
 1

Technical Report August. 2010

Experiments in Computer System Design

Niklaus Wirth

Table of Contents

Part 1

Introduction and Perspective 3
The Tiny Stack Machine (TSM) 4
The Tiny Register Machine TRM-1 5
The Tiny Register Machine TRM-2 6
The Tiny Register Machine TRM-3 6
The Implementation of the TRM-3 9
The data processing unit 9
The shifter 12
The multiplier 13
The divider 14
The local data memory 15
The control unit 16
Input and output 18
Stalling the processor 18
Interrupts 19

PART 2

The environment and the Top Module 21
A transmitter for the RS-232 serial line 23
A receiver for the RS-232 serial line 24
A floating-point unit 25
Implementation of floating-point operations 27

PART 3

About memories 32
A DDR memory as an external device 32
Introducing a Direct Memory Access Channel (DMA) 36
Initializing and refreshing the SDRAM memory 38
TRM-0: Architecture and instruction set 39
The implementation of TRM-0 41

PART 4

Multiprocessor-systems and interconnects 43
Point-to-point connection: The buffered channel 43
The ring structure 44

 2

The implementation of a token ring 46
A software driver 48
A test setup 49
Broadcast 50
Discussion 51

PART 5

The principle of cache memories 53
The direct mapped cache 54
Implementing the cache 55
Acknowledgement 60

 3

Technical Report 2. 8. 2010

Experiments in Computer System Design

Niklaus Wirth

PART 1

Introduction and Perspective

Modern Field Programmable Gate Arrays (FPGA) provide an ideal ground for
experiments in the design of computer systems and of computer architecture.
Here we present the designs of a processor, of channels, of a communicating
ring, of a memory interface, and of a floating-point unit. These are described as
Verilog texts, representing circuits to be automatically generated by synthesizer,
placer and router tools. On a higher level, systems can then be described as
consisting of such components. Thus the systems are flexibly configurable.

In particular, it is possible to configure multicore systems, and to experiment with
various configuration and models of cooperation. The designs are implemented
on a single FPGA. We use a commercial development board connected to a host
computer.

Not only experience in designing software involving many processors is
becoming more important (mostly due to the availability of multi-core chips), but
also experience in designing entire systems including the hardware. A
configuration of 12 processors (described below) has been realized on a single
chip. Hardware design, processor architecture, communication links, system
configuration are all covered by the presented tool kit, including, of course, their
programming. It is therefore an ideal experimenting ground for modern computer
practice and experience. Directing this project towards requirements in
education, we try to present it in the style of a tutorial.

In Part 1 we describe a simple processor. It is called TRM (for Tiny Register
Machine). It is a sound principle in teaching a new subject, to concentrate on its
essential ingredients. This principle had originally been followed closely by the
designers of RISC architectures, and therefore our design does so as well. In
addition, we must consider the limited resources available on an FPGA, even a
large one, and in particular, if we wish to place many of these processors on a
single chip. A straight-forward design is therefore mandatory.

In Part 2 we describe communication facilities. These are a uni-directional
channel (point-to-point connection), a ring (connecting many processors), and,
for the sake of utility, an RS-232 transmitter and receiver. The latter is used to
connect the FPGA development board with the host computer.

In Part 3 we describe an interface between a processor and a large memory of
the DDR type (dynamic RAM). In a first step, the memory is considered as an
external device accessed through the processor’s I/O bus. A much faster solution

 4

is presented in a second step. It includes a direct memory access channel
(DMA). Of course a final solution will be the use of a cache memory.

This small, initial set of hardware components can be augmented freely. Other
processors may be added, more sophisticated links, and drivers for other
devices, several of which are available on the development board currently used
(ML-505). On the host computer reside a compiler (in our case for the
programming language Oberon), and a system for (down-) loading the bitstream
file (configuration file) onto the target FPGA..

This configurable system actually emerged from a project, whose ultimate goal
was an application suitable to demonstrate the power of multi-processor
systems. Its somewhat grandiose title was Supercomputer in a Pocket. The
target application was a surveillance system for heart diseases. Signal analysis
required reasonably large computing power, its being carried by patients required
reasonably low power consumption and a small size to fit into a pocket. The
system elements described below were used in this application.

We first describe the architecture, the programmer’s interface, of the processor,
and a brief account of its history of development. Thereafter we present its circuit
interface and its implementation.

The Tiny Stack Machine (TSM)

The initial impulse for our design of a processor came from Ch. Thacker’s
Simple-32 architecture, designed at Microsoft Research in Mountain View.
Thacker called it an “FPGA-optimized computer architecture”. The Simple-32
strongly mirrors a modern RISC architecture with a bank of 16 registers. Most
instructions feature a 4-bit opcode and three 4-bit register fields. Thus, the
Simple-32 is a typical 3-address machine.

The Simple-32 architecture, however, appeared as not optimally suited for use
with a high-level programming language, at least not without a compiler
optimizing register usage. It was felt that just as the architecture ought to be
perspicuous, so should be the compiler, that is, the instruction sequence
compiled from a given piece of source program should be quite predictable.
Certainly, due to small memory size, an overriding consideration was code
density. Our experience of the past decades let a stack architecture appear as
most desirable. Instructions for a stack machine do not contain register numbers.
They are implicit and derived at run-time from the stack principle, which naturally
governs the evaluation of expressions.

It is important to note that this expression stack stands in place of the register
bank of a RISC architecture. This stack is typically implemented by a set of
registers plus a register pointer, a 4-bit register connected with an up-down
counter. It is to be distinguished from the stack of procedure activation records,
which is entirely a concept of software architecture, and which is stored in the
local data memory and uses a register as stack pointer.

 5

Many instructions of a stack-oriented architecture fit into a single byte. Even
instructions containing a short, immediate operand fit into a byte. Instructions
containing a larger literal, such as an address, are placed in two (or 3) bytes.
Therefore, a variable-length instruction scheme is required.

As is to be expected, the price for an expression stack and a variable-length
instruction fetch machinery is an increase in complexity of the decoding circuitry.
The longer signal path lengths and propagation times result in a longer clock
cycle and thus a decrease in speed.. This is particularly noticeable, if pipelining is
desired to speed up instruction interpretation. This complexity proved to be such
that it was decided to abandon the idea of a stack architecture and to return to a
register array in place of the register stack. The price is less code density, longer
codes, and that program length hits the available limits sooner.

The Tiny Register Machine TRM-1

At this point, we need to know more about the available resources on the FPGA
chip. Apart from the regular cells with gates and registers, and apart from routing
resources, the FPGA contains 60 static RAM blocks (BRAMs), of 1K words of 36
bits. The foremost question is how to make use of these BRAMs. Considering
that we wish to be able to place many processors on the chip, we decided to
allocate 4 BRAMs to a processor. The maximum number of processors in any
configuration is therefore 15.

Each processor contains 4 BRAMs. We allocate 2 for data and 2 for program. By
using half words for instructions we obtain a maximum program size of 4K (4096)
instructions. Evidently, programs will be quite small, and this justifies the word
tiny in the machine’s name. Evidently, the TRM uses a Harvard architecture,
where data and program. memories are separate and are accessed through
separate ports.

The essential property of the RISC architecture is that all operations on data are
executed in registers. Instructions accessing memories treat memories like being
external. There are only 2 of them: Load and Store. Instructions performing
operations typically specify 3 registers, 2 for the arguments, 1 for the result. Such
a scheme is called a 3-address architecture. An instruction thus has 4 fields: the
operation code and 3 register numbers.

It is most desirable, that (at least) one of the arguments may be a literal instead
of a register. This leads us to the following format for register instruction, with one
bit as a tag distinguishing whether the second argument is a register or a literal.

R.d := R.b op n or R.d := R.b op R.a

n = 5-bit literal

d, b, a = 4-bit regno

op 0 d b n

op 1 d b a

4 4 4 6

 6

An unpleasant property of the short instruction (18 bits) is that the field for
immediate operands and addresses is very short. The decision to use not only
16, but all 18 bits of the FPGA’s block memories alleviated this problem to some
degree. However, the necessity to use a separate instruction each time a
constant or an address longer than 5 bits is present, was felt to be too
detrimental to code density and efficiency, and a better solution was sought,
resulting in the TRM-2.

The Tiny Register Machine TRM-2

The question was how to obtain more bits for the literal field. Three measures
were used:

1. Replacing the 3-address architecture by a 2-address architecture, where the
destination register is the same as one of the argument registers. This causes
relatively little loss in flexibility and code density, unless a sophisticated
scheme of register allocation is used for complex expressions.

2. Reducing of the number of registers from 16 to 8. This saves 1 bit in each
register field.

3. Using Huffman encoding, with short opcode fields (and longer literal fields) for
the most frequently used instruction, and longer opcodes for less frequently
used instructions.

All this resulted in address offsets of 10 bits for data and 12 bits for branch
instructions, the latter covering the entire address space of the instruction
memory. Quite obviously, this leads to a very considerable increase in code
density.

So far, so good. But every gain causes a loss somewhere else. The Huffman
coding required a more complex decoding circuitry. Instruction decoding lies in
the critical signal path of every instruction, and here it proved to be a bottleneck.
For some instructions, the desired clock frequency could not be achieved.
Further deliberations led to the TRM-3.

The Tiny Register Machine TRM-3

In this design the measures 1 and 2 leading to TRM-2 were retained, but
Huffman coding was dropped. Thereby the same speed as with TRM-1 is
achieved, and the literal field in register instructions is still 10 bits long. The
instruction formats are for

Register operations

R.d := R.d op n or R.d := R.d op R.s

n = 10-bit literal

d, s = 3-bit regno

op 0 d

op 1 d s

4 3

n

10

 7

We can now turn to the selection of instructions to be represented. This selection
is essentially determined by the programming language envisaged, i.e. the
operators used in expressions. However, in this respect most general-purpose
languages feature the same requirements: Arithmetic and logical instructions. In
detail, they are the following:

op operation

0 MOV R.d := R.s (in place of R.s may stand the literal imm)
1 NOT R.d := ~R.s
2 ADD R.d := R.d + R.s
3 SUB R.d := R.d - R.s

4 AND R.d := R.d & R.s
5 BIC R.d := R.d & ~R.s
6 OR R.d := R.d | R.s
7 XOR R.d := R.d xor R.s

8 MUL R.d := R.d * R.s
9 DIV R.d := R.d div R.s
10 ROR R.d := R.d ror R.s (rotate right)
11 BR PC := R.s (see below)

In addition there are the Load and Store instructions providing access to
memory. Their format is slightly different. The actual address is computed as the
sum of base address R.s and an offset:

Load and Store instructions

op operation

 12 LD R.d := Mem[R.s + adr]
 13 ST Mem[R.s + adr] := R.d

The only remaining instructions are branch instructions used for implementing
conditional and repetitive statements, i.e. if, while, repeat and for statements.
They are executed conditionally, i.e. when a condition is satisfied. These
conditions are the result of preceding register instructions, and they are held in 4
condition registers N, Z, C, V, defined as shown below. The branch and link
instruction is unconditional. It is used to implement procedure calls. It stores the
current value of the program counter PC in R7.

Branch instructions

 if condition then PC := PC + 1 + offset

14 off cond

4 4 10

15 off BL

op off d s

4 3 8 3

 8

code mnemonic condition

0000 EQ equal (zero) Z
0001 NE not equal ~Z
0010 CS carry set C
0011 CC carry clear ~C
0100 MI negative (minus) N
0101 PL positive (plus) ~N
0110 VS overflow set V
0111 VC overflow clear ~V
1000 HI high ~(~C|Z)
1001 LS less or same ~C|Z

1010 GE greater or equal ~(N≠V)

1011 LT less than N≠V

1100 GT greater than ~((N≠V)|Z)

1101 LE less or equal (N≠V)|Z
1110 true T
1111 false F

Special instructions

The TRM furthermore features some special instructions. The first to be
mentioned is an instruction to obtain the high part of a product. Multiplications
generate a result of 64 bits. The high-order part is usually ignored, but it is stored
in a special register H. The LDH instruction fetches this value.

The instruction to return from a procedure is BR, branching with the address
taken from register R.s. This instruction also allows the current PC+1 to be stored
in R.d. This instruction is used for calling procedures which are a formal
parameter or are represented by a variable (methods).

The TRM also features an interrupt facility. There are 2 external signals that can
cause an interrupt. It functions like a procedure call. As the place in a program
where an interrupt may be triggered is unknown, the state of the machine must
be preserved in order to be recovered after the interrupt was handled. Thus the
TRM switches to interrupt mode, in which it uses a second bank of registers and
stores the PC and the condition bits in R7 of this bank. Further interrupts are
immediately disabled.

The return from interrupt to normal mode is caused by an RTI instruction, a slight
variant of the BR. It restores PC and the condition bits, and re-enables interrupts.
The interrupt facility requires a processor status register (PSR) indicating the
processor mode and whether or not interrupts are enabled.

MOV 1 d 0 1 LDH

BR 1 d s 10 BLR

 9

The LDPSR instruction loads the Program Status Register from its literal field
with the following bit assignments:

0 interrupt 0 enable
1 interrupt 1 enable
2 processor mode (0 = normal; 1 = interrupted)
3 cache enable (if available)

The Implementation of the TRM-3

The circuit representing the TRM processor is described in Verilog. Any system
description in Verilog is composed as a hierarchy of modules. Only the top
module can specify signals leaving or entering the FPGA. All such signals used
in a subordinate module must flow through the top module. The TRM system
consists of 4 modules, the TRM itself, the RS232R for receiving signals from the
RS-232 serial line, the RS232T for transmitting signals to the serial line, and the
top module. We will first describe the TRM module, the heart of the system.

The hardware interface of the TRM module follows the example of typical micro-
processors. The inputs are:

clk the processor clock (116 MHz)
rst reset, active low
stall if high, causes the processor to stall
irq0, irq1 interrupt signals, active high
inbus 32-bit bus

The output signals are

iord, iowr read and write enable
ioadr 6-bit I/O address
outbus 32-bit bus

The iord signal is included, because some read commands may not only read
data, but also change the state of the device, such as moving a buffer pointer
ahead for sequential access.

