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Technical Report 2. 8. 2010 

Experiments in Computer System Design 

Niklaus Wirth 

PART 1 

Introduction and Perspective 

Modern Field Programmable Gate Arrays (FPGA) provide an ideal ground for 
experiments in the design of computer systems and of computer architecture. 
Here we present the designs of a processor, of channels, of a communicating 
ring, of a memory interface, and of a floating-point unit. These are described as 
Verilog texts, representing circuits to be automatically generated by synthesizer, 
placer and router tools. On a higher level, systems can then be described as 
consisting of such components. Thus the systems are flexibly configurable. 

In particular, it is possible to configure multicore systems, and to experiment with 
various configuration and models of cooperation. The designs are implemented 
on a single FPGA. We use a commercial development board connected to a host 
computer. 

Not only experience in designing software involving many processors is 
becoming more important (mostly due to the availability of multi-core chips), but 
also experience in designing entire systems including the hardware. A 
configuration of 12 processors (described below) has been realized on a single 
chip. Hardware design, processor architecture, communication links, system 
configuration are all covered by the presented tool kit, including, of course, their 
programming. It is therefore an ideal experimenting ground for modern computer 
practice and experience. Directing this project towards requirements in 
education, we try to present it in the style of a tutorial.  

In Part 1 we describe a simple processor. It is called TRM (for Tiny Register 
Machine). It is a sound principle in teaching a new subject, to concentrate on its 
essential ingredients. This principle had originally been followed closely by the 
designers of RISC architectures, and therefore our design does so as well. In 
addition, we must consider the limited resources available on an FPGA, even a 
large one, and in particular, if we wish to place many of these processors on a 
single chip. A straight-forward design is therefore mandatory. 

In Part 2 we describe communication facilities. These are a uni-directional 
channel (point-to-point connection), a ring (connecting many processors), and, 
for the sake of utility, an RS-232 transmitter and receiver. The latter is used to 
connect the FPGA development board with the host computer. 

In Part 3 we describe an interface between a processor and a large memory of 
the DDR type (dynamic RAM). In a first step, the memory is considered as an 
external device accessed through the processor’s I/O bus. A much faster solution 
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is presented in a second step. It includes a direct memory access channel 
(DMA). Of course a final solution will be the use of a cache memory. 

This small, initial set of hardware components can be augmented freely. Other 
processors may be added, more sophisticated links, and drivers for other 
devices, several of which are available on the development board currently used 
(ML-505). On the host computer reside a compiler (in our case for the 
programming language Oberon), and a system for (down-) loading  the bitstream 
file (configuration file) onto the target FPGA..  

This configurable system actually emerged from a project, whose ultimate goal 
was an application suitable to demonstrate the power of multi-processor 
systems. Its somewhat grandiose title was Supercomputer in a Pocket. The 
target application was a surveillance system for heart diseases. Signal analysis 
required reasonably large computing power, its being carried by patients required 
reasonably low power consumption and a small size to fit into a pocket. The 
system elements described below were used in this application. 

We first describe the architecture, the programmer’s interface, of the processor, 
and a brief account of its history of development. Thereafter we present its circuit 
interface and its implementation. 

The Tiny Stack Machine (TSM) 

The initial impulse for our design of a processor came from Ch. Thacker’s 
Simple-32 architecture, designed at Microsoft Research in Mountain View. 
Thacker called it an “FPGA-optimized computer architecture”. The Simple-32 
strongly mirrors a modern RISC architecture with a bank of 16 registers. Most 
instructions feature a 4-bit opcode and three 4-bit register fields. Thus, the 
Simple-32 is a typical 3-address machine. 

The Simple-32 architecture, however, appeared as not optimally suited for use 
with a high-level programming language, at least not without a compiler 
optimizing  register usage. It was felt that just as the architecture ought to be 
perspicuous, so should be the compiler, that is, the instruction sequence 
compiled from a given piece of source program should be quite predictable. 
Certainly, due to small memory size, an overriding consideration was code 
density. Our experience of the past decades let a stack architecture appear as 
most desirable. Instructions for a stack machine do not contain register numbers. 
They are implicit and derived at run-time from the stack principle, which naturally 
governs the evaluation of expressions. 

