures may possibly be nested. The only procedure which is not called by another procedure is 
Module. The structure of the program mirrors this diagram. The parser, like the scanner, is also 
formulated as a module. 

7.3. Coping with syntactic errors 
So far we have considered only the rather simple task of determining whether or not a source text is 
well formed according to the underlying syntax. As a side-effect, the parser also recognizes the 
structure of the text read. As soon as an inacceptable symbol turns up, the task of the parser is 
completed, and the process of syntax analysis is terminated. For practical applications, however, 
this proposition is unacceptable. A genuine compiler must indicate an error diagnostic message and 
thereafter proceed with the analysis. It is then quite likely that further errors will be detected. 
Continuation of parsing after an error detection is, however, possible only under the assumption of 
certain hypotheses about the nature of the error. Depending on this assumption, a part of the 
subsequent text must be skipped, or certain symbols must be inserted. Such measures are 
necessary even when there is no intention of correcting or executing the erroneous source 
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program. Without an at least partially correct hypothesis, continuation of the parsing process is 
futile (Graham and Rhodes, 1975; Rechenberg and Mössenböck, 1985). 

The technique of choosing good hypotheses is complicated. It ultimately rests upon heuristics, as 
the problem has so far eluded formal treatment. The principal reason for this is that the formal 
syntax ignores factors which are essential for the human recognition of a sentence. For instance, a 
missing punctuation symbol is a frequent mistake, not only in program texts, but an operator symbol 
is seldom omitted in an arithmetic expression. To a parser, however, both kinds of symbols are 
syntactic symbols without distinction, whereas to the programmer the semicolon appears as almost 
redundant, and a plus symbol as the essence of the expression. This kind of difference must be 
taken into account if errors are to be treated sensibly. To summarize, we postulate the following 
quality criteria for error handling: 

1. As many errors as possible must be detected in a single scan through the text. 
2. As few additional assumptions as possible about the language are to be made. 
3. Error handling features should not slow down the parser appreciably. 
4. The parser program should not grow in size significantly. 

We can conclude that error handling strongly depends on a concrete case, and that it can be 
described by general rules only with limited success. Nevertheless, there are a few heuristic rules 
which seem to have relevance beyond our specific language, Oberon. Notably, they concern the 
design of a language just as much as the technique of error treatment. Without doubt, a simple 
language structure significantly simplifies error diagnostics, or, in other words, a complicated syntax 
complicates error handling unnecessarily. 

Let us differentiate between two cases of incorrect text. The first case is where symbols are 
missing. This is relatively easy to handle. The parser, recognizing the situation, proceeds by 
omitting one or several calls to the scanner. An example is the statement at the end of factor, where 
a closing parenthesis is expected. If it is missing, parsing is resumed after emitting an error 
message: 

IF sym = rparen THEN Get(sym) ELSE Mark(" ) missing") END 

Virtually without exception, only weak symbols are omitted, symbols which are primarily of a 
syntactic nature, such as the comma, semicolon and closing symbols. A case of wrong usage is an 
equality sign instead of an assignment operator, which is also easily handled. 

The second case is where wrong symbols are present. Here it is unavoidable to skip them and to 
resume parsing at a later point in the text. In order to facilitate resumption, Oberon features certain 
constructs beginning with distinguished symbols which, by their nature, are rarely misused. For 
example, a declaration sequence always begins with the symbol CONST, TYPE, VAR, or 
PROCEDURE, and a structured statement always begins with IF, WHILE, REPEAT, CASE, and so 
on. Such strong symbols are therefore never skipped. They serve as synchronization points in the 
text, where parsing can be resumed with a high probability of success. In Oberon's syntax, we 
establish four synchronization points, namely in factor, statement, declarations and type. At the 
beginning of the corresponding parser procedures symbols are being skipped. The process is 
resumed when either a correct start symbol or a strong symbol is read. 