The processor essentially consists of two sections, the data processing unit,
computing the results of single instructions, and the control unit, controlling the
sequence of instructions.

The data processing unit

The choice of functions to be computed by the Arithmetic/Logic Unit (ALU) is, as
said before, much determined by the programming language to be implemented.

BR 1 - s 01 RTI

BR 0 - stat LDPSR

 10

But not only. The second factor are the resources available. The early RISC
designs held to principle that every instruction should be executed in a single
clock tick. This is readily possible for addition and the logical operations. But
already a shifter may cause difficulties, let alone multiplication and division. They
are inherently more complex than the former. There are three solutions to the
dilemma: The first is to provide more and faster circuitry – possible only within
limits -, and the second is to give up the principle, i.e. to allow some operations to
take more than a single clock cycle. The third solution is to omit the operation
altogether. Indeed, early RISC designs left out multiplication and division
instructions, as these are relatively rare operations – in particular division.

In our context, we let multiplication and division take 32 cycles. This requires that
the control unit can be stopped from progressing to the next instruction. The
signal indicating such delay is called stall. Both the multiplication and the division
units have a stall signal as output. Fortunately, it proved to be possible to
implement a full barrel shifter operating within a single cycle.

The processing unit consists of the Arithmetic/Logic Unit (ALU) and a set of 8
registers. The ALU is – apart from multiplier and divider - a purely combinational
circuit yielding results of arithmetic or logical operations. The main data path of
the processor forms a loop from selected source registers (A, B) through the
ALU to a multiplexer (aluRes) back to a destination register. The multiplexer in
the A-path determines, whether the A-operand is a register or a literal, i.e. a
constant in the instruction IR. The additional registers H and CC store the high-
order part of a product, and the conditions N, Z, C, V respectively.

Fig. 1.1. ALU

The register bank is generated from 32 dual-port LUT slices (RAM16X1D). Its
addresses are the register numbers denoted by dst and irs, where dst denotes
both the destination and the first source. The register numbers stem from the
instruction register in the control until. The data input comes through regmux
from various sources (defined below), including aluRes. The data path is 32 bits
wide. Declarations and definitions of signals (wires) are shown below. The
signals op, imm, ird, irs, and off are fields of the instruction register IR, which
belongs to the control unit.

Registers

ALU

A

B

CC H

IR

 11

wire [3:0] op;
wire [9:0] imm;
wire [2:0] ird, irs, dst;
wire [7:0] off;

wire [31:0] AA, A, B, s1, s2, s3, divRes, remRes;
wire [32:0] aluRes;
wire [63:0] mulRes;
wire MOV, NOT, ADD, SUB, MUL, DIV, AND, BIC, OR, XOR, ROR;
wire BR, LDR, ST, Bc, BL, ADSB;

assign op = IR[17:14];
assign ird = IR[13:11];
assign irs = IR[2:0];
assign imm = {22'b0, IR[9:0]};
assign off = {4'b0, IR[10:3]};

assign MOV = (op == 0);
assign NOT = (op == 1);
assign ADD = (op == 2);
assign SUB = (op == 3);
assign AND = (op == 4);
assign BIC = (op == 5);
assign OR = (op == 6);
assign XOR = (op == 7);
assign MUL = (op == 8);
assign DIV = (op == 9);
assign ROR = (op == 10);
assign BR = (op == 11);
assign LDR = (op == 12);
assign ST = (op == 13);
assign Bc = (op == 14);
assign BL = (op == 15);
assign ADSB = (IR[17:15] == 1); // ADD | SUB

assign A = (IR[10]) ? AA: {22’b0, imm};
assign regwr = (~ST & ~ …);
assign aluRes =
 (MOV) ? A :
 (NOT) ? ~A :
 (ADD) ? {B[31], B} + {A[31], A} :
 (SUB) ? {B[31], B} - {A[31], A} :
 (AND) ? B & A :
 (BIC) ? B & ~A :
 (OR) ? B | A :
 (MUL) ? mulRes[31:0] :
 (DIV) ? divRes : B ^ A; // XOR

The register bank is implemented by 32 1-bit LUT RAM-slices, expressed in
Verilog by a generate statement. There are 2 addresses (register numbers). The
first is dst (stemming from instruction field ird), controlling RAM input D (regmux)
and RAM output B, and the second is irs, controlling RAM output AA.

genvar i;

generate //dual port register file
 for (i = 0; i < 32; i = i+1)
 begin: rf32

 12

 RAM16X1D_1 # (.INIT(16'h0000))
 rfa(
 .DPO(AA[i]), // data out
 .SPO(B[i]),
 .A0(dst[0]), // R/W address, controls D and SPO
 .A1(dst[1]),
 .A2(dst[2]),
 .A3(intMd),
 .D(regmux[i]), // data in
 .DPRA0(irs[0]), // read-only adr, controls DPO
 .DPRA1(irs[1]),
 .DPRA2(irs[2]),
 .DPRA3(intMd),
 .WCLK(~clk),
 .WE(regwr));
 end
endgenerate

Apart from the 8 32-bit registers the data processing unit contains four 1-bit
registers: N, Z, C and V. Together they form the condition code. It is set by the
general instructions and tested by conditional branch instructions. N indicates
whether a result is negative, and Z whether it is zero. C and V hold the carry and
overflow bits of additions and subtractions. There is also the 32-bit register H
holding the high order part of products or the remainder of divisions.

always @ (posedge clk)
 if (regwr) begin
 N <= aluRes[31];
 Z <= (aluRes == 0);
 C <= (ADSB) ? aluRes[32] : (ROR) ? s3[0] : C;
 V <= (ADSB) ? (aluRes[32] ^ aluRes[31]) : V;
 H <= (MUL) ? mulRes[63:32] : (DIV) ? remRes : H;
end

The Shifter

The TRM has only a single shift instruction. It rotates to the right. The rotate
mode was chosen, because it does not lose any information; all bits are still
present unchanged, albeit at another position. Hence, all other shift modes can
be derived from rotation with the help of masking. The shifter is a barrel shifter.
This implies that any amount of shift is possible with one instruction, i.e. the shift
count ranges from 0 to 31.

Typically, shifters are built from a series of multiplexers, the first shifting by 0 or
1, the second by 0 or 2, etc. the fifth by 0 or 16. Here, we use 4-input
multiplexers (a number favored by Xilinx FPGA cells), and thus can reduce the
series from 5 to 3, denoted by s1, s2, and s3. Now the first multiplexer shifts by
0, 1, 2, or 3, the second by 0, 4, 8, or 12, and the third by 0 or 16. A generate
statement is used to build the 32 multiplexers for each stage. The shift count is
A[4:0]. The output s3 goes to regmux instead of aluRes. (Note: “%” denotes
modulo in Verilog).

wire [1:0] sc1, sc0;
wire [31:0] s1, s2, s3;

 13

assign sc0 = A[1:0];
assign sc1 = A[3:2];

generate
 for (i = 0; i < 32; i = i+1)
 begin: rotblock
 assign s1[i] = (sc0 == 3) ? B[(i+3)%32] : (sc0 == 2) ? B[(i+2)%32] :
 (sc0 == 1) ? B[(i+1)%32] : B[i];
 assign s2[i] = (sc1 == 3) ? s1[(i+12)%32] : (sc1 == 2) ? s1[(i+8)%32] :
 (sc1 == 1) ? s1[(i+4)%32] : s1[i];
 assign s3[i] = A[4] ? s2[(i+16)%32] : s2[i];
 end
endgenerate

The Multiplier

The multiplier is declared as a separate module, instantiated by the following
statement:

Multiplier mulUnit (CLK(clk), .mul(MUL),
 .A(A), .B(B),
 .stall(stallM), .mulRes(mulRes));

The multiplier described below follows the traditional algorithm of n add-shift
steps, where n is the word length, here 32.

s := 0; (*x is the multiplier, y the multiplicand*)
REPEAT
 IF ODD(x) THEN z := z+y END ;
 x := x DIV 2; z := z DIV 2; INC(s) (*right shift*)
UNTIL s = 32

This implies that the multiplier is a state machine. Its state is a counter S running
from 0 to 32. We use a double-length register, here called Hi (initialized to 0) and
Lo (initialized with the multiplier B. In each step, the multiplicand A is added to
the high part, if the least bit of the multiplier is 1. Then the register is shifted one
bit to the right.

Fig. 1.2. Multiplier

It is important to consider also negative numbers. Whereas negative
multiplicands do not pose a problem, this is not obvious for negative multipliers.
However, there is an elegant solution. Considering the value x (represented in
2’s complement form) as the sum

x = -x31*2
31 + x30*2

30 + …. + x1*2
1 + x0*2

0

it is obvious that the solution lies in subtracting rather than adding the
multiplicand in the last step, because term 31 has a minus sign. Note that we

B

Hi Lo

+

A

 14

introduce Hix and Bx as extended versions of Hi and B. This is necessary,
because the carry bit of addition must not be lost. It enters register Hi with the
right shift.

module Multiplier(
 input CLK, mul,
 output stall,
 input [31:0] A, B,
 output [63:0] mulRes);

reg [5:0] S; // state
reg [31:0] Hi, Lo; // high and low parts of partial product
wire [32:0] p, Hix, Bx;

assign stall = mul & ~S[5];
assign Hix = {Hi[31], Hi};
assign Bx = {B[31], B};
assign p = (S == 0) ? (A[0] ? Bx : 0) :
 Lo[0] ? ((S == 31) ? (Hix - Bx) : (Hix + Bx)) : Hix;
assign mulRes = {Hi, Lo};

always @ (posedge(CLK)) begin
 if (mul & stall) begin
 Hi <= p[32:1];
 Lo <= (S == 0) ? {p[0], A[31:1]} : {p[0], Lo[31:1]};
 S <= S + 1; end
 else if (mul) S <= 0;
end
endmodule

The parameter mul indicates a multiplication in progress. The stall signal is
asserted, when mul is 1 and S has not yet reached the value 32.

The FPGA used in this project features (a large number of) DSPs (digital signal
processors). A DSP can be used to speed up multiplication, because it can
multiply two 18-bit numbers in a single clock tick. Thus, we need only 4 (instead
of 32) cycles for a multiplication of two 32-bit arguments. We refrain from
presenting this solution here, because it is rather complicated and highly
dependent on the particular DSP design.

The Divider

The divider is declared as a separate module, instantiated by the following
statement:

Divider divUnit(.clk (clk), .div(DIV),
 .x(B), y(A),
 .stall(stallD),
 .quot(divRes), .rem(remRes));

The divider described below follows the traditional algorithm with n shift-subtract
steps, where n is the wordlength.

s := 0; r := x; q := 0; (*x is the dividend, y the divisor*)
REPEAT (*q*y + r = x*)
 r := 2*r; q := 2*q; INC(s); (*left shift*)
 IF r >= Y THEN r := r - Y END ; (*Y = 2

32
y)

 15

UNTIL s = 32
(*q is the quotient, r the remainder*)

Fig. 1.3. Divider

This implies that also the divider is a state machine. Its state is represented by
the counter S running from 0 to 32

module Divider(
 input clk, div,
 output stall,
 input [31:0] x, y,
 output [31:0] quot, rem);

reg [5:0] S; // state
reg [31:0] R, Q; // remainder, quotient
wire [31:0] xa, rsh, qsh, d;

assign stall = div & ~S[5];
assign xa = (x[31]) ? -x : x;
assign rsh = (S == 0) ? 0 : {R[30:0], Q[31]};
assign qsh = (S == 0) ? {xa[30:0], ~d[31]} : {Q[30:0], ~d[31]};
assign d = rsh - y;
assign quot = (~x[31]) ? Q : (R == 0) ? -Q : -Q-1;
assign rem = (~x[31]) ? R : (R == 0) ? 0 : y - R;

always @ (posedge(clk)) begin
 if (div & stall) begin
 R <= (~d[31]) ? d : rsh; Q <= qsh; S <= S + 1; end
 else if (div) S <= 0;
end
endmodule

The dividend is taken as the absolute value of x. In case of a negative x, a
correction is made after the computation of quotient and remainder:

IF x < 0 THEN
 IF r = 0 THEN q := -q ELSE q := -q-1; r := y-r END
END

The Local Data Memory

The (local) data memory is composed of two 1Kx32 block RAMs. This is
expressed by the macro dbram32, with dmin and dmout as input and output
ports, dmadr as its 11-bit address, and dmwr as write enable.:

assign dmadr = ((irs == 7) ? 0 : AA[11:0]) + {4’b0, offset};
assign dmwr = ST; // write for store instructions only

y

R Q

–

x

 16

assign dmin = B;

dbram32 DM (.wda(dmin), //write port
 .aa (dmadr[10:0]),
 .wea (dmwr),
 .clka (clk),
 .rdb (dmout), //read port
 .ab (dmadr[10:0]),
 .enb (1'b1),
 .clkb (clk));

assign regmux =
(LDR) ? dmout : // read for LDR instructions only
(ROR) : s3 :
aluRes;

(Other terms will be added to regmux, the registers’ input, later).

The control unit

The control unit fetches instructions from the program memory into the instruction
register IR and computes the address of the next instruction. This is the old
address, held in the program counter (PC), plus 1, except for branch instructions.
In their case, the address of the next instruction is the sum of the current location
and the (signed) offset in the current branch instruction. The signal and register
declarations are shown below together with the macro for the program memory.