It is important to note that this expression stack stands in place of the register 
bank of a RISC architecture. This stack is typically implemented by a set of 
registers plus a register pointer, a 4-bit register connected with an up-down 
counter. It is to be distinguished from the stack of procedure activation records, 
which is entirely a concept of software architecture, and which is stored in the 
local data memory and uses a register as stack pointer. 
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Many instructions of a stack-oriented architecture fit into a single byte. Even 
instructions containing a short, immediate operand fit into a byte. Instructions 
containing a larger literal, such as an address, are placed in two (or 3) bytes. 
Therefore, a variable-length instruction scheme is required. 

As is to be expected, the price for an expression stack and a variable-length 
instruction fetch machinery is an increase in complexity of the decoding circuitry. 
The longer signal path lengths and propagation times result in a longer clock 
cycle and thus a decrease in speed.. This is particularly noticeable, if pipelining is 
desired to speed up instruction interpretation. This complexity proved to be such 
that it was decided to abandon the idea of a stack architecture and to return to a 
register array in place of the register stack. The price is less code density, longer 
codes, and that program length hits the available limits sooner. 

The Tiny Register Machine TRM-1 

At this point, we need to know more about the available resources on the FPGA 
chip. Apart from the regular cells with gates and registers, and apart from routing 
resources, the FPGA contains 60 static RAM blocks (BRAMs), of 1K words of 36 
bits. The foremost question is how to make use of these BRAMs. Considering 
that we wish to be able to place many processors on the chip, we decided to 
allocate 4 BRAMs to a processor. The maximum number of processors in any 
configuration is therefore 15. 

Each processor contains 4 BRAMs. We allocate 2 for data and 2 for program. By 
using half words for instructions we obtain a maximum program size of 4K (4096) 
instructions. Evidently, programs will be quite small, and this justifies the word 
tiny in the machine’s name. Evidently, the TRM uses a Harvard architecture, 
where data and program. memories are separate and are accessed through 
separate ports. 

The essential property of the RISC architecture is that all operations on data are 
executed in registers. Instructions accessing memories treat memories like being 
external. There are only 2 of them: Load and Store. Instructions performing 
operations typically specify 3 registers, 2 for the arguments, 1 for the result. Such 
a scheme is called a 3-address architecture. An instruction thus has 4 fields: the 
operation code and 3 register numbers. 

It is most desirable, that (at least) one of the arguments may be a literal instead 
of a register. This leads us to the following format for register instruction, with one 
bit as a tag distinguishing whether the second argument is a register or a literal. 

 

R.d := R.b op n or R.d := R.b op R.a 

n  =  5-bit literal 

d, b, a  =  4-bit regno 

op 0 d b n 

op 1 d b a 

4 4 4 6 
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An unpleasant property of the short instruction (18 bits) is that the field for 
immediate operands and addresses is very short. The decision to use not only 
16, but all 18 bits of the FPGA’s block memories alleviated this problem to some 
degree. However, the necessity to use a separate instruction each time a 
constant or an address longer than 5 bits is present, was felt to be too 
detrimental to code density and efficiency, and a better solution was sought, 
resulting in the TRM-2. 

The Tiny Register Machine TRM-2 

The question was how to obtain more bits for the literal field. Three measures 
were used:  

1. Replacing the 3-address architecture by a 2-address architecture, where the 
destination register is the same as one of the argument registers. This causes 
relatively little loss in flexibility and code density, unless a sophisticated 
scheme of register allocation is used for complex expressions. 

2. Reducing of the number of registers from 16 to 8. This saves 1 bit in each 
register field. 

3. Using Huffman encoding, with short opcode fields (and longer literal fields) for 
the most frequently used instruction, and longer opcodes for less frequently 
used instructions. 

All this resulted in address offsets of 10 bits for data and 12 bits for branch 
instructions, the latter covering the entire address space of the instruction 
memory. Quite obviously, this leads to a very considerable increase in code 
density. 

So far, so good. But every gain causes a loss somewhere else. The Huffman 
coding required a more complex decoding circuitry. Instruction decoding lies in 
the critical signal path of every instruction, and here it proved to be a bottleneck. 
For some instructions, the desired clock frequency could not be achieved. 
Further deliberations led to the TRM-3. 