PROCEDURE factor; 
BEGIN (*sync*) 
 IF (sym < int) OR (sym > ident) THEN Mark("ident ?"); 
  REPEAT Get(sym) UNTIL (sym >= int) & (sym < ident) 
 END ; 
 ... 
END factor; 
PROCEDURE StatSequence; 
BEGIN (*sync*) 
 IF ~((sym = OSS.ident) OR (sym >= OSS.if) & (sym <= OSS.repeat) 
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     OR (sym >= OSS.semicolon)) THEN Mark("Statement?"); 
  REPEAT Get(sym) UNTIL (sym = ident) OR (sym >= if) 
 END ; 
 ... 
END StatSequence; 

PROCEDURE Type; 
BEGIN (*sync*) 
 IF (sym # ident) & (sym < array) THEN Mark("type ?"); 
  REPEAT Get(sym) UNTIL (sym = ident) OR (sym >= array) 
 END ; 
 ... 
END Type; 

PROCEDURE declarations; 
BEGIN (*sync*) 
 IF (sym < const) & (sym # end) THEN Mark("declaration?"); 
  REPEAT Get(sym) UNTIL (sym >= const) OR (sym = end) 
 END ; 
 ... 
END declarations; 

Evidently, a certain ordering among symbols is assumed at this point. This ordering had been 
chosen such that the symbols are grouped to allow simple and efficient range tests. Strong symbols 
not to be skipped are assigned a high ranking (ordinal number) as shown in the definition of the 
scanner's interface. 

In general, the rule holds that the parser program is derived from the syntax according to the 
recursive descent method and the explained translation rules. If a read symbol does not meet 
expectations, an error is indicated by a call of procedure Mark, and analysis is resumed at the next 
synchronization point. Frequently, follow-up errors are diagnosed, whose indication may be omitted, 
because they are merely consequences of a formerly indicated error. The statement which results 
for every synchronization point can be formulated generally as follows: 

IF ~(sym IN follow(SYNC)) THEN Mark(msg); 
 REPEAT Get(sym) UNTIL sym IN follow(SYNC) 
END 

where follow(SYNC) denotes the set of symbols which may correctly occur at this point. 

In certain cases it is advantageous to depart from the statement derived by this method. An 
example is the construct of statement sequence. Instead of 

Statement; 
WHILE sym = semicolon DO Get(sym); Statement END 

we use the formulation 
REPEAT (*sync*) 
 IF sym < ident THEN Mark("ident?");  ...  END ; 
 Statement; 
 IF sym = semicolon THEN Get(sym) 
 ELSIF sym IN follow(StatSequence) THEN Mark("semicolon?") 
 END 
UNTIL ~(sym IN follow(StatSequence)) 

This replaces the two calls of Statement by a single call, whereby this call may be replaced by the 
procedure body itself, making it unnecessary to declare an explicit procedure. The two tests after 
Statement correspond to the legal cases where, after reading the semicolon, either the next 
statement is analysed or the sequence terminates. Instead of the condition sym IN 
follow(StatSequence) we use a Boolean expression which again makes use of the specifically 
chosen ordering of symbols: 

(sym >= semicolon) & (sym < if) OR (sym >= array) 
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The construct above is an example of the general case where a sequence of identical 
subconstructs which may be empty (here, statements) are separated by a weak symbol (here, 
semicolon). A second, similar case is manifest in the parameter list of procedure calls. The 
statement 

IF sym = lparen THEN 
 Get(sym); expression; 
 WHILE sym = comma DO Get(sym); expression END ; 
 IF sym = rparen THEN Get(sym) ELSE Mark(") ?") END 
END 

is being replaced by 
IF sym = lparen THEN Get(sym); 
 REPEAT expression; 
  IF sym = comma THEN Get(sym) 
  ELSIF (sym = rparen) OR (sym >= semicolon) THEN  Mark(") or , ?") 
  END 
 UNTIL (sym = rparen) OR (sym >= semicolon) 
END 

A further case of this kind is the declaration sequence. Instead of 
IF sym = const THEN ... END ; 
IF sym = type THEN ... END ; 
IF sym = var THEN ... END ; 

we employ the more liberal formulation 
REPEAT 
 IF sym = const THEN ... END ; 
 IF sym = type THEN ... END ; 
 IF sym = var THEN ... END ; 
 IF (sym >= const) & (sym <= var) THEN Mark("bad declaration sequence") END 
UNTIL (sym # const) & (sym # type) & (sym # var) 