Fig. 1.4 Control Unit

reg [11:0] PC;

wire [17:0] IR; // 36-bit register IR is contained in module pbram
wire [35:0] pmout;
wire [11:0] pcmux, nxpc;
wire cond;

pbram36 PM (.wda(36'b0), // write port, not used
 .aa (11'b0),
 .wea (1'b0),
 .clka (clk),
 .rdb (pmout), //read port
 .ab (pcmux[11:1]),
 .enb (1'b1),

+1

PC

P-mem
4K x 18

decode
0

 17

 .clkb (clk));

assign IR = (PC[0]) ? pmout[35:18] : pmout[17:0];
assign nxpc = PC + 1;

assign pcmux =
 (~rst) ? 0 :
 (stall0) ? PC :
 (BL) ? IR[13:0] + nxpc :
 (Bc & cond) ? {IR[9], IR[9], IR[9:0]} + nxpc :
 (BR & IR[10]) ? A[11:0] : nxpc;

The sequencing of instructions is finally achieved by the statement

always @ (posedge clk) PC <= pcmux;

This rather straight-forward scheme was used for the TRM-1.

Unfortunately, reading data from local memory is slow compared to functions
implemented by the normal logic cells (LUT). It required the use of a clock rate
not greater than 58.3 MHz. A simple measure called (single stage) pipelining
allows to double the clock rate to 116.6 MHz. It requires two incarnations of IR
and PC. An instructions is first fetched with address PCf into IRf, and thereafter
moved from IRf to IR. While it is interpreted from IR, the next instruction is
fetched into IRf. This sequential flow is broken by branch instructions. In their
case, a NOP instruction must be inserted, causing a hiccup, i.e. a delay of one
tick. The pipelining machinery is described as follows:

localparam NOP = 18'b111011110000000000; // never jump

reg [11:0] PCf, PC;
reg [17:0] IR;
reg stall1;

wire [17:0] IRf; //36-bit register IRf is contained in module pbram
wire [11:0] pcmux, nxpcF, nxpc;

always @ (posedge clk) begin
 PCf <= pcmux;
 if (~rst) begin PC <= 0; IR <= NOP; end
 else if (stall0) begin PC <= PC; IR <= IR; end
 else if ((Bc & cond) | BL | BR & IR[10])
 begin PC <= pcmux; IR <= NOP; end
 else begin PC <= PCf; IR <= IRf; end
end

The signal cond determines, whether a branch is taken or not. It is derived from
the various condition code registers. Bit IR[10] inverts the sense of the condition.

assign cond = IR[10] ^ // xor
 ((ird == 0) & Z | // EQ, NE
 (ird == 1) & C | // CS, CC
 (ird == 2) & N | // MI, PL
 (ird == 3) & V | // VS, VC
 (ird == 4) & ~(~C|Z) | // HI, LS
 (ird == 5) & ~S | // GE, LT
 (ird == 6) & ~(S|Z) | // GT, LE
 (ird == 7)); // T, F

 18

Input and Output

Input and output is handled in the conventional way by including the memory
data buses in the processor’s interface, and by reserving a (small) portion of the
address space for external devices (address-mapped I/O). Addresses 0FC0H –

0FFFH are designated for devices. This is a range of 64 addresses. If such an
address is generated, the signal ioenb becomes active.

assign ioenb = (dmadr[11:6] == 6'b111111);
assign iord = LDR & ioenb;
assign iowr = ST & ioenb;
assign ioadr = dmadr[5:0];
assign outbus = B;

Regmux now includes an entry for input data:

assign regmux =
 (LDR & ~ioenb) ? dmout :
 (LDR & ioenb) ? inbus :
 (ROR) ? s3 :
 (BL | BR) ? {20'b0, nxpc} : aluRes;

Fig. 1.5. ALU, CU, memory, and I/O

Stalling the processor

Originally, the idea behind the RISC movement was to simplify the instruction set
in such a way that every instruction could be interpreted in a single clock cycle.
This condition simplifies pipelining very significantly, which is a backbone of the
RISC idea. It makes it desirable that all instructions, that is, all data paths cause
the roughly same delays. Unfortunately, this is only possible, if exceptions are
allowed. In the case of this TRM implementation, there are two (only 3) such
exceptions. The first is the LD instruction, reading data from the local block RAM.
It requires 2 cycles. The others are, not surprisingly, multiplication and division.
They require 32 cycles.

Registers

ALU

A

B

CC H

IR
+1

PC

P-mem
4K x 18

decode
aluRes

regmux

IR
D-mem
2K x 32

inbus

outbus

pcmux

 19

The problem is solved by introducing a facility to stall the instruction fetch when
the mentioned cases occur. The necessary additions to the TRM circuit are listed
below: stall is an input to the TRM.

reg stall1;
wire stall0, stallM, stallD;
assign stall0 = (LDR & ~stall1) | stallM | stallD | stall;

assign pcmux =
 (~rst) ? 0 :
 (stall) ? PC : ... : nxpc;

always @ (posedge clk) begin // stall generation
 if (~rst) stall1 <= 0;
 else stall1 <= (LDR & ~stall1);
end

Fig. 1.6. Stalling for 1 and 32 cycles

Interrupts

An interrupt facility is necessary, if the processor needs to be able to respond
quickly to signals from external devices, i.e. where (occasional) polling of such
signals is inadequate. Interrupts are based on letting (external) signals determine
the choice of the next instruction at any time, i.e. by directly letting them control
pcmux. Our TRM features two distinct interrupt signals, irq0 and irq1:

assign pcmux =
 (~rst) ? 0 :
 (irq0 & intAck)? 2:
 (irq1 & intAck)? 3: : ... : nxpc;

Of course, it is mandatory to preserve the processor state upon interrupt,
because the interrupt may occur at any arbitrary point in the program. The
interrupt resembles somewhat a procedure call, and the response to an interrupt
that of executing a procedure (called interrupt handler). In the first place, the
processor stores its current PC value in a link register, from where it can be
recovered after the interrupt had been serviced. Then a fixed value according to
the interrupt source is forced to the PC (2 or 3 in our case). Typically an interrupt
handler would save the values of all other registers, or at least those which the
handler makes itself use of. This saving and later restoring of all registers is time-
consuming and not acceptable, if hard real-time constraints have to be met.

stall0

stall1

stallM

 LDR LDR xxx MU MU MU MU xxx

 20

The TRM therefore features a second bank of 8 registers. Upon interrupt, the
processor switches to interrupt mode by setting intMd, and to the use of the
alternate bank (address bit 3). It thereby disables further interrupts, and then
deposits the PC and the flag registers N, Z, C, V in the link register of the
alternate bank. For all this, an extra cycle must be inserted. It is marked by the
signal intAck.

As a consequence, a special return instruction must be provided which, in
addition to restoring the PC also switches back to the normal register bank and
restores N, Z, C, V. This is done by a BR instruction with IR[8] being set.

It is of course necessary to disable interrupt signals. Thus we introduce state
registers intEnb0 and intEnb1. Evidently, a special instruction is required to set
these registers and abuse a form of the BR instruction for this purpose (with bit
10 being zero). We call this instruction Set Processor Status (PSR).

The additions necessary for the interrupt system are listed below, and there are
remarkably few of them.

reg intEnb, intAck, intMd, intAck;
wire irq0e, irq1e;

assign irq0e = irq0 & intEnb0;
assign irq1e = irq1 & intEnb1;

always @ (posedge clk) begin // interrupt and mode handling
 if (~rst) begin intEnb0 <= 0; intEnb1 <= 0; intMd <= 0; intAck <= 0; end
 else if ((irq0e | irq1e) & ~intMd & ~stall0 & ~(IR == NOP)) begin
 intAck <= 1; intMd <= 1; end
 else if (BR & IR[10] & IR[8]) intMd <= 0; // return from interrupt
 else if (BR & ~IR[10]) begin // SetPSR
 intEnb0 <= IR[0]; intEnb1 <= IR[1]; intMd <= IR[2]; end
 if (intAck & ~stall0) intAck <= 0;
end

Furthermore, we must provide an additional case in the code governing the PC:

 else if ((irq0e | irq1e) & intAck) begin PC <= PCf; IR <= NOP; end

For regmux the additional case intAck must be included, bringing it to its final
form:

assign pcmux =
 (~rst) ? 0 :
 (stall0) ? PCf :
 (irq0e & intAck) ? 2 :
 (irq1e & intAck) ? 3 :
 (BL) ? IR[11:0] + nxpc :
 (Bc & cond) ? {IR[9], IR[9], IR[9:0]} + nxpc :
 (BR & IR[10]) ? A[11:0] : nxpcF;

This concludes the description of the TRM processor implementation.

 21

Technical Report 8. 8. 2010

Experiments in Computer System Design

Niklaus Wirth

PART 2

The Environment and the Top Module

In order to be useful, a processor must be made available to users through its
environment. It must connect to devices, such as keyboard and display, or to
another computer. The development board used in this project features a number
of such devices and connections. Their signals are available by standard
specifications is a so-called configuration file (.ucf), and they include clock and
reset signals. They are available only in the top module of the constructed
module hierarchy. We therefore present the TRM’s top module first, and then
discuss the implementations of other (service) modules. Starting with a
transmitter and a receiver for a standard serial line, we obtain the simple module
hierarchy shown below:

Fig. 2.1. Hierarchy of Verilog modules

The principal purpose of the top module is to connect signals of one module with
signals of another module (or with external signals). This connecting occurs
under control of the TRM, i.e. according to the TRM’s interface signals ioadr,
iowr, and iord. Hence, the main components to be found in the top module are
multiplexers and decoders driven by ioadr. This is shown by the diagram, in
which the boxes in the middle represent individual devices, which can be either
implemented by other modules or (exceptionally) in the top module itself, as in
the cases of dip switches and LEDs.

The I/O addresses driving the decoders and multiplexers in this top module are: .

adr input output

4 data Rx data Tx RS-232
5 status -- bit 0: RxRdy, bit 1: TxRdy
6 millisec timer reset timer interrupt (tick)
7 8 dip switches 10 LEDs

TRMTop

RS232R RS232T TRM

 22

Fig. 2.2. Environment with I/O devices

In this sample top module one instance of each of TRM, FPU, RS232R, and
RS232T are created (imported). Furthermore 8 dip switches are made available
as inputs and 10 LEDs as outputs. They are represented as signals swi and leds
in the top module’s interface (heading). And so are the serial input RxD and
output TxD. Signals CLKBN and CLKBP stem from an oscillator, and rstIn from a
push button. We refrain from presenting the clock generation circuitry in detail,
but emphasize that the entire design is synchronous, i.e. driven by the single
clock clk.

Another feature of this top module is a timer (cnt1) counting elapsed
milliseconds. It is driven by another counter (cnt0) which counts, according to the
clock rate of 116.6 MHz, up to 116600 and then advances cnt1 and sets the tick
register to 1. The tick signal is fed to the TRM’s irq0 input, and thus may cause
an interrupt every millisecond, if enabled.

Hint: The FPU can be deleted by simply dropping its instantiation.

module TRM3Top(
 input CLKBN,
 input CLKBP,
 input rstIn,
 input RxD,
 input [7:0] swi,
 output TxD,
 output [9:0] leds);

wire ClockIn;
wire PLLBfb;
wire pllLock;
wire clk, CLKx;
reg rst, tick;

wire[5:0] ioadr;
wire iord, iowr, stall, io4, io5, io6, io7, io16;
wire[31:0] inbus, outbus, fpubus;

wire [7:0] dataTx, dataRx;
wire rdyRx, doneRx, startTx, rdyTx;

reg [9:0] Lreg; // for LEDs

decoder
ioadr

in sel in sel in sel

inbus

multiplexer

outbus

TRM

 23

reg [17:0] cnt0; //driver of the millisecond counter
reg [31:0] cnt1; // millisecond counter

TRM trmx(.clk(clk), .rst(rst), .stall(stall), .irq0(tick), .irq1(1’b0),
 .inbus(inbus), .ioadr(ioadr), .iord(iord), .iowr(iowr), .outbus(outbus));
FPU fpu(.clk(clk), .rst(rst), .stall(stall), .iowr(iowr & io16),
 .ioadr(ioadr[1:0]), .inbus(outbus), .outbus(fpubus));
RS232R receiver(.clk(clk), .rst(rst), .RxD(RxD), .done(doneRx), .data(dataRx), .rdy(rdyRx));
RS232T transmitter(.clk(clk), .rst(rst), .start(startTx), .data(dataTx), .TxD(TxD), .rdy(rdyTx));

assign io4 = (ioadr == 4);
assign io5 = (ioadr == 5);
assign io6 = (ioadr == 6);
assign io7 = (ioadr == 7);
assign io16 = (ioadr[5:2] == 4'b0100);

assign inbus = io4 ? {24'b0, dataRx} :
 io5 ? {30'b0, rdyTx, rdyRx} :
 io6 ? cnt1 :
 io7 ? swi : fpubus;
assign dataTx = outbus[7:0];
assign startTx = iowr & io4;
assign doneRx = iord & io4;
assign leds = Lreg;

always @(posedge clk)
 if (~rst) begin tick <= 0;cnt0 <= 0; Lreg <= 0; end
 else begin
 if (iowr & io6) tick <= 0;
 if (iowr & io7) Lreg <= outbus[9:0];
 else if (cnt0 == 116600) begin
 cnt1 <= cnt1 + 1; cnt0 <= 0; tick <= 1;end
 else cnt0 <= cnt0 + 1;
 end
 always @(posedge clk) rst <= rstIn & pllLock;
endmodule

A Transmitter for the RS-232 serial line

RS-232 is one of the oldest standards for data transmission between computers
and devices. It is based on a single line, packets (bytes) as elements,
asynchronous transmission of packets, and synchronous transmission within
packets. There exist a number of standard bit rates. Here we use 115.2 Kb/s. A
unit of transmission consists of 10 bits, a start bit, the 8 data bits, and a stop bit.
The latter serves to keep a minimal delay between packets. RS-232 is primarily
used for low-speed transmission. The standard is particularly useful for simple
implementations. Our version uses a 116.6 MHz clock, which is divided by 1012
to obtain a bit rate of 115.2 Kb/s.