The Tiny Register Machine TRM-3 

In this design the measures 1 and 2 leading to TRM-2 were retained, but 
Huffman coding was dropped. Thereby the same speed as with TRM-1 is 
achieved, and the literal field in register instructions is still 10 bits long. The 
instruction formats are for 

Register operations 

 

R.d := R.d op n or R.d := R.d op R.s 

n  =  10-bit literal 

d, s  = 3-bit regno 

op 0 d 

op 1 d s  

4 3 

n 

10 
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We can now turn to the selection of instructions to be represented. This selection 
is essentially determined by the programming language envisaged, i.e. the 
operators used in expressions. However, in this respect most general-purpose 
languages feature the same requirements: Arithmetic and logical instructions. In 
detail, they are the following: 

op operation 

0 MOV R.d := R.s    (in place of R.s may stand the literal imm) 
1 NOT R.d := ~R.s 
2 ADD R.d := R.d + R.s 
3 SUB R.d := R.d - R.s 

4 AND R.d := R.d & R.s 
5 BIC R.d := R.d & ~R.s 
6 OR R.d := R.d | R.s 
7 XOR R.d := R.d xor R.s 

8 MUL R.d := R.d * R.s 
9 DIV R.d := R.d div R.s 
10 ROR R.d := R.d ror R.s   (rotate right) 
11 BR PC := R.s  (see below) 

In addition there are the Load and Store instructions providing access to 
memory. Their format is slightly different. The actual address is computed as the 
sum of base address R.s and an offset: 

Load and Store instructions 

 

op operation 

 12 LD R.d := Mem[R.s + adr] 
 13 ST Mem[R.s + adr] := R.d 

The only remaining instructions are branch instructions used for implementing 
conditional and repetitive statements, i.e. if, while, repeat and for statements. 
They are executed conditionally, i.e. when a condition is satisfied. These 
conditions are the result of preceding register instructions, and they are held in 4 
condition registers N, Z, C, V, defined as shown below. The branch and link 
instruction is unconditional. It is used to implement procedure calls. It stores the 
current value of the program counter PC in R7. 

Branch instructions 

 

  if condition then PC := PC + 1 + offset 

14 off cond 

4 4 10 

15 off BL 

op off d s 

4 3 8 3 
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code mnemonic condition   

0000 EQ equal (zero)  Z 
0001 NE not equal ~Z 
0010 CS carry set  C 
0011 CC carry clear ~C 
0100 MI negative (minus)  N 
0101 PL positive (plus) ~N 
0110 VS overflow set  V 
0111 VC overflow clear ~V 
1000 HI high ~(~C|Z) 
1001 LS less or same ~C|Z 

1010 GE greater or equal ~(N≠V) 

1011 LT less than N≠V 

1100 GT greater than ~((N≠V)|Z) 

1101 LE less or equal (N≠V)|Z 
1110  true T 
1111  false F  

Special instructions 

The TRM furthermore features some special instructions. The first to be 
mentioned is an instruction to obtain the high part of a product. Multiplications 
generate a result of 64 bits. The high-order part is usually ignored, but it is stored 
in a special register H. The LDH instruction fetches this value. 

The instruction to return from a procedure is BR, branching with the address 
taken from register R.s. This instruction also allows the current PC+1 to be stored 
in R.d. This instruction is used for calling procedures which are a formal 
parameter or are represented by a variable (methods). 

The TRM also features an interrupt facility. There are 2 external signals that can 
cause an interrupt. It functions like a procedure call. As the place in a program 
where an interrupt may be triggered is unknown, the state of the machine must 
be preserved in order to be recovered after the interrupt was handled. Thus the 
TRM switches to interrupt mode, in which it uses a second bank of registers and 
stores the PC and the condition bits in R7 of this bank. Further interrupts are 
immediately disabled. 

The return from interrupt to normal mode is caused by an RTI instruction, a slight 
variant of the BR. It restores PC and the condition bits, and re-enables interrupts. 
The interrupt facility requires a processor status register (PSR) indicating the 
processor mode and whether or not interrupts are enabled. 

MOV 1 d 0 1 LDH 

BR 1 d s 10 BLR 
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The LDPSR instruction loads the Program Status Register from its literal field 
with the following bit assignments: 

0 interrupt 0 enable 
1 interrupt 1 enable 
2 processor mode (0 = normal; 1 = interrupted) 
3 cache enable (if available) 

The Implementation of the TRM-3 

The circuit representing the TRM processor is described in Verilog. Any system 
description in Verilog is composed as a hierarchy of modules. Only the top 
module can specify signals leaving or entering the FPGA. All such signals used 
in a subordinate module must flow through the top module. The TRM system 
consists of 4 modules, the TRM itself, the RS232R for receiving signals from the 
RS-232 serial line, the RS232T for transmitting signals to the serial line, and the 
top module. We will first describe the TRM module, the heart of the system. 