The reason for deviating from the previously given method is that declarations in a wrong order (for 
example variables before constants) must provoke an error message, but at the same time can be 
parsed individually without difficulty. A further, similar case can be found in Type. In all these cases, 
it is absolutely mandatory to ensure that the parser can never get caught in the loop. The easiest 
way to achieve this is to make sure that in each repetition at least one symbol is being read, that is, 
that each path contains at least one call of Get. Thereby, in the worst case, the parser reaches the 
end of the source text and stops. 

It should now have become clear that there is no such thing as a perfect strategy of error handling 
which would translate all correct sentences with great efficiency and also sensibly diagnose all 
errors in ill-formed texts. Every strategy will handle certain abstruse sentences in a way that 
appears unexpected to its author. The essential characteristics of a good compiler, regardless of 
details, are that (1) no sequence of symbols leads to its crash, and (2) frequently encountered 
errors are correctly diagnosed and subsequently generate no, or few additional, spurious error 
messages. The strategy presented here operates satisfactorily, albeit with possibilities for 
improvement. The strategy is remarkable in the sense that the error handling parser is derived 
according to a few, simple rules from the straight parser. The rules are augmented by the judicious 
choice of a few parameters which are determined by ample experience in the use of the language. 

7.4. Exercises 
7.1. The scanner uses a linear search of array KeyTab to determine whether or not a sequence of 
letters is a key word. As this search occurs very frequently, an improved search method would 
certainly result in increased efficiency. Replace the linear search in the array by 

1. A binary search in an ordered array. 
2. A search in a binary tree. 
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3. A search of a hash table. Choose the hash function so that at most two comparisons are 
necessary to find out whether or not the letter sequence is a key word. 

Determine the overall gain in compilation speed for the three solutions. 

7.2. Where is the Oberon syntax not LL(1), that is, where is a lookahead of more than one symbol 
necessary? Change the syntax in such a way that it satisfies the LL(1) property. 

7.3. Extend the scanner in such a way that it accepts real numbers as specified by the Oberon 
syntax.  



 39

8. Consideration of Context Specified by Declarations 
8.1. Declarations 
Although programming languages are based on context-free languages in the sense of Chomsky, 
they are by no means context free in the ordinary sense of the term. The context sensitivity is 
manifest in the fact that every identifier in a program must be declared. Thereby it is associated with 
an object of the computing process which carries certain permanent properties. For example, an 
identifier is associated with a variable, and this variable has a specific data type as specified in the 
identifier's declaration. An identifier occurring in a statement refers to the object specified in its 
declaration, and this declaration lies outside the statement. We say that the declaration lies in the 
context of the statement. 

Consideration of context evidently lies beyond the capability of context-free parsing. In spite of this, 
it is easily handled. The context is represented by a data structure which contains an entry for every 
declared identifier. This entry associates the identifier with the denoted object and its properties. 
The data structure is known by the name symbol table. This term dates back to the times of 
assemblers, when identifiers were called symbols. Also, the structure is typically more complex 
than a simple array. 

The parser will now be extended in such a way that, when parsing a declaration, the symbol table is 
suitably augmented. An entry is inserted for every declared identifier. To summarize: 

- Every declaration results in a new symbol table entry. 
- Every occurrence of an identifier in a statement requires a search of the symbol table in order to 

determine the attributes (properties) of the object denoted by the identifier. 

A typical attribute is the object's class. It indicates whether the identifier denotes a constant, a 
variable, a type or a procedure. A further attribute in all languages with data types is the object's 
type. 