start bit

d0 – d7
stop bit

 24

Fig. 2.3. The RS-232 data format

// RS232 transmitter for 115200 bps, 8 bit data, 1 stop bit
// clock is 116.6 MHz; 116600 / 1012 = 115.2 KHz

module RS232T(
 input clk, rst,
 input start, // request to accept and send a byte
 input [7:0] data,
 output rdy,
 output TxD);

wire endtick, endbit;
reg run;
reg [9:0] tick;
reg [3:0] bitcnt;
reg [9:0] shreg;

assign endtick = tick == 1012;
assign endbit = bitcnt == 9;
assign rdy = ~start & ~run;
assign TxD = ~shreg[0];

always @ (posedge clk) begin
 if (run & ~endtick) tick <= tick + 1;
 else tick <= 0;
 if (~run) bitcnt <= 0;
 else if (endtick & (bitcnt < 10)) bitcnt <= bitcnt + 1;
 if (~rst) run <= 0;
 else if (start & ~run & (bitcnt < 10)) run <= 1;
 else if (endtick & endbit) run <= 0;
 if (~rst) shreg <= 0;
 else if (start & ~run)
 begin shreg[0] <= 1'b1; shreg[8:1] <= ~data; end
 else if (run & endtick)
 begin shreg[8:0] <= shreg[9:1]; end
end
endmodule

A Receiver for the RS-232 serial line

The neutral state of the transmission line is “high”. The receiver’s state machine
is triggered whenever the input RxD becomes low. The line is sampled in the
middle of a “bit-cell” (midtick). in order to minimize the chance of reading an
incorrect value.

module RS232R(
 input clk, rst,
 input done, // "byte has been read"
 input RxD,
 output rdy,
 output [7:0] data);

wire endtick, midtick;
reg run, stat;

 25

reg [8:0] tick;
reg [3:0] bitcnt;
reg [7:0] shreg;

assign endtick = tick == 1012;
assign midtick = tick == 506;
assign endbit = bitcnt == 8;
assign data = ~shreg;
assign rdy = stat;

always @ (posedge clk) begin
 if (~rst) begin stat <= 0; run <= 0; end
 else begin
 if (run & ~endtick) tick <= tick + 1;
 else tick <= 0;
 if (~run) bitcnt <= 0;
 else if (endtick & ~endbit) bitcnt <= bitcnt + 1;
 else if (endtick & endbit) bitcnt <= 0;
 if (~RxD) run <= 1;
 else if (endbit & endtick) run <= 0;
 if (run & midtick) begin
 shreg[6:0] <= shreg[7:1]; shreg[7] <= ~RxD; end
 if (endbit & endtick) stat <= 1;
 else if (done) stat <= 0;
 end
end
endmodule

A Floating-point Unit

Scientific computation is almost without exception based on floating-point
arithmetic. Fractional numbers (type REAL) are represented by a pair mantissa-
exponent, i.e.

x = m × B e 1.0 ≤ m < B

where B is a fixed base. The universally adopted, single-precision IEEE Standard
defines B = 2 and

x = <s, m’, e’> m = 1.m’, e = e’ - 127, and 1.0 ≤ m < 2.0

with a sign bit s, an exponent e’ of 8 bits, and a mantissa m’ of 23 bits. The
leading 1 of m is suppressed. A few examples of real numbers and their
representation in hexadecimal form are:

x e m

0.5 -1 1.0 3F000000
1.0 0 1.0 3F800000
1.5 0 1.5 3FC00000
1.75 0 1.75 3FE00000
2.0 1 1.0 40000000
10.0 3 1.25 41200000
100.0 6 1.5625 42C80000

 26

Fig. 2.3. IEEE Floating-point number format

In this logarithmic representation the value 0 is inherently not representable and
must be treated as a special case. The Standard defines it to be represented by
all zero bits. Note that the representation is zero-symmetric, i.e. x and –x are
distinguished only by the sign bit. Also values with e’ = 255 are considered as
special. They represent non-representable values (overflow). The largest
absolute value is 2128 (about 1038) and the least value is 2-128 (about 10-38).

Floating-point multiplication is easily explained. It consists of the multiplication
of the mantissas and the addition of exponents:

x0 * x1 = 2 e0+e1-127 * (m0 * m1)

The product of the mantissas will be in the range 1.0 ≤ m0*m1 < 4.0. Therefore, a

postnormalization is mandatory to reach the normal form 1.0 ≤ n < 2.0. It is
achieved by a right shift of the product mantissa and an increment of the

exponent by 1, if x ≥ 2.0.

The cases of any of the operands being zero must be detected as special case
resulting in a zero product.

It is inherent in computing with rael numbers that the results may be slightly
inaccurate. It is essential that the reults are rounded properly. This is done by
adding 0.5 at the low order position, or a 1 at the position that will be truncated.
This complexifies the circuitry, but it is necessary to achieve a usable arithmetic.

Floating-point addition (and subtraction) are more complicated. Before
performing an additionof the mantissas, the exponents must be made equal. This
is possible only by dividing (the mantissa of) the operand with the smaller
exponent by 2n, where n is the difference of the two exponents. This operation is
called denormalization. Division by 2n is of course achieved by shifting the
mantissa to the right by n bits:

m := SHR(n, n); e := e+n denormalization

After the addition, the sum must be brought to its absolue value, and thereafter to
its normalized form. This means that leading zeroes must be eliminated and the
exponent decreased accordingly. This can be done sequentially by testing the
leading bit ans left shifting the mantissa by one bit, until the leading bit is 1. A
faster solution is to determine the number n of leading zeroes, and then left
shifting the mantissa by n bits. The cost of this solution is increased complexity of
the circuit.

We point out that all this is achieved by a purely sequential circuit with no
registers involved. However, a path length may result that causes a signal
propagation delay larger that a single clock cycle. In this case, registers must be
introduced.

s exponent mantissa

0 23 31

 27

Floating-point division is not discussed here. It is a rather rare operation, too
rare to warrant a complex circuit. It is better implemented by an iterative method
in software. The following algorithm computes x = 1/a.

x := 1.0; z := 1.0 - a;
REPEAT x := x*(1.0+z); z := z*z UNTIL z = 0.0

Implementation of floating-point operations

It is generally desirable to provide floating-point operations by processor
instructions. We instead chose to consider the FPU as an external divice, i.e. not
as part of the basic processor. The advantage is a modular decoupling of the
basic processor from the floating-point unit. The FPU’s interface therefore
contains registers for the arguments x and y, and output ports for sum and
product. Storing y also causes the respective operation to be triggered.

adr input operation output

16 x store x sum
17 y store y, addition product
18 y store -y, addition
19 y store y, multiplication

The following instruction sequences are used and generated by the compiler for
the statements z := x+y; z := x-y; z := x*y. Assume that R0 contains operand x,
R1 operand y, and R2 the device address of the floating-point unit.

 ST R0 R2 0 x
 ST R1 R2 1 y
 LD R0 R2 0 R0 := x + y
 ST R0 R7 2 z := R0

 ST R0 R2 0 x
 ST R1 R2 2 -y
 LD R0 R2 0 R0 := x + (-y)
 ST R0 R7 2 z := R0

 ST R0 R2 0 x
 ST R1 R2 3 y
 LD R0 R2 1 R0 := x*y
 ST R0 R7 2 z := R0

module FPU(
 input clk, rst, iowr,
 input [1:0] ioadr,
 input [31:0] inbus,
 output stall,
 output [31:0] outbus);

reg [31:0] X, Y; // arguments
reg [26:0] s; // pipe reg
reg mulR;

wire io0, io1, io2, io3;
wire [27:0] x0, y0;

 28

wire [36:0] x1, y1;
wire [40:0] x2, y2;
wire [26:0] x3, y3;
wire [7:0] xe, ye;
wire [8:0] dx, dy, e0, e1;
wire [7:0] sx, sy; // shift counts
wire [1:0] sx0, sx1, sy0, sy1;
wire sxh, syh;
wire [26:0] ss;
wire [31:0] Sum;

reg [31:0] prodReg; // product buffer
wire mul, sign, startM, stallM;
wire [8:0] e2, e3;
wire [69:0] mulRes;
wire [24:0] p0, p1;
wire [31:0] Prod;

wire z24, z22, z20, z18, z16, z14, z12, z10, z8, z6, z4, z2;
wire [4:0] u; // shift counts
wire [1:0] u0, u1;
wire [41:0] t0, t1, t2, t3;
wire [24:0] t4;

assign io0 = (ioadr == 0); // address assignments
assign io1 = (ioadr == 1);
assign io2 = (ioadr == 2);
assign io3 = (ioadr == 3);

always @ (posedge(clk))
 if (~rst) begin X <= 0; Y <= 0; end
 else begin
 if (iowr & io0) X <= inbus;
 if (iowr & io1) Y <= inbus;
 if (iowr & io2) Y <= {~inbus[31], inbus[30:0]};
 if (iowr & io3) Y <= inbus;
 end

assign xe = X[30:23]; // addition denormalization
assign ye = Y[30:23];
assign dx = xe - ye;
assign dy = ye - xe;
assign e0 = (dx[8]) ? ye : xe;

assign sx = dy[8] ? 0 : dy;
assign sy = dx[8] ? 0 : dx;
assign sx0 = sx[1:0];
assign sx1 = sx[3:2];
assign sy0 = sy[1:0];
assign sy1 = sy[3:2];
assign sxh = sx[7] | sx[6] | sx[5];
assign syh = sy[7] | sy[6] | sy[5];

assign x0 = {4'b0001, X[22:0], 1'b0}; // guard digit
assign y0 = {4'b0001, Y[22:0], 1'b0};

genvar i;
generate // denormalize, shift right
 for (i = 0; i < 25; i = i+1)

 29

 begin: shiftblk0
 assign x1[i] = (sx0 == 3) ? x0[i+3] : (sx0 == 2) ? x0[i+2] : (sx0 == 1) ? x0[i+1] : x0[i];
 assign y1[i] = (sy0 == 3) ? y0[i+3] : (sy0 == 2) ? y0[i+2] : (sy0 == 1) ? y0[i+1] : y0[i];
 end
 for (i = 0; i < 25; i = i+1)
 begin: shiftblk1
 assign x2[i] = (sx1 == 3) ? x1[i+12] : (sx1 == 2) ? x1[i+8] : (sx1 == 1) ? x1[i+4] : x1[i];
 assign y2[i] = (sy1 == 3) ? y1[i+12] : (sy1 == 2) ? y1[i+8] : (sy1 == 1) ? y1[i+4] : y1[i];
 end
 for (i = 0; i < 25; i = i+1)
 begin: shiftblk2
 assign x3[i] = sxh ? 0 : (sx[4]) ? x2[i+16] : x2[i];
 assign y3[i] = syh ? 0 : (sy[4]) ? y2[i+16] : y2[i];
 end
endgenerate

assign ss = (X[31] ? -x3 : x3) + (Y[31] ? -y3 : y3); // add or subtract
always @ (posedge(clk)) s <= ss[26] ? -ss : ss;

assign z24 = ~s[25] & ~ s[24];
assign z22 = z24 & ~s[23] & ~s[22];
assign z20 = z22 & ~s[21] & ~s[20];
assign z18 = z20 & ~s[19] & ~s[18];
assign z16 = z18 & ~s[17] & ~s[16];
assign z14 = z16 & ~s[15] & ~s[14];
assign z12 = z14 & ~s[13] & ~s[12];
assign z10 = z12 & ~s[11] & ~s[10];
assign z8 = z10 & ~s[9] & ~s[8];
assign z6 = z8 & ~s[7] & ~s[6];
assign z4 = z6 & ~s[5] & ~s[4];
assign z2 = z4 & ~s[3] & ~s[2];

assign u[4] = z10; // u = shift count of post normalization
assign u[3] = z18 & (s[17] | s[16] | s[15] | s[14] | s[13] | s[12] | s[11] | s[10])
 | z2;
assign u[2] = z22 & (s[21] | s[20] | s[19] | s[18])
 | z14 & (s[13] | s[12] | s[11] | s[10])
 | z6 & (s[5] | s[4] | s[3] | s[2]);
assign u[1] = z24 & (s[23] | s[22])
 | z20 & (s[19] | s[18])
 | z16 & (s[15] | s[14])
 | z12 & (s[11] | s[10])
 | z8 & (s[7] | s[6])
 | z4 & (s[3] | s[2]);
assign u[0] = ~s[25] & s[24]
 | z24 & ~s[23] & s[22]
 | z22 & ~s[21] & s[20]
 | z20 & ~s[19] & s[18]
 | z18 & ~s[17] & s[16]
 | z16 & ~s[15] & s[14]
 | z14 & ~s[13] & s[12]
 | z12 & ~s[11] & s[10]
 | z10 & ~s[9] & s[8]
 | z8 & ~s[7] & s[6]
 | z6 & ~s[5] & s[4]
 | z4 & ~s[3] & s[2];

assign e1 = e0 - u + 1;

 30

assign u0 = u[1:0]; // u = shift count
assign u1 = u[3:2];
assign t0 = {s[25:0], 16'b0};

generate // normalize, shift left
 for (i = 16; i < 42; i = i+1)
 begin: shiftblk4
 assign t1[i] = (u0 == 3) ? t0[i-3] : (u0 == 2) ? t0[i-2] : (u0 == 1) ? t0[i-1] : t0[i];
 end
 for (i = 16; i < 42; i = i+1)
 begin: shiftblk5
 assign t2[i] = (u1 == 3) ? t1[i-12] : (u1 == 2) ? t1[i-8] : (u1 == 1) ? t1[i-4] : t1[i];
 end
 for (i = 16; i < 42; i = i+1)
 begin: shiftblk6
 assign t3[i] = u[4] ? t2[i-16] : t2[i];
 end
endgenerate

assign t4 = t3[41:17] + 1; // rounding
assign Sum = (xe == 0) ? Y : (ye == 0) ? X :
 ((t3[41:17] == 0) | e1[8]) ? 0 : {ss[26], e1[7:0], t4[23:1]};

MulDSP mulUnit(.CLK (clk), // multiplication
 .mul (mul & ~startM),
 .A ({11'b0, 1'b1, X[22:0]}),
 .B ({11'b0, 1'b1, Y[22:0]}),
 .stall (stallM),
 .mulRes (mulRes));

assign mul = iowr & io3;
assign startM = mul & ~mulR;
assign stall = startM | stallM;
assign sign = X[31] ^ Y[31];
assign e2 = X[30:23] + Y[30:23];
assign e3 = mulRes[47] ? e2 - 126 : e2 - 127;
assign p0 = {1'b0, mulRes[47] ? mulRes[46:23] : mulRes[45:22]};
assign p1 = p0 + 1; // rounding

assign Prod = (xe == 0) | (ye == 0) ? 0 :
 (~e3[8]) ? {sign, e3[7:0] + {7'b0, p1[24]}, p1[23:1]} :
 (~e3[7]) ? {sign, 8'b11111111, 23'b0} : 0; // overflow

always @ (posedge(clk)) begin mulR <= mul;
 if (mul) prodReg <= Prod;
end

assign outbus = (io0) ? Sum : prodReg;
endmodule

It is remarkable that the program of the FPU is almost as long as that for the
entire processor TRM. It is therefore of interest to compare its performance with
that of a solution implementing real arithmetic by software. The result of a
comparison indicates that the hardware solution performs between 10 and 30
times faster than the software implementation. The extreme case is that of
subtraction with almost identical operands. This leads to a long post-
normalization shift, which is done in a loop in software. This case is a weak point

 31

of floating-point arithmetc in general. It implies a loss of precision and is called
cancellation.