The hardware interface of the TRM module follows the example of typical micro-
processors. The inputs are: 

clk the processor clock (116 MHz) 
rst reset, active low 
stall if high, causes the processor to stall 
irq0, irq1 interrupt signals, active high 
inbus 32-bit bus 

The output signals are 

iord, iowr read and write enable 
ioadr 6-bit I/O address 
outbus 32-bit bus  

The iord signal is included, because some read commands may not only read 
data, but also change the state of the device, such as moving a buffer pointer 
ahead for sequential access. 

The processor essentially consists of two sections, the data processing unit, 
computing the results of single instructions, and the control unit, controlling the 
sequence of instructions. 

The data processing unit 

The choice of functions to be computed by the Arithmetic/Logic Unit (ALU) is, as 
said before, much determined by the programming language to be implemented. 

BR 1 - s 01 RTI 

BR 0 - stat LDPSR 
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But not only. The second factor are the resources available. The early RISC 
designs held to principle that every instruction should be executed in a single 
clock tick. This is readily possible for addition and the logical operations. But 
already a shifter may cause difficulties, let alone multiplication and division. They 
are inherently more complex than the former. There are three solutions to the 
dilemma: The first is to provide more and faster circuitry – possible only within 
limits -, and the second is to give up the principle, i.e. to allow some operations to 
take more than a single clock cycle. The third solution is to omit the operation 
altogether. Indeed, early RISC designs left out multiplication and division 
instructions, as these are relatively rare operations – in particular division. 

In our context, we let multiplication and division take 32 cycles. This requires that 
the control unit can be stopped from progressing to the next instruction. The 
signal indicating such delay is called stall. Both the multiplication and the division 
units have a stall signal as output. Fortunately, it proved to be possible to 
implement a full barrel shifter operating within a single cycle. 

The processing unit consists of the Arithmetic/Logic Unit (ALU) and a set of 8 
registers. The ALU is – apart from multiplier and divider - a purely combinational 
circuit yielding results of arithmetic or logical operations. The main data path of 
the processor forms a loop from  selected source registers (A, B) through the 
ALU to a multiplexer (aluRes) back to a destination register. The multiplexer in 
the A-path determines, whether the A-operand is a register or a literal, i.e. a 
constant in the instruction IR. The additional registers H and CC store the high-
order part of a product, and the conditions N, Z, C, V respectively. 

Fig. 1.1. ALU 

The register bank is generated from 32 dual-port LUT slices (RAM16X1D). Its 
addresses are the register numbers denoted by dst and irs, where dst denotes 
both the destination and the first source. The register numbers stem from the 
instruction register in the control until. The data input comes through regmux 
from various sources (defined below), including aluRes. The data path is 32 bits 
wide. Declarations and definitions of signals (wires) are shown below. The 
signals op, imm, ird, irs, and off are fields of the instruction register IR, which 
belongs to the control unit. 

Registers 

ALU 

A 

B 

CC H 

IR 
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wire [3:0] op; 
wire [9:0] imm; 
wire [2:0] ird, irs, dst; 
wire [7:0] off; 

wire [31:0] AA, A, B, s1, s2, s3, divRes, remRes; 
wire [32:0] aluRes; 
wire [63:0] mulRes; 
wire MOV, NOT, ADD, SUB, MUL, DIV, AND, BIC, OR, XOR, ROR; 
wire BR, LDR, ST, Bc, BL, ADSB; 

assign op  = IR[17:14]; 
assign ird = IR[13:11]; 
assign irs = IR[2:0]; 
assign imm = {22'b0, IR[9:0]}; 
assign off = {4'b0, IR[10:3]}; 

assign MOV = (op == 0); 
assign NOT = (op == 1); 
assign ADD = (op == 2); 
assign SUB = (op == 3); 
assign AND = (op == 4); 
assign BIC = (op == 5); 
assign OR  = (op == 6); 
assign XOR = (op == 7); 
assign MUL = (op == 8); 
assign DIV = (op == 9); 
assign ROR = (op == 10); 
assign BR  = (op == 11); 
assign LDR = (op == 12); 
assign ST  = (op == 13); 
assign Bc  = (op == 14); 
assign BL  = (op == 15); 
assign ADSB = (IR[17:15] == 1);  // ADD | SUB 

assign A = (IR[10]) ? AA: {22’b0, imm}; 
assign regwr = (~ST & ~ … ); 
assign aluRes = 
    (MOV) ? A : 
    (NOT) ? ~A : 
  (ADD) ? {B[31], B} + {A[31], A} : 
    (SUB) ? {B[31], B} - {A[31], A} : 
    (AND) ? B & A : 
    (BIC) ? B & ~A : 
    (OR)  ? B | A : 
    (MUL) ? mulRes[31:0] : 
    (DIV) ? divRes : B ^ A;   // XOR 