The simplest form of data structure for representing a set of items is the list. Its major disadvantage 
is a relatively slow search process, because it has to be traversed from its root to the desired 
element. For the sake of simplicity - data structures are not the topic of this text - we declare the 
following data types representing linear lists: 

Object = POINTER TO ObjDesc; 
ObjDesc = RECORD  
 name: Ident; 
 class: INTEGER;  
 type: Type; 
 next: Object; 
 val: LONGINT 
END 

The following declarations are, for example, represented by the list shown in Figure 8.1. 
CONST N = 10; 
TYPE T = ARRAY N OF INTEGER; 
VAR x, y: T 

 
Figure 8.1. Symbol table representing objects with names and attributes. 
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For the generation of new entries we introduce the procedure NewObj with the explicit parameter 
class, the implied parameter id and the result obj. The procedure checks whether the new identifier 
(id) is already present in the list. This would signify a multiple definition and constitute a 
programming error. The new entry is appended at the end of the list, so that the list mirrors the 
order of the declarations in the source text. 

PROCEDURE NewObj(VAR obj: Object; class: INTEGER); 
 VAR new, x: Object; 
BEGIN x := topScope; 
 WHILE (x.next # NIL) & (x.next.name # id) DO x := x.next END ; 
 IF x.next = NIL THEN 
  NEW(new); new.name := id; new.class := class; new.next := NIL; 
  x.next := new; obj := new 
 ELSE obj := x.next; Mark("multiple declaration") 
 END 
END NewObj; 

In order to speed up the search process, the list is often replaced by a tree structure. Its advantage 
becomes noticeable only with a fairly large number of entries. For structured languages with local 
scopes, that is, ranges of visibility of identifiers, the symbol table must be structured accordingly, 
and the number of entries in each scope becomes relatively small. Experience shows that as a 
result the tree structure yields no substantial benefit over the list, although it requires a more 
complicated search process and the presence of three successor pointers per entry instead of one. 
Note that the linear ordering of entries must also be recorded, because it is significant in the case of 
procedure parameters. 

A procedure find serves to access the object with name id. It represents a simple linear search, 
proceeding through the list of scopes, and in each scope through the list of objects. 

PROCEDURE find(VAR obj: OSG.Object); 
 VAR s, x: Object; 
BEGIN s := topScope; 
 REPEAT x := s.next; 
  WHILE (x # NIL) & (x.name # id) DO x := x.next END ; 
  s := s.dsc 
 UNTIL (x # NIL) OR (s = NIL); 
 IF x = NIL THEN x := dummy; OSS.Mark("undef") END ; 
 obj := x 
END find; 

8.2.  Entries for data types 
In languages featuring data types, their consistency checking is one of the most important tasks of 
a compiler. The checks are based on the type attribute recorded in every symbol table entry. Since 
data types themselves can be declared, a pointer to the respective type entry appears to be the 
obvious solution. However, types may also be specified anonymously, as exemplified by the 
following declaration: 

VAR a: ARRAY 10 OF INTEGER 

The type of variable a has no name. An easy solution to the problem is to introduce a proper data 
type in the compiler to represent types as such. Named types then are represented in the symbol 
table by an entry of type Object, which in turn refers to an element of type Type. 

Type = POINTER TO TypDesc; 
TypDesc = RECORD 
 form, len: INTEGER; 
 fields: Object; 
 base: Type 
END 

The attribute form differentiates between elementary types (INTEGER, BOOLEAN) and structured 
types (arrays, records). Further attributes are added according to the individual forms. 
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Characteristic for arrays are their length (number of elements) and the element type (base). For 
records, a list representing the fields must be provided. Its elements are of the class Field. As an 
example, Figure 8.2. shows the symbol table resulting from the following declarations: 

TYPE R = RECORD f, g: INTEGER END ; 
VAR x: INTEGER; 
 a: ARRAY 10 OF INTEGER; 
 r, s: R; 

Figure 8.2. Symbol table representing declared objects. 

As far as programming methodology is concerned, it would be preferable to introduce an extended 
data type for each class of objects, using a base type with the fields id, type and next only. We 
refrain from doing so, not least because all such types would be declared within the same module, 
and because the use of a numeric discrimination value (class) instead of individual types avoids the 
need for numerous, redundant type guards and thereby increases efficiency. After all, we do not 
wish to promote an undue proliferation of data types. 