 32

Technical Report 8. 8. 2010

Experiments in Computer System Design

Niklaus Wirth

PART 3

About memories

In the early years of computers, memories had been considered as an integral
part of the central computing unit. This remained so through the eras of magnetic
drum memories, magnetic core memories, and static semiconductor memories
(SRAM). A change came with the RISCs (Reduced Instruction Set Computer),
which more strongly decouple memory and processing unit. Whereas the speed
of processors increased dramatically, the speed of memories also increased, but
at a lesser pace. But their capacity increased substantially, mainly due to
dynamic random access memories (DRAM). Cells in static RAMs consist of two
transistors and have 2 stable states. Thus they hold a bit (until given a new
value), and therefore they are called static. The dynamic RAM holds a bit in a
small capacitor coupled with a single transistor. This cell requires less space on a
die and therefore is dominant for large capacity devices.

The DRAM has, however, a few drawbacks. The most prominent is that
capacitors leak and discharge through the transistor. Therefore the charge must
be refreshed. This is achieved by reading the cell and restoring the old value
(through recharge). Refreshing requires additional circuitry, which must not
interfere with normal data access. DRAMs are typically refreshed at least every
millisecond.

Memory chips of the latest provenience have capacities in the order of a gigabyte
and therefore require large multiplexers for reading and decoders for writing. As
a consequence, access is slower than for smaller devices. In the last decades,
the speeds of processors and of memories have increasingly diverged. Two
remedies are in use: 1. Data in memory are accessed in larger portions than
single words or bytes. 2. Buffers are placed in the data path between memory
and processor. These buffers are fast memories, called caches. Modern
processors feature cache memories on-chip. Naturally, caches further complicate
memory access, leading to more complex circuit. It is common that such cache
mechanisms are to be invisible (transparent) to the computer user and to the
software. We will here first show how a large DDR memory is interfaced with the
TRM.

A DDR memory as an external device

Let us connect a DDR memory to the TRM’s input/output bus. The memory in
question here is a 256 MB chip MT4HTF3264HY-53E of Micron, present on the
ML-505 evaluation board. In fact, we will not connect the memory directly to the
TRM, but place an intermediary agent in between. It is called a DDR Controller,

 33

and it was designed by Ch. Thacker of Microsoft Research in Mountain View.
Thereby we obtain some freedom to ignore details of this particular type of DDR.

In addition to being periodically refreshed, the DDR memory must be initialized at
startup. This involves the loading of certain constants. Also, once the RAMs have
been configured, the individual delay lines associated with the FPGA data pins
must be adjusted to center the strobe in the "data valid" window.

These complicated task appear to require a substantial amount of circuitry. This
can be avoided by employing a dedicated, simple, programmed processor for
these tasks. The design of such a processor is described below. It is called TRM-
0. Once the system is running, the TRM-0 controls the periodic refresh of the
RAMs. Note that calibration can fail. The signal CalFailed is available to
programs as a status bit of the DDR interface. The TRM-0 will be presented at
the end of this Part.

Let us now describe the top module that connects to the DDR-Controller as an
external device of TRM. We start by showing the heading (interface) of this Top
module. In addition to the signals of the top module described in Part-1 of this
Report, it contains all signals leading to the memory chip on the ML-505 board.
They are directly passed on to the DDR-Controller module.

module TRM3DTop(
 input CLKBN,
 input CLKBP,
 input rstIn,
 input RxD,
 input [7:0] swi,
 output TxD,
 output [9:0] leds,

 inout [63:0] DQ, //the 64 DQ pins, signals to the memory chip
 inout [7:0] DQS, //the 8 DQS pins
 inout [7:0] DQS_L,
 output [1:0] DIMMCK, //differential clock to the DIMM
 output [1:0] DIMMCKL,
 output [12:0] A, //addresses to DIMMs
 output [7:0] DM,
 output [1:0] BA, //bank address to DIMMs
 output RAS, CAS, WE, ODT, ClkEn, S0);

The connections between the various modules are best sketched by the following
block diagram: The registers and signals, in addition to those present in the basic
version of TRM3Top are:

reg Read, Write; // DDR commands
reg RBempty1, Write1; // delayed DDR signals
reg RDrdy, shiftRD;
reg [22:0] Address;
reg [255:0] RD; // read data buffer from DDR
reg [255:0] WD; // write data buffer to DDR

wire AFfull, WBfull, RBempty, WriteAF, ReadRB, WriteWB;
wire [127:0] ReadData, WriteData;

 34

Data are read and written in blocks of 256 bits (8 words). The memory can be
considered as consisting of 256-bit elements. When writing, first 8 words are
deposited into the WD buffer by 8 consecutive IO commands (with address 10).

Fig. 3.1. TRM-DDR interface in TRM3DTop

The DDR2 memory used here has a capacity of 256 MByte, Each “word”
consists of 32 bytes, which results in a word address of 23 bits. Data are loaded
into a 256-bit shift register. Each command shifts down the data by 32 bits and
places the iobus data into the high end of the shift register. A subsequent
command with address 11 initiates the DDR reading. It supplies the DDR
address. This occurs in a single cycle with 128 bits transferred on the rising, and
128 bits of the falling edge of the clock.

Reading starts with a DDR-read command (address 11), supplying the DDR-
address of the 256-bit block. Reading also is done in two bursts at the rising and
falling edges of the clock. The data are deposited in the RD buffer. Then follow 8
consecutive read commands (address 10), each moving a word from the low end
of the RD buffer to the TRM’s inbus and shifting the data in the buffer down.

The operations of writing and reading a block are best described by the following
procedures in Oberon. Bit 0 of the status register means “read buffer not empty”,
bit 1 mena “write buffer full”, and bit 2 means “command buffer full”.:

TRM-3 DDR-
Controller

DDR
SDRAM

TRM-0

WD shift

shift RD

outbus

inbus

ioadr
iowr
iord

WriteData

ReadData

DQ/DQS

decode and
seqencing logic

D0 – D2

injectCmd

RAS
CAS
WE
ODT
CkEnb
…

Read
WriteAF
ReadRB
WriteWB
AFfull
RBenpty
WBfull

Addr

 35

 CONST A0 = 0FFFFFFCAH; A1 = 0FFFFFFCBH;
 TYPE Block = ARRAY 8 OF INTEGER;

 PROCEDURE Write(dst: INTEGER; VAR B: Block);
 VAR i: INTEGER;
 BEGIN i := 0;
 REPEAT UNTIL ~BIT(A1, 1); (*write buffer not full*)
 REPEAT PUT(A0, B[i]); INC(i) UNTIL i = 8;
 REPEAT UNTIL ~BIT(A1, 2); (*command buffer not full?*)
 PUT(A1, 2000000H + dst); (*write DDR*)
 END Write;

 PROCEDURE Read(src: INTEGER; VAR B: Block);
 VAR i: INTEGER;
 BEGIN i := 0;
 REPEAT UNTIL ~BIT(A1, 2);
 PUT(A1, 1000000H+ src); (*read DDR*)
 REPEAT UNTIL ~BIT(A1, 0);
 REPEAT UNTIL BIT(A1, 0);
 REPEAT GET(A0, B[i]); INC(i) UNTIL i = 8;
 END Read;

The details of the implementation in TRM3DTop are given by the following
statements in Verilog (see also declarations above):

assign Reset = ~rstIn | ~pllLock | ~ctrlLock;
assign WriteAF = Read | Write1;
assign WriteWB = Write | Write1; // commands to DDR controller
assign ReadRB = ~RBempty;
assign WriteData = (Write1) ? WD[127:0] : WD[255:128];

always @(posedge clk) rst <= rstIn & pllLock & DDRCalSuccess;

// writing DDR: outbus(32) --> WD(256) --> WriteData(128)
// reading DDR: ReadData(128) --> RD(256) --> inbus(32)

always @(posedge clk)
 begin
 if (io11 & iowr) begin // DDR command
 Address <= outbus[22:0];
 Read <= outbus[24]; RDrdy <= 0;
 Write <= outbus[25];
 end
 else begin Read <= 0; Write <= 0;
 if (~RBempty1 & RBempty) RDrdy <= 1;
 end

 if (io10 & iowr) begin // write a word to TRM
 WD[223:0] <= WD[255:32]; WD[255:224] <= outbus;
 end

 if (io10 & iord) shiftRD <= ~shiftRD; else shiftRD <= 0;
 Write1 <= Write; RBempty1 <= RBempty;
 if (shiftRD) RD[223:0] <= RD[255:32]; else
 if (~RBempty) begin RD[255:128] <= RD[127:0]; RD[127:0] <= ReadData; end
 end

 36

Introducing a Direct Memory Access Channel (DMA)

The solution presented above is the simplest, as far as hardware is concerned.
Its drawback is, however, low speed. This can be remedied by avoiding the use
of one instruction for each word transferred, and instead to transfer an entire
block through a single instruction. This solution introduces an important concept
of computer architecture: The direct memory access channel. It postulates that
not only the processor, but also other agents may obtain direct memory access.

The two driver procedures are then simplified to:

PROCEDURE Write(dst: INTEGER; VAR B: Block);
BEGIN
 REPEAT UNTIL ~BIT(A1, 1); (*write buffer not full*);
 PUT(A0, ADR(B) + 2000000H); (*DMA transfer of 8 words from B*)
 REPEAT UNTIL ~BIT(A1, 2); (*command buffer not full?*)
 PUT(A1, 2000000H + dst); (*write DDR*)
END Write;

PROCEDURE Read(src: INTEGER; VAR B: Block);
BEGIN
 REPEAT UNTIL ~BIT(A1, 2); (*command buffer not full*)
 PUT(A1, 1000000H+ src); (*read DDR*)
 REPEAT UNTIL ~BIT(A1, 0);
 REPEAT UNTIL BIT(A1, 0);
 PUT(A0, ADR(B) + 1000000H); (*DMA transfer of 8 words to B*)
END Read;

The result is remarkable: The speed of transferring blocks has tripled. What are
the consequences for the hardware interface? Evidently, the TRM itself must be
modified by adding external access signals to its data memory. This implies that
its interface must change Furthermore, a data transfer lasts over several clock
cycles, and therefore requires a state machine to control it. Furthermore, it must
be possible to stall the processor, i.e. to prevent it from proceeding to the next
instruction.

We will let the state machine to be part of the device interface rather than of the
TRM processor. This minimizes the changes to the interface, which we will
describe first. It is extended with 5 signals:

module TRM3X(
input clk, rst, stall,
input irq0, irq1,
input[31:0] inbus,
output [5:0] ioadr,
output iord, iowr,
output [31:0] outbus,

input dmaenb, dmawr, // dma connections
input [11:0] dmaAdr,
input[31:0] dmain,
output [31:0] dmaout);

In the TRM itself, all inputs signals to the local memory obtain a multiplexer with
the existing input plus the one from the interface:

 37

assign dmadr = (dmaenb) ? dmaAdr : ((irs == 7) ? 0 : AA[11:0]) + off);
assign dmwr = (dmaenb) ? dmawr : ST & ~ioenb;
assign dmin = (dmaenb) ? dmain : B;
assign dmaout = dmout;

The only further change to the TRM logic is the dmaenb signal stalling the
processor:

assign stall0 = (LDR & ~stall1) | stallM | stallD | stall | dmaenb;

The major addition to the top module is the state machine. It controls the block
transfer between the TRM output to the write buffer WD, and the block transfer
between the read buffer RD and the TRM input. The state machine is triggered
by a PUT statement with I/O address 10. The command word contains the
address of local memory in bits 0 – 10, and either a read in bit 24 or a write in bit
25.