The register bank is implemented by 32 1-bit LUT RAM-slices, expressed in 
Verilog by a generate statement. There are 2 addresses (register numbers). The 
first is dst (stemming from instruction field ird), controlling RAM input D (regmux) 
and RAM output B, and the second is irs, controlling RAM output AA.  

genvar i; 

generate    //dual port register file 
 for (i = 0; i < 32; i = i+1) 
 begin: rf32 
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 RAM16X1D_1 # (.INIT(16'h0000)) 
 rfa( 
 .DPO(AA[i]), // data out 
 .SPO(B[i]), 
 .A0(dst[0]),   // R/W address, controls D and SPO 
 .A1(dst[1]), 
 .A2(dst[2]), 
 .A3(intMd), 
 .D(regmux[i]),  // data in 
 .DPRA0(irs[0]), // read-only adr, controls DPO 
 .DPRA1(irs[1]), 
 .DPRA2(irs[2]), 
 .DPRA3(intMd), 
 .WCLK(~clk), 
 .WE(regwr)); 
 end 
endgenerate 

Apart from the 8 32-bit registers the data processing unit contains four 1-bit 
registers: N, Z, C and V. Together they form the condition code. It is set by the 
general instructions and tested by conditional branch instructions. N indicates 
whether a result is negative, and Z whether it is zero. C and V hold the carry and 
overflow bits of additions and subtractions. There is also the 32-bit register H 
holding the high order part of products or the remainder of divisions. 

always @ (posedge clk) 
  if (regwr) begin 
    N <= aluRes[31]; 
    Z <= (aluRes == 0); 
    C <= (ADSB) ? aluRes[32] : (ROR) ? s3[0] : C; 
    V <= (ADSB) ? (aluRes[32] ^ aluRes[31]) : V; 
    H <= (MUL) ? mulRes[63:32] : (DIV) ? remRes : H; 
end 

The Shifter 

The TRM has only a single shift instruction. It rotates to the right. The rotate 
mode was chosen, because it does not lose any information; all bits are still 
present unchanged, albeit at another position. Hence, all other shift modes can 
be derived from rotation with the help of masking. The shifter is a barrel shifter. 
This implies that any amount of shift is possible with one instruction, i.e. the shift 
count ranges from 0 to 31. 

Typically, shifters are built from a series of multiplexers, the first shifting by 0 or 
1, the second by 0 or 2, etc. the fifth by 0 or 16. Here, we use 4-input 
multiplexers (a number favored by Xilinx FPGA cells), and thus can reduce the 
series from 5 to 3, denoted by s1, s2, and s3. Now the first multiplexer shifts by 
0, 1, 2, or 3, the second by 0, 4, 8, or 12, and the third by 0 or 16. A generate 
statement is used to build the 32 multiplexers for each stage. The shift count is 
A[4:0]. The output s3 goes to regmux instead of aluRes. (Note: “%” denotes 
modulo in Verilog). 

wire [1:0] sc1, sc0; 
wire [31:0] s1, s2, s3; 
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assign sc0 = A[1:0]; 
assign sc1 = A[3:2]; 

generate 
  for (i = 0; i < 32; i = i+1) 
  begin: rotblock 
    assign s1[i] = (sc0 == 3) ? B[(i+3)%32] : (sc0 == 2) ? B[(i+2)%32] :  
 (sc0 == 1) ? B[(i+1)%32] : B[i]; 
    assign s2[i] = (sc1 == 3) ? s1[(i+12)%32] : (sc1 == 2) ? s1[(i+8)%32] :  
 (sc1 == 1) ? s1[(i+4)%32] : s1[i]; 
    assign s3[i] = A[4] ? s2[(i+16)%32] : s2[i]; 
  end 
endgenerate 

The Multiplier 

The multiplier is declared as a separate module, instantiated by the following 
statement: 