8.3.  Data representation at run-time 
So far, all aspects of the target computer and its architecture, that is, of the computer for which 
code is to be generated, have been ignored, because our sole task was to recognize source text 
and to check its compliance with the syntax. However, as soon as the parser is extended into a 
compiler, knowledge about the target computer becomes mandatory. 

First, we must determine the format in which data are to be represented at run-time in the store. 
The choice inherently depends on the target architecture, although this fact is less apparent 
because of the similarity of virtually all computers in this respect. Here, we refer to the generally 
accepted form of the store as a sequence of individually addressable byte cells, that is, of byte-
oriented memories. Consecutively declared variables are then allocated with monotonically 
increasing or decreasing addresses. This is called sequential allocation. 

Every computer features certain elementary data types together with corresponding instructions, 
such as integer addition and floating-point addition. These types are invariably scalar types, and 
they occupy a small number of consecutive memory locations (bytes). In the present language 
Oberon-0, there exist only the two basic, scalar data types: INTEGER and BOOLEAN. In the 
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computer used here, the former occupies 4 bytes, the latter a single byte. However, in general 
every type has a size, and every variable has an address. 

These attributes, type.size and obj.adr, are determined when the compiler processes declarations. 
The sizes of the elementary types are given by the machine architecture, and corresponding entries 
are generated when the compiler is loaded and initialized. For structured, declared types, their size 
has to be computed. 

The size of an array is its element size multiplied by the number of its elements. The address of an 
element is the sum of the array's address and the element's index multiplied by the element size. 
Let the following general declarations be given: 

TYPE T = ARRAY n OF T0 
VAR a: T 

Then type size and element address are obtained by the following equations: 

size(T) = n * size(T0) 
adr(a[x]) = adr(a) + x * size(T0) 

For multi-dimensional arrays, the corresponding formulas (see Figure 8.3) are: 

TYPE T = ARRAY nk-1, ... , n1, n0 OF T0 

size(T) = nk-1 * ... * n1 * n0 * size(T0) 

adr(a[xk-1, ... , x1, x0])  =  adr(a) 
 + xk-1 * nk-2 * ... * n0 * size(T0)  +  ... 
 + x2 * n1 * n0 * size(T0)  + x1 * n0 * size(T0)  +  x0 * size(T0) 
= adr(a) + ((( ... xk-1 * nk-2 + ... + x2) * n1 + x1) * n0 + x0) * size(T0)    (Horner schema) 

Note that for the computation of the size the array's lengths in all dimensions are known, because 
they occur as constants in the program text. However, the index values needed for the computation 
of an element's address are typically not known before program execution. 

 
Figure 8.3. Representation of a matrix. 

In contrast, for record structures, both type size and field address are known at compile time. Let us 
consider the following declarations: 

TYPE T  =  RECORD f0: T0;  f1: T1;  ...  ;  fk-1: Tk-1  END 
VAR r: T 

Then the type's size and the field addresses are computed according to the following formulas: 

size(T)  = size(T0) +  ...  + size(Tk-1) 
adr(r.fi)  = adr(r) + offset(fi) 
offset(fi)  = size(T0) + ... + size(Ti-1) 

Absolute addresses of variables are usually unknown at the time of compilation. All generated 
addresses must be considered as relative to a common base address which is given at run-time. 
The effective address is then the sum of this base address and the address determined by the 
compiler. 
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If a computer's store is byte-addressed, as is fairly common, a further point must be considered. 
Although bytes can be accessed individually, typically a small number of bytes (say 4 or 8) are 
transferred from or to memory as a packet, a so-called word. If allocation occurs strictly in 
sequential order it is possible that a variable may occupy (parts of) several words (see Figure 8.4), 
assuming a size of 2 for integers, 4 for real numbers. But this should definitely be avoided, because 
otherwise a variable access would involve several memory accesses, resulting in an appreciable 
slowdown. A simple method of overcoming this problem is to round up (or down) each variable's 
address to the next multiple of its size. This process is called alignment. The rule holds for 
elementary data types. For arrays, the size of their element type is relevant, and for records we 
simply round up to the computer's word size. The price of alignment is the loss of some bytes in 
memory, which is quite negligible. 