Fig. 3.2. DMA state machine

When reading the DDR memory, the local memory is written, which takes a
single clock cycle. When writing DDR memory, the local memory is read, which
takes 2 clock cycles. This is reflected by the state machine having 2 states in the
write branch. The word counter, running from 0 to 7, is kept separate from the
state. The signal and register declarations are as follows:

reg Read, Write; // DDR commands
reg RBempty1, Write1; // delayed DDR signals
reg RDrdy; // data read from DDR ready

reg [1:0] state; // dma state (0 = idle)
reg [2:0] wcnt; // word count for DMA
reg [11:0] dmaAdr;
reg [22:0] ddradr;
reg [255:0] RB; // input buffer from DDR
reg [255:0] WB; // output buffer to DDR

wire WriteAF, ReadRB, WriteWB;
wire AFfull, WBfull, RBempty;
wire dmaenb, dmawr;
wire [31:0] dmain, dmaout;

0

1

dmaAdr <= outbus[11:0]
wcnt <= 0

wcnt = 7

shift RD
INC(wcnt)
dmawr

2

3

wcnt = 7

shift WD
WD <= dmaout
INC(wcnt)
INC(dmaAdr)

adr = 10 & iowr
& outbus[24]

adr = 10 & iowr
& outbus[25]

 38

wire [127:0] ReadData, WriteData; // data from/to DDR

assign WriteAF = Read | Write1;
assign WriteWB = Write | Write1; // commands to DDR controller
assign ReadRB = ~RBempty;
assign WriteData = (Write1) ? WB[127:0] : WB[255:128];
assign dmaenb = ~(state == 0);
assign dmawr = (state == 1);
assign dmain = RB[31:0];

The state machine is expressed in Verilog by the following statements:

always @(posedge clk)
 begin
 if ((ioadr == 11) & iowr) begin // DDR command
 ddradr <= outbus[22:0];
 Read <= outbus[24]; RDrdy <= 0;
 Write <= outbus[25];
 end
 else begin Read <= 0; Write <= 0;
 if (~RBempty1 & RBempty) RDrdy <= 1;
 end

 if (~rst) state <= 0;
 else if ((ioadr == 10) & iowr) begin // DMA command
 dmaAdr <= outbus[11:0]; wcnt <= 0;
 state <= outbus[25:24]; end // 01: read RB, 10: write WB
 else begin
 if (state == 2) state <= 3;
 if (state == 3) begin
 WB[223:0] <= WB[255:32]; WB[255:224] <= dmaout;
 wcnt <= wcnt + 1; dmaAdr <= dmaAdr + 1;
 state <= (wcnt == 7) ? 0 : 2;
 end
 if (state == 1) begin
 RB[223:0] <= RB[255:32];
 wcnt <= wcnt + 1; dmaAdr <= dmaAdr + 1;
 state <= (wcnt == 7) ? 0 : 1;
 end
 end
 Write1 <= Write; RBempty1 <= RBempty;
 if (~RBempty) begin RB[255:128] <= RB[127:0]; RB[127:0] <= ReadData; end
 end

This concludes the addition of a DMA facility to the TRM top module. It causes
only a moderate increase of complexity and results in a very substantial gain in
performance. Note that this addition was (almost entirely) an addition to the
environment: The DMA facility is considered part of the device.

Initializing and refreshing the SDRAM memory

DRAMs must be initialized and periodically refreshed. An economical way of
doing this is to dedicate a small processor to this task. Here we first describe the
program used, and then the processor, TRM-0. The program is described in
pseudo-language, suppressing details. It was actually implemented by a very
simple assembler code.

 39

PROCEDURE refresh;
BEGIN prechargeall; wait(1); (*unit of delay = 32ns*) refreshall; wait(3);
END refresh;

Start: inhibit DDR; wait(6000); toggleDDR; setDIMMclk;
InitMem: wait(12); prechargeall; wait(1);
 babk2; bank3; babk1; MRS1;
 wait(49); (*wait for DLL to lock*) refresh; refresh;
 MRS2; MRS3; MRS4; wait(11); prechargeall; wait(1);
Calibrate: inhibitDDR; set Force;
 wait(1); … ; wait(3); WriteCmd; toggle(StartDQcal); n := 0;
 REPEAT ReadCmd; DEC(n) UNTIL n = 0;
 wait(16); refresh; enableDDR; clear Force;
 REPEAT wait(768); disbleDDR; refresh; enableDDR END

4 of the 8 registers are directly connected to the DDRcontroller, providing
commands (D0, D1) and status (D2); When assigning a value to register D1, a
strobe is issued (injectCmd), causing the DDRcontroller to insert the command in
D0, D1 in the command sequence supplied by the interface of the TRM-3. The
status bits of D2 are:

0 StartDQcal
1 inhibit DDR
2 DDR clock enable
3 reset DDR
7 Force calibration

The instantiation of TRM-0 in the Top module is:

TRM0 trm0x (.clk(clk), .rst(rst), .trig(injectCmd),
 .Din(12'b0),
 .D0(D0), .D1(D1), .D2(D2), .D3(D3));

TRM-0: Architecture and instruction set

The TRM-0 processor consists of a compute unit consisting of an ALU,
implementing addition and subtraction, and the basic logic operations used for
setting and clearing individual bits, and of a set of 8 12-bit registers. It has a 2K
program memory, but no data memory.

 40

Fig. 3.3. TRM-0 Block Diagram

Register operations

op operation

0 BIS R.d := R.d | R.s (in place of R.s may stand the literal n)
1 BIC R.d := R.d & ~R.s (bit clear)
2 ADD R.d := R.d + R.s
3 SUB R.d := R.d - R.s
4 MOV R.d := R.s
5 not used

If s = 7, Din instead of R.7 is used as source

Branch instructions

op cond operation

6 CL R.d := PC+1; PC := n

d, s = 3-bit regno

6 d 0

n

7 cond 1
p

n

Branch and Link

op d 0
p

n n =11-bit literal

d, s = 3-bit regno op d 1
p

s

Register bank
8 x 12

N, Z

Program
Memory

2K x 18

IR

PC

+1

decode

ALU

 41

7 0 BEQ PC := n, if Z
7 1 BNE PC := n, if ~Z
7 2 BLT PC := n, if N
7 3 BGE PC := n, if ~N
7 4 BLE PC := n, if N|Z
7 5 BGT PC := n, if ~(N|Z)
7 6 B PC := n
7 7 NOP

The implementation of TRM-0

The implementation of TRM-0 is described by the following Verilog program,
which somewhat resembles that of TRM-3, but is very substantially simpler.

module TRM0(
 input clk, rst,
 output trig,
 input [11:0] Din,
 output [11:0] D0, D1, D2, D3);

reg N, Z, T;
reg [10:0] PC;
reg [11:0] R0, R1, R2, R3, R4, R5, R6, R7;

wire [17:0] IR; // register contained in module pbram
wire [35:0] pmout;
wire [2:0] op, dst, src, cond;
wire [1:0] cc;
wire [10:0] pcmux, nxpc;

wire [11:0] A, B, AluRes;

dpbram36 im(// program memory, 1K x 36
 .wda(36'b0), // port A is the write port.
 .aa(10'b0),
 .wea(1'b0),
 .ena(1'b0),
 .clka(1'b0),
 .rdb(pmout), // port B is the read port.
 .wdb(36'b0),
 .ab(pcmux[10:1]),
 .web(1'b0),
 .enb(1'b1),
 .clkb(clk));

assign D0 = R4;
assign D1 = R5;
assign D2 = R6;
assign D3 = R7;
assign trig = T;

assign IR = PC[0] ? pmout[35:18] : pmout[17:0];
assign op = IR[17:15];
assign cc = IR[14:13];
assign dst = IR[14:12];
assign src = IR[2:0];

 42

assign A = (~IR[11]) ? {IR[10], IR[10:0]} :
 (src == 0) ? R0 :
 (src == 1) ? R1 :
 (src == 2) ? R2 :
 (src == 3) ? R3 :
 (src == 4) ? R4 :
 (src == 5) ? R5 :
 (src == 6) ? R6 : Din;

assign B = (dst == 0) ? R0 :
 (dst == 1) ? R1 :
 (dst == 2) ? R2 :
 (dst == 3) ? R3 :
 (dst == 4) ? R4 :
 (dst == 5) ? R5 :
 (dst == 6) ? R6 : R7;

assign AluRes = (op == 0) ? B | A :
 (op == 1) ? B & ~A :
 (op == 2) ? B + A :
 (op == 3) ? B - A :
 (op == 4) ? A :
 (op == 5) ? A : nxpc;

assign cond = IR[12] ^ (
 (cc == 0) ? Z :
 (cc == 1) ? N :
 (cc == 2) ? Z|N : 1);

assign nxpc = PC + 1;
assign pcmux = ((op == 6) | (op == 7) & cond) ? A : nxpc;

always @ (posedge clk) begin
 if (~rst) begin PC <= 0; R6 <= 0; end
 else begin PC <= pcmux;
 if (op != 7) begin
 if (dst == 0) R0 <= AluRes;
 if (dst == 1) R1 <= AluRes;
 if (dst == 2) R2 <= AluRes;
 if (dst == 3) R3 <= AluRes;
 if (dst == 4) R4 <= AluRes;
 if (dst == 5) R5 <= AluRes;
 if (dst == 6) R6 <= AluRes;
 if (dst == 7) R7 <= AluRes;
 N <= AluRes[11];
 Z <= (AluRes == 0);
 T <= (dst == 5);
 end
 end
end
endmodule

 43

Technical Report 12. 8. 2010

Experiments in Computer System Design

Niklaus Wirth

PART 4

Multiprocessor-systems and interconnects

The FPGA is an ideal ground for experimenting with multi-processor
configurations. On the chip of the ML-505 board, a configuration with 12 TRMs
was successfully installed and tested. The limiting factor is the number of block
RAMs (and DSPs) available. The interesting questions is how to interconnect the
individual processors.

A frequently encountered model for systems is the data flow model. It is based
on the premise that data flow on fixed channels from processor to processor. The
key property of the data flow scheme as postulatd by Jack Dennis is that a
processor takes action as soon as all necessary inputs are ready on the
respective input channels. With this property, processor synchronization is
implicit. Typical DF-Systems have been built whose nodes are essentially ALUs
with buffers at the inputs. This model has not been successful in spite of several
revivals over the past decades. A more promising model is the one where the
nodes are autonomous, programmable processors. Evidently, the structure and
the channels need to be custom-tailored to the application on hand. Here we
merely present one kind of connection, actually the simplest connection possible,
the buffered channel, also called point-to-point connection.

Point-to-point connection: The buffered channel

We assume that the elements of the sequence to be transmitted over a channel
are 32-bit words. For this case, the interface can be particularly straight forward.
Apart from the data, it contains the commands wreq and rdreq (for writing,
sending, and reading, receiving respectively). Furthermore, there must be the
status signals empty and full, indicating whether the write buffer is full, or the
read buffer is empty, conditions where processing cannot proceed. In our first
version, the buffer contains a single entry and is implemented as a register.

module Channel(
 input clk, rst,
 input wreq, rdreq,
 output empty, full,
 input [31:0] indata,
 output [31:0] outdata);

reg loaded;
reg [31:0] Buf;

assign outdata = Buf;
assign empty = ~loaded;
assign full = loaded;

 44

always @ (posedge clk)
 if (~rst) loaded <= 0;
 else if (wreq) begin Buf <= indata; loaded <= 1; end
 else if (rdreq) loaded <= 0;
endmodule

If a higher degree of decoupling between the sending and the receiving nodes is
required, a buffer with several slots must be provided. In the following example,
16 entries are provided. The buffer is implemented by 32 LUT slices with the
macro RAM16X1D_1. The buffer is organized circularly; the counters are modulo
16 due to the fact that they consist of 4 bits.

module Channel6(
 input clk, rst,
 input wreq, rdreq,
 output empty, full,
 input [31:0] indata,
 output [31:0] outdata);

reg [3:0] in, out; // buffer pointers

assign empty = (in == out);
assign full = (out == (in+1));
assign outdata = D;

genvar i;
generate //dual port register file
 for (i = 0; i < 32; i = i+1)
 begin: rf32
 RAM16X1D_1 # (.INIT(16'h0000))
 rfa(
 .DPO(outdata),
 .SPO(),
 .A0(out[0]), // R/W address, controls D and SPO
 .A1(out[1]),
 .A3(out[3]),
 .D(indata), // data in
 .DPRA0(in[0]), // read-only adr, controls DPO
 .DPRA1(in[1]),
 .DPRA2(in[2]),
 .DPRA3(in[3]),
 .WCLK(~clk),
 .WE(wreq));
 end
endgenerate

always @(posedge clk)
 if (~rst) begin in <= 0; out <= 0; end
 else if (wreq) in <= in + 1;
 else if (rdreq) out <= out + 1;
endmodule

It is noteworthy and important that the interface of the two versions of channels
are identical, and therefore easily interchangeable. The interfacing of such
channels and TRMs occurs in the same way as that between RS-232 lines and
TRM, as presented in Part 2 of this Report.

The ring structure

 45

Point-to-point connections are less suitable in a multi-processor system, where
no pairs of processors are a-priory known to communicate particularly frequently.
In this case, a system is required that potentially connects every node with every
other node. The traditional solution in this case is a bus. It inherently carries the
problems of delays, of access priorities, and of bottlenecks. Also, since buses are
usually implemented with tri-state gates, it is not easily practicable on FPGAs, as
they do not contain tri-state gates.

The most general soultion is a crossbar switch, a martix of gates. Each row
represents an input, each column an output. Crossbar switches are fast, but
require many resources. FPGAs are not particularly suitable for their
implementation, mostly because of the relative scarcity of long wires.

A likely alternative is the ring structure, where every processor is included as a
ring node. The ring has technically the advantage that it consists of
unidirectional, point-to-point connections only. It is therefore simple to implement
and simple to operate. However, depending on the number of nodes lying
between source and destination, there may be delays involved, Also, long
messages may monopolize the ring, thus inducing longer waits for nodes also
requesting access.

Nevertheless, we present here a basic implementation of a ring node as an
example of how processors may be connected in a simple way on an FPGA chip.

Each node contains a register between the ring input and ring output. This
register holds one data element and introduces a latency (delay of the data
traveling through the ring) of a single clock cycle. The node also contains two
buffers, one for the received data, and one for the data to be sent. Their purpose
is to decouple the nodes in time and thereby to increase the efficiency of the
connections. We postulate that the data are always sequences of bytes, and they
are called messages.

Fig. 4.1. Ring Node

The figure shows that if a node is sending a message over the ring, buffer B is
fed to the ring output. If a message is received, the ring input is fed to buffer A.
Otherwise the input is transmitted to the output, with a single cycle’s delay.