 
Figure 8.4. Alignment in address computation. 

The following additions to the parsing procedure for declarations are necessary to generate the 
required symbol table entries: 

IF sym = type THEN (* "TYPE" ident "=" type *) 
 Get(sym); 
 WHILE sym = ident DO 
  NewObj(obj, Typ); Get(sym); 
  IF sym = eql THEN Get(sym) ELSE Mark("= ?") END ;  
  Type1(obj.type); 
  IF sym = semicolon THEN Get(sym) ELSE Mark("; ?") END 
 END 
END ; 

IF sym = var THEN (* "VAR" ident {"," ident} ":" type *) 
 Get(sym); 
 WHILE sym = ident DO 
  IdentList(Var, first); Type1(tp); obj := first; 
  WHILE obj # NIL DO 
   obj.type := tp; INC(adr, obj.type.size); obj.val := adr; obj := obj.next 
  END ; 
  IF sym = semicolon THEN Get(sym) ELSE Mark("; ?") END 
 END 
END ; 

Here, procedure IdentList is used to process an identifier list, and the recursive procedure Type1 
serves to compile a type declaration. 

PROCEDURE IdentList(class: INTEGER; VAR first: Object); 
 VAR obj: Object; 
BEGIN 
 IF sym = ident THEN 
  NewObj(first, class); Get(sym); 
  WHILE sym = comma DO 
   Get(sym); 
   IF sym = ident THEN NewObj(obj, class); Get(sym) ELSE Mark("ident?") END 
  END; 
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  IF sym = colon THEN Get(sym) ELSE Mark("no :") END 
 END 
END IdentList; 

PROCEDURE Type1(VAR type: Type); 
 VAR n: INTEGER; 
  obj, first: Object; tp: Type; 
BEGIN type := intType; (*sync*) 
 IF (sym # ident) & (sym < array) THEN Mark("ident?"); 
  REPEAT Get(sym) UNTIL (sym = ident) OR (sym >= array) 
 END ; 
 IF sym = ident THEN 
  find(obj); Get(sym); 
  IF obj.class = Typ THEN type := obj.type ELSE Mark("type?") END 
 ELSIF sym = array THEN 
  Get(sym); 
  IF sym = number THEN n := val; Get(sym) ELSE Mark("number?"); n := 1 END ; 
  IF sym = of THEN Get(sym) ELSE Mark("OF?") END ; 
  Type1(tp); NEW(type); type.form := Array; type.base := tp; 
  type.len := n; type.size := type.len * tp.size 
 ELSIF sym = record THEN 
  Get(sym); NEW(type); type.form := Record; type.size := 0; OpenScope; 
  REPEAT 
   IF sym = ident THEN 
    IdentList(Fld, first); Type1(tp); obj := first; 
    WHILE obj # NIL DO 
     obj.type := tp; obj.val := type.size; INC(type.size, obj.type.size); obj := obj.next 
    END 
   END ; 
   IF sym = semicolon THEN Get(sym) 
   ELSIF sym = ident THEN Mark("no ;") 
   END 
  UNTIL sym # ident; 
  type.fields := topScope.next; CloseScope; 
  IF sym = end THEN Get(sym) ELSE Mark("END?") END 
 ELSE Mark("ident ?")   
 END 
END Type1; 

The auxiliary procedures OpenScope and CloseScope ensure that the list of record fields is not 
intermixed with the list of variables. Every record declaration establishes a new scope of visibility of 
field identifiers, as required by the definition of the language Oberon. Note that the list into which 
new entries are inserted is rooted in the global variable topScope. 

8.4. Exercises 
8.1. The scope of identifiers is defined to extend from the place of declaration to the end of the 
procedure in which the declaration occurs. What would be necessary to let this range extend from 
the beginning to the end of the procedure? 

8.2. Consider pointer declarations as defined in Oberon. They specify a type to which the declared 
pointer is bound, and this type may occur later in the text. What is necessary to accommodate this 
relaxation of the rule that all referenced entities must be declared prior to their use?  
 