A B

 ringin ringout

outdata indata

0

slot

 46

We have chosen the elements of messages to be bytes. The ring and its
registers, called slots, are 10 bits wide, 8 for data and 2 for a tag to distinguish
between data and control bytes.

We postulate the following conventions: Messages are sequences of (tagged)
bytes. The first element of a message is a header. It indicates the destination and
the source number of the nodes engaged in the transmission. We assume a
maximum of 16 nodes, resulting in 4-bit node numbers. The last element is the
trailer. In between lie an arbitrary number of data bytes.

tag data

10 source, destination header
00 xxxxxxxx data byte
01 00000000 trailer
11 00000000 token

When no messages are to be transferred, the ring is said to be idle. When a
node is ready to send a message, it must be granted permission in order to avoid
collisions with messages sent by other nodes. One may imagine a central
agency to rotate a pointer among the nodes, and the node so designated having
the permission to send its message. As we wish to avoid a central agency, we
instead insert a special element into the ring which takes over the role of the
pointer. It is called the token. In the idle state, only the token is in the ring. Such a
scheme is called a token-ring

Only a single message can be in the ring. When a node is ready to send a
message, it waits until the token arrives, and then replaces the token by the
message. The token is reinserted after the message. The header contains the
number of the destination node which triggers the receiver to become active.
When the message header arrives at the destination, that node feeds the
message into its receiver buffer. It removes the header from the ring by replacing
the slot with a zero data item.

The implementation of a token ring

A node of the ring is described as a Verilog module. The module interface
consists of the ring input and ring output, and of the connections to the
associated TRM processor.

module RingNode(clk, rst, wreq, rreq, ringin, ringout, indata, status, outdata);
input clk, rst wreq, rreq;
input [9:0] ringin;
input [9:0] indata; // from processor
output [9:0] ringout;
output [7:0] status;
output [9:0] outdata; // to processor

reg sending, receiving, rdyS; // states
reg [5:0] inA, outA, inB, outB; // buffer indices
reg [9:0] slot; // element in ring

 47

The buffers are implemented as LUT memories with 64 elements, 10 bits wide.
Registers inA and outA are the 6-bit indices of the input buffer A, inB, outB those
of the output buffer B.

There are 4 separate activities proceeding concurrently:

1. A byte is fed from indata to the output buffer B, and the pointer inB is
advanced (incremented modulo buffer size). This is triggered by the input strobe
wreq with ioadr = 2 (0FC2H).

2. A byte is transferred from buffer B to the ring, and pointer outB is advanced.
This happens in the sending state, which is entered when the buffer contains a
message and the token appears in the slot. The sending state is left when a
trailer is transmitted.

3. A byte is transferred from the slot (ring input) to the input buffer A and the
pointer inA is advanced. This is triggered by the slot containing a message
header with the receiver’s number. A zero is fed to the ring output.

4. A byte is transferred from buffer A to outdata. This happens when the TRM
reads input. Thereafter the TRM must advance pointer outA by applying a wreq
signal and ioadr = 1

The four concurrent activities are expressed in Verilog as shown below in one
block clocked by the input signal clk. The input of buffer A is ringin, that of buffer
B is indata (input from processor).

wire startsnd, startrec, stopfwd;
wire [9:0] A, B; // buffer outputs

assign startsnd = ringin[9] & ringin[8] & rdyS; //token here and ready to send
assign startrec = ringin[9] & ~ringin[8] & ((ringin[3:0] == mynum) | (ringin[3:0] == 15));
assign stopfwd = ringin[9] & ~ringin[8] & ((ringin[3:0] == mynum) | (ringin[7:4] == mynum));

assign outdata = A;
assign status = {mynum, sending, receiving, (inB == outB), (inA == outA)};
assign ringout = slot;

always @(posedge clk)
 if (~rst) begin // reset and initialization
 sending <= 0; receiving <= 0; inA <= 0; outA <= 0; inB <= 0; outB <= 0;
 rdyS <= 0;
 if (mynum == 0) slot <= 10'b1100000000; else slot <= 0; end
 else begin
 slot <= (startsnd | sending) ? B : (stopfwd) ? 10'b0 : ringin;
 if (sending) begin // send data
 outB <= outB + 1;
 if (B[9] & B[8]) sending <= 0; end // send token
 else if (startsnd) begin // token here, send header
 outB <= outB + 1; sending <= 1; rdyS <= 0; end

 else if (wreq) begin
 inB <= inB + 1; // msg element into sender buffer
 if (indata[9] & indata[8]) rdyS <= 1; end

 if (receiving) begin
 inA <= inA + 1;
 if (ringin[8]) receiving <= 0; end // trailer: end of msg

 48

 else if (startrec) begin // receive msg header
 inA <= inA + 1; receiving <= 1; end

 if (rreq) outA <= outA + 1; // advancing the read pointer
 end

A software driver

The pertinent driver software is described in Oberon. It is responsible for the
maintenance of the prescribed protocol and message format, and it is therefore
presented as a module. This module alone contains references to the hardware
through procedures PUT, GET, and BIT. Clients are supposed not to access the
hardware interface directly.

The module encapsulates and exports procedures Send and Rec, a predicate
Avail indicating whether any input had been received, and a function MyNum
yielding the node number.

MODULE Ring;

 CONST data = 0FC2H; stat = 0FC3H; (*device register addresses*)

 PROCEDURE Avail*(): BOOLEAN;
 VAR status: SET;
 BEGIN GET(stat, status); RETURN ~(0 IN status)
 END Avail;

 PROCEDURE Send*(dst, typ, len: INTEGER; VAR data: ARRAY OF INTEGER);
 VAR i, k, w, header: INTEGER;
 BEGIN REPEAT UNTIL BIT(stat, 1); (*buffer empty*)
 GET(stat, header); header := MSK(header, 0F0H) + MSK(dst, 0FH);
 PUT(data, header + 200H); PUT(data, MSK(typ, 0FFH)); i := 0;
 WHILE i < len DO
 w := data[i]; INC(i); k := 4;
 REPEAT PUT(data, MSK(w, 0FFH)); w := ROR(w, 8); DEC(k) UNTIL k = 0
 END ;
 PUT(data, 100H); PUT(0F02H, 300H) (*trailer, token*)
 END Send;

 PROCEDURE Rec*(VAR src, typ, len: INTEGER; VAR data: ARRAY OF INTEGER);
 VAR i, k, d, w, header: INTEGER;
 BEGIN
 REPEAT UNTIL ~BIT(stat, 0); (*buffer not empty*)
 GET(data, header); src := MSK(ROR(header, 4), 0FH);
 GET(data, typ); GET(data, d);
 i := 0; k := 4; w := 0;
 WHILE MSK(d, 300H) = 0 DO
 w := ROR(MSK(d, 0FFH) + w, 8); DEC(k);
 IF k = 0 THEN data[i] := w; INC(i); k := 4; w := 0 END ;
 GET(data, d)
 END ;
 len := i
 END Rec;

 PROCEDURE MyNum*(): INTEGER;
 VAR x: INTEGER;
 BEGIN GET(stat, x); RETURN MSK(ROR(x, 4), 0FH)
 END MyNum;

 49

END Ring.

Because the TRM is a word-addressed machine, the data to be transmitted are
arrays of integers, whereas the ring interface transmits bytes as elements of a
packet. Each array element must therefore by sent over the ring as four bytes.
Procedure Send, after composing and sending the header byte, unpacks each
integer into 4 bytes with the aid of a rotate instruction (ROR). The Rec procedure
packs 4 consecutive bytes into an integer (word) by rotating and masking. (The
second byte of each message is the parameter typ, which is not used in this
context).

In PUT and GET operations, the first parameter indicates the address of the
interface to be accessed. Here 0FC2H is the address of the data port, and 0FC3H
that of the status. The status consists of 8 bits. It contains the following fields:

bit 0 input buffer empty (in = out)
bit 1 output buffer full (in = out)
bits 2, 3 0
bits 4-7 ring node number

A test setup

For testing and demonstrating the Ring with 12 nodes we use a simple test
setup. It involves the program TestTRMRing for node 11, and the identical
program Mirror for all nodes 0 – 10. The former is connected via the RS-232 link
to a host computer running a general test program TestTRM for sending and
receiving numbers. The main program TestTRMRing (running on TRM) accepts
commands (via RS-232) for sending and receiving messages to any of the 12
nodes. Program Mirror then receives the sent message and returns it to the
sender (node 11), which buffers it until requested by a read message command.

Communication over the link is performed by module RS, featuring procedures
for sending and receiving integers and other items. The following are examples
of commands:

TestTRM.SR 1 3 10 20 30 40 50 0 0~
TestTRM.SR 1 8 0 0~
TestTRM.SR 1 3 10 0 4 11 12 0 5 13 14 0 7 15 16 17 0 0~
TestTRM.SR 2~ receive message

The first command sends to node 3 the sequence of numbers 10, 20, 30, 40, 50.
The second sends the empty message to node 8, and the third sends to node 3
the number 10, to node 4 the items 11 12, to node 5 the numbers 13, 14, and to
node 7 the numbers 15, 16, 17.

 50

Fig. 4.2. The test setup

MODULE TestTRMRing;
 IMPORT RS, Ring;
 VAR cmd, dst, src, x, len, typ, s, i: INTEGER;
 buf: ARRAY 16 OF INTEGER;
BEGIN
 REPEAT RS.RecInt(cmd);
 IF cmd = 0 THEN RS.SendInt(Ring.MyNum())
 ELSIF cmd = 1 THEN (*send msg*)
 RS.RecInt(dst);
 REPEAT len := 0; RS.RecInt(x);
 WHILE x # 0 DO buf[len] := x; INC(len); RS.RecInt(x) END ;
 Ring.Send(dst, 0, len, buf); RS.RecInt(dst)
 UNTIL dst = 0;
 RS.SendInt(len)
 ELSIF cmd = 2 THEN (*receive msg*)
 IF Ring.Avail() THEN
 Ring.Rec(src, typ, len, buf);
 RS.SendInt(src); RS.SendInt(len); i := 0;
 WHILE i < len DO RS.SendInt(buf[i]); INC(i) END
 END
 ELSIF cmd = 3 THEN RS.SendInt(ORD(Ring.Avail()))
 END ;
 RS.End
 UNTIL FALSE
END TestTRMRing.

MODULE Mirror;
 IMPORT Ring;
 VAR src, len, typ: INTEGER;
 buf: ARRAY 16 OF INTEGER;
BEGIN
 REPEAT Ring.Rec(src, typ, len, buf); Ring.Send(src, 0, len, buf) UNTIL FALSE
END Mirror.

Broadcast

The design presented here was, as already mentioned, intentionally kept simple
and concentrated on the essential, the transmission of data from a source to a
destination node. A single extension was made, first because it is useful in many
applications, and second in order to show that it was easy to implement thanks to
a sound basis. This is the facility of broadcasting a message, that is, to send it to
all nodes. The ring is ideal for this purpose. If the message passes once around

TestTRM

V24

TestTRMRing

RS

Mirro

Ring Ring

Mirro

Ring

PC PC TRM Node 11 Node 10 Node 0

RS-232 link

 51

the ring, simply all nodes must be activated as receivers. We postulate that
address 15 signals a broadcast. There are only two small additions to the circuit
are necessary, namely the addition of the term ringin[3:0] = 15 in the expression
for startrec, and of the term ringin[7:4] = mynum in that of stopfwd.

Discussion

The presented solution is remarkably simple and the Verilog code therefore brief
and the circuit small. This is most essential for tutorial purposes, where the
essence must not be encumbered by and hidden in a myriad of secondary
concerns, although in practice they may be important too.

Attractive properties of the implementation presented here are that there is no
central agency, that all nodes are perfectly identical, that no arbitration of any
kind is necessary, and that the message length is not a priori bounded. No length
counters are used; instead, explicit trailers are used to designate the message
end. All this results in a simple and tight hardware.

The data path of the ring is widened by 2 bits, a tag for distinguishing data from
control bytes, which are token, message header, and message trailer. Actually, a
single bit would suffice for this purpose. Two are used here in order to retain an
8-bit data field also for headers containing 4-bit source and destination
addresses.

The simplicity has also been achieved by concentrating on the basic essentials,
that is, by omitting features of lesser importance, or features whose function can
be performed by software, by protocols between partners. The circuit does not,
for example, check for the adherence to the prescribed message format with
header and trailer. We rely on the total “cooperation” of the software, which
simply belongs to the design. In this case, the postulated invariants can be
established and safeguarded by packing the relevant drivers into a module,
granting access to the ring by exported procedures only.

A much more subtle point is that this hardware does not check for buffer
overflow. Although such overflow would not cause memory beyond the buffers to
be affected, it would overwrite messages, because the buffers are circular. We
assume that overflow of the sending buffer would be avoided by consistent
checking against pending overflow before storing each data element, for
example, by waiting for the buffer not being full before executing any PUT
operation:

REPEAT UNTIL ~BIT(adr, 1)

In order to avoid blocking the ring when a message has partially been stored in
the sending buffer, message sending is not initiated before the message end has
been put into the buffer (signal rdyS). This effectively limits the length of
messages to the buffer size (64), although several (short) messages might be
put into the buffer, and messages being picked from the buffer one after the
other.

 52

A much more serious matter is overflow of the receiving buffer. In this case, the
overflowing receiver would have to refuse accepting any further data from the
ring. This can only be done by notifying the sender, which is not done by the
presented hardware. For such matters, communication protocols on a higher
level (of software) would be the appropriate solution rather than complicated
hardware.

We consider it essential that complicated tasks, such as avoiding overflow, or of
guaranteeing proper message formats, can be left to the software. Only in this
way can the hardware be kept reasonably simple. A proper module structure
encapsulating a driver for the ring is obviously necessary.

 53

Technical Report 9. 9 2010

Experiments in Computer System Design

Niklaus Wirth

PART 5

The principle of Cache Memories

The introduction of a DMA for the DDR memory tripled its access speed.
Nevertheless, it remains an unsatisfactory solution. The programmer does not
wish to consider the memory as an array of blocks that can be written and read
back. He wishes the large memory to be the memory, and any problems arising
from using a DDR with wide access path to be problems of the hardware
implementation. Considering this wish led to the concept of a cache.

A cache is a memory lying in the path between the processor and the memory. It
is faster than the large memory, connects to it with a wide bus, and to the
processor with a narrower bus. A cache mechanism handles all data transfers.

There exist several types of cache arrangements and mechanisms. The general
idea is the following:

Let there be a main memory with 2n words and a fast cache memory with 2m
words, where m << n. This cache is regarded as consisting of 2m-k groups of 2k
words. Each group is called a cache line. Its length 2k is equal to the access port
width of the main memory. Data to and from the main memory are always
transferred in groups of 2k consecutive words forming a cache lines. The
relatively large access time of large memories is compenstaed by a wider access
path.

In addition to the cache memory, we introduce a table (array) T of 2m-k entries,
one for each cache line, called tag. A tag is the address of the associated cache
line in main memory. When a word is to be read, the line in which it lies is read
into any (free) line of the cache, and the group’s address is stored in the
corresponding tag. Actually, before reading a line, the table of tags is searched
for the given address. If found, the line is aleady present in the cache and
reading from main memory can be avoided. As the cache is much faster than
main memory, this results in a significant gain in speed. Finding the given
address is called a hit, not finding it a miss. The gain in speed depends
significantly on the probability of hits. It is surprisingly large due to the fact that
sequential access to consecutive words is predominant. This is particularly the
case for reading instructions.

This scheme implies that the entire table of tags T must be searched to find the
address. Evidently, a sequential search is out of the question. A sufficiently
efficient solution requires an associative memory, where not a content is
delivered given an address, but rather an address given a content, namely the
address of the tag containing the memory address. This scheme is called a (fully)

 54

associative cache. Such memories, however, are unpopular, because they
require a lot of circuitry, essentially a comparator for every element of the table of
tags. Simpler, but still effective solutions exist.

The direct mapped cache

Here we will present only the simplest solution, the direct-mapped cache. It also
uses a cache organized as a matrix, i.e. an array of cache lines, and a table of
tags, one entry per cache line. The time-consuming search is avoided by
mapping all blocks of the cache size 2m directly onto the cache. Then all words
with address a MOD 2m = b, i.e. with the last m bits equal to b, correspond to the
cache word with address b. The tag table entry T[b] then contains the address of
the block in main memory containing the cache line C[b].

The constants k, m, n are determined by the available hardware components. In
the present case (ML-505 board), the memory size is 256 MB = 228 bytes. As we

memory M cache C tags T

w

w

Fig. 5.1. Fully associative cache

memory M cache C

Fig. 5.2. Direct mapping

 55

deal with words rather than bytes (4 per word) a word address consists of n = 26
bits. The DDRAM’s access path is 256 bits, i.e. 8 words wide. Hence k = 3.The
cache memory is implemented as a single block RAM with 1K = 210 words.
Hence m = 10-k = 7. The main memory then consists of 216 blocks of 1K words,
and an address a consists of 3 fields:

Madr 16 bits a[25:10] block in memory
Tadr 7 bits a[9:3] line in block
Wadr 3 bits a[2:0] word in line

We summarize the operations involved in accessing a word in memory:

1. Compare Madr with T[Tadr].
2a. If equal, the desired word is in the cache at address [Tadr, Wadr].
2b. If not equal, the word is not in the cache. The cache line is fetched from

address [Madr, Tadr, 0] in memory and stored at address Tadr in the cache.
Then the word is selected at Wadr in the line.

In case 2b, the line is overwritten in the cache. The old line is lost. This implies
that the line must be stored in main memory beforehand. This can be omitted, if
no word in the line had been overwritten (by any Store instruction) since the line
had been loaded. For this purpose, an additional bit in the tag memory is
introduced for each entry, showing whether or not any word in the line had been
modified. This bit is called modif. Unless it had been set by a Store instruction,
the cache line need not be written back. The bit is cleared whenever a cache line
is loaded. Accordingly, we expand step 2b to

2b. If not equal: Store line at Tadr into memory at address [T[Tadr], Tadr, 0], if
modif[Tadr] = 1. Then fetch cache line at [Madr, Tadr, 0].

Implementing the cache
We now present our implementation of the direct cache for the TRM in detail. We
recall that the SDRAM has a capacity of 256 MB, and the cache contains 1K
words. This is only half the TRM’s local memory. We remove the upper half from
the cache mechanism and map addresses 0FFFFFC0H – 0FFFFFFFFH to the
upperhalf with addresses 400H – 0FFFH. This range includes I/O addresses and

memory M cache C tags T

w

w

Fig. 5.3. Direct mapping with tags

 56

the stack. The software stack is frequently accessed , which justifies its exclusion
from the cache.

Fig. 5.4. Cache memory C with tag table T

Table T must provide fast access and is therefore implemented as an LUT RAM
similar to the TRMs register bank. It consists of 16 +1 slices of RAM128X1D with
27 entries.

The access mechanism for SDRAM is largely taken over from the previous
version with DMA. However, the complexity of the setup and of the algorithm to
access the memory suggest that the state machine be moved from the device
into the processor, i.e. from module TRM3CTop into TRM3C. The additions to
the TRM turn out to be nontrivial and substantial. The DDR signals in the TRM
interface now are dmain and dmaout as with DMA. Additionally there are the
address ddradr and the control outputs dmard, dmawr, ddwr, ddrd, and the state
input DDstat.:

module TRM3C(
input clk, rst, stall,
input irq0, irq1,
input[31:0] inbus,
output [5:0] ioadr,
output iord, iowr,
output [31:0] outbus,
input [2:0] DDstat, // dma/ddr connections
input [31:0] dmain,
output dmard, dmawr, ddrd, ddwr,
output [22:0] ddradr,
output [31:0] dmaout);

The new wires and registers are:

reg caEnb; // cache enable and states
reg Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12;

cache C tag T

w

wadr

Tadr

w

blockAdr

a = (Madr, Tadr, Wadr]

SDRAM

Madr Tadr Wadr

16 7 3

0

0

7

127

0

 57

reg [2:0] wcnt; // DMA word count
reg [11:0] dmaAdr;
reg [22:0] DDadr;
reg [26:0] adrR;

wire [26:0] adr;
wire Twr, Twr1, miss, missE, modif, dbit, adrHi, modif; dmEnb;
wire [6:0] Tadr;
wire [15:0] Madr;
wire [16:0] Tin, Tout;

Twr (and Twr1) are the write enables for the tags. Miss signals cache misses,
and it is active when the address part Madr does not match the corresponding
tag entry (Tout), and if not the uppermost 1K block of memory is addressed
(~adrHi). The table of tags is defined by

genvar i;
generate // tags for cache 128 x (16+1)
 for (i = 0; i < 17; i = i+1)
 begin: tags
 RAM128X1D #(.INIT(128'h00000000000000000000000000000000))
 TAG(
 .A(Tadr), // r/w adr, controls D, SPO
 .D(Tin[i]),
 .SPO(),
 .DPRA(Tadr), // read only adr, controls DPO
 .DPO(Tout[i]),
 .WCLK(clk),
 .WE((i == 16) ? Twr1 : Twr));
 end
endgenerate

The signal adr is now extended from 12 bits to 26 bits. The dma-Signals are
taken over from the DMA implementation.

assign adr = ((irs == 7) ? 0 : AA[26:0]) + {19'b0, off};
assign dmadr = (dmEnb) ? dmaAdr : {1’b0, adrHi, adr[9:0]};
assign dmwr = (dmEnb) ? dmawr : ST & ~miss;
assign dmin = (dmEnb) ? dmain : B;

assign ddradr = DDadr;
assign dmaout = dmout;
assign adrHi = (Madr == 16'hffff);
assign miss = ~(Madr == Tout[15:0]) & ~adrHi;
assign missE = miss & caEnb;
assign Tadr = adr[9:3];
assign Madr = adr[25:10];
assign Tin = {dbit, Madr};
assign modif = Tout[16];

The heart of the cache system is the state machine controlling data transfers
between SDRAM (DDR2) and cache. It is triggered out of the idle state whenever
a cache miss occurs. We chose the one-hot form of state machine with states Q0
– Q12. The – after many considerations – obvious solution is to extend the
already present rudimentary state machine, which stalls the LDR instruction for
one cycle, from 2 to 13 states with the following assocuated actions:

 58

Q0 idle
Q1 extend memory access
Q2 initialize DMA
Q3, Q4 transfer 8 words from cache to buffer
Q5 wait until SDRAM ready
Q6 write buffer to SDRAM
Q7 initialize DMA
Q8 wait until SDRAM ready
Q9 read buffer from SDRAM
Q10, Q11 wait until data ready
Q12 transfer 8 words from buffer to cache

The state machine is described by the following diagram (MEM = LDR | ST).

Fig. 5.5. Cache control state machine

In Verilog, the state machine is expressed by the following clocked statements.

always @ (posedge clk) begin // cache state machine
 Q0 <= ~rst | Q0 & ~MEM | Q1 & ~missE | Q12 & wc7;
 Q1 <= Q0 & MEM; // Twr1
 Q2 <= Q1 & missE & modif;
 Q3 <= Q2 | Q4 & ~wc7;
 Q4 <= Q3; // dmard
 Q5 <= Q4 & wc7 | Q5 & DDstat[2];
 Q6 <= Q5 & ~DDstat[2]; // ddwr
 Q7 <= Q6 | Q1 & missE & ~modif; // Twr
 Q8 <= Q7 | Q8 & DDstat[2];
 Q9 <= Q8 & ~DDstat[2]; // ddrd

0

7

DDadr <= [Tout, Tadr]
dmaAdr <= Tadr
wcnt <= 0

1

miss
& modif

miss & ~modif

3 4 5

INC(dmaAdr)
INC(wcnt)
dmard

wcnt = 7

ddwr

9 10 11 12

DDadr <= adr
dmaAdr <= Tadr
wcnt <= 0

ddrd

~RDrdy RDrdy

INC(dmaAdr)
INC(wcnt)
dmawr

MEM
~miss

~MEM

2 6

cmd rdy

8

cmd rdy

wcnt = 7

 59

 Q10 <= Q9 | Q10 & DDstat[0];
 Q11 <= Q10 & ~DDstat[0] | Q11 & ~DDstat[0];
 Q12 <= Q11 & DDstat[0] | Q12 & ~wc7; // dmawr
end

Unfortunately it turned out that the condition miss cannot be established in a
single clock cycle. adr is computed in one cycle, but the comparison Madr = Tout
takes a second cycle. We therefore must resort to the trick of inserting a register
(adrR) in the signal path, not the least because in this way the load (fanout)
condition can be met. This is of no negative consequence for the LDR instruction.
However, the ST instruction now also takes a second cycle, whereas this had not
been necessary before. The stall condition is asserted in the second cycle
unconditionally by both the LDR and ST instructions. Thereafter it is asserted by
the miss condition, and by the state machine in all states except Q0 and Q1.

assign dmEnb = ~Q0 & ~Q1;
assign stallC = (Q0 & MEM) | (Q1 & missE) | dmEnb;
assign stall0 = stallM | stallD | stallC | stall;

The state machine controls the data transfer by the signals dmard, dmawr, ddrd,
and ddwr (control signals to DDR and DMA in the interface to DDRController).
wcnt is the counter that controls the dma-transfer by counting 8 words. DDstat[2]
means : “DDR controller busy”, and DDstat[0] means “DDR output ready”.

always @ (posedge clk) begin
 adrR <= adr;
 DDadr <= Q2 ? {Tout[15:0], Tadr} : Q7 ? adr[25:3] : DDadr;
 dmaAdr <= (Q2|Q7) ? {2'b0, Tadr, 3'b0} : (Q4|Q12) ? dmaAdr + 1 : dmaAdr;
 wcnt <= (Q2|Q7) ? 0 : (Q4|Q12) ? wcnt + 1 : wcnt;
end

Noting that states Q3, Q4 and Q12 are actually repeated 8 times, we conclude
that an access with cache miss costs either 19 or 36 cycles (depending on
whether or not the cache line had been modified), whereas an access with a hit
takes only 2 cycles. A remarkable difference!

And this concludes the introduction of a direct cache store. It is not obvious that
the direct cache method would prove efficient. After all, it seems likely that cache
misses are frequent with 216 lines mapping from SDRAM to the same line in the
cache. But in fact the direct-mapped cache proved quite satisfactory, considering
its relative simplicity. An intermediary method between fully associative and
direct mapped cache is the n-way associative cache. Here n tag tables and n
cache memories coexist, and if any one of the tags in corresponding lines
matches the desired address, the associated cache yields the word to be
accessed. Only n comparators are needed. In present commercial processors up
to 8-way associative caches are provided. A much simpler and hardly less
effective solution is to double or quadruple the size of the cache.

Typically, separate caches are provided for data and program access. Here we
have shown only a data cache. A program cache is simpler, because instructions
are read only. No modif condition and no write-back are needed.

 60

Acknowledgement

My sincere thanks go to Ling Liu for her help, encouragement and drive in this
project. Without her advice and support the author would never have mustered
the patience to overcome the difficulties and aggravations caused by the
necessary tools, in particular the Verilog compiler and the Xilinx placer and
router. They were a great disappointment, as they proved to be rather unhelpful
in locating mistakes, and instead provide innumerable pitfalls through their
misguided efforts to “correct” programmers’ mistakes. In addition, huge lists of
“warnings” are utterly unattractive to find those warnings that actually may point
out mistakes.

References

[1] Xilinx, ML505/ML506/ML507 evaluation platform user guide,
 http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf

[2] Xilinx, Spartan-3 Starter kit board user guide,
 http://www.digilentinc.com/Data/Products/S3BOARD/S3BOARD_RM.pdf