Multiplier mulUnit (CLK(clk), .mul(MUL), 
 .A(A), .B(B), 
   .stall(stallM), .mulRes(mulRes)); 

The multiplier described below follows the traditional algorithm of n add-shift 
steps, where n is the word length, here 32. 

s := 0;  (*x is the multiplier, y the multiplicand*) 
REPEAT  
 IF ODD(x) THEN z := z+y END ; 
 x := x DIV 2; z := z DIV 2; INC(s)  (*right shift*) 
UNTIL s = 32 

This implies that the multiplier is a state machine. Its state is a counter S running 
from 0 to 32. We use a double-length register, here called Hi (initialized to 0) and 
Lo (initialized with the multiplier B. In each step, the multiplicand A is added to 
the high part, if the least bit of the multiplier is 1. Then the register is shifted one 
bit to the right. 

Fig. 1.2. Multiplier 

It is important to consider also negative numbers. Whereas negative 
multiplicands do not pose a problem, this is not obvious for negative multipliers. 
However, there is an elegant solution. Considering the value x (represented in 
2’s complement form) as the sum 

x  =  -x31*2
31 + x30*2

30 + …. + x1*2
1 + x0*2

0 

it is obvious that the solution lies in subtracting rather than adding the 
multiplicand in the last step, because term 31 has a minus sign. Note that we 

B 

Hi Lo 

+ 

A 
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introduce Hix and Bx as extended versions of Hi and B. This is necessary, 
because the carry bit of addition must not be lost. It enters register Hi with the 
right shift. 

module Multiplier( 
  input CLK, mul, 
  output stall, 
  input [31:0] A, B, 
  output [63:0] mulRes); 

reg [5:0] S;    // state 
reg [31:0] Hi, Lo;  // high and low parts of partial product 
wire [32:0] p, Hix, Bx; 

assign stall = mul & ~S[5]; 
assign Hix = {Hi[31], Hi}; 
assign Bx = {B[31], B}; 
assign p = (S == 0) ? (A[0] ? Bx : 0) : 
    Lo[0] ? ((S == 31) ? (Hix - Bx) : (Hix + Bx)) : Hix; 
assign mulRes = {Hi, Lo}; 

always @ (posedge(CLK)) begin 
  if (mul & stall) begin 
    Hi <= p[32:1]; 
    Lo <= (S == 0) ? {p[0], A[31:1]} : {p[0], Lo[31:1]}; 
    S <= S + 1; end 
  else if (mul) S <= 0; 
end 
endmodule 

The parameter mul indicates a multiplication in progress. The stall signal is 
asserted, when mul is 1 and S has not yet reached the value 32. 

The FPGA used in this project features (a large number of) DSPs (digital signal 
processors). A DSP can be used to speed up multiplication, because it can 
multiply two 18-bit numbers in a single clock tick. Thus, we need only 4 (instead 
of 32) cycles for a multiplication of two 32-bit arguments. We refrain from 
presenting this solution here, because it is rather complicated and highly 
dependent on the particular DSP design. 

The Divider 

The divider is declared as a separate module, instantiated by the following 
statement: 

Divider divUnit(.clk (clk), .div(DIV), 
 .x(B), y(A), 
 .stall(stallD), 
 .quot(divRes), .rem(remRes)); 

The divider described below follows the traditional algorithm with n shift-subtract 
steps, where n is the wordlength. 

s := 0; r := x; q := 0; (*x is the dividend, y the divisor*) 
REPEAT (*q*y + r = x*) 
 r := 2*r; q := 2*q; INC(s);  (*left shift*)  
 IF r >= Y THEN r := r - Y END ;  (*Y = 2

32
*y*) 
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UNTIL s = 32 
(*q is the quotient, r the remainder*) 

 

Fig. 1.3. Divider 

This implies that also the divider is a state machine. Its state is represented by 
the counter S running from 0 to 32 

module Divider( 
  input clk, div, 
  output stall, 
  input [31:0] x, y, 
  output [31:0] quot, rem); 

reg [5:0] S;  // state 
reg [31:0] R, Q;  // remainder, quotient 
wire [31:0] xa, rsh, qsh, d; 

assign stall = div & ~S[5]; 
assign xa = (x[31]) ? -x : x; 
assign rsh = (S == 0) ? 0 : {R[30:0], Q[31]}; 
assign qsh = (S == 0) ? {xa[30:0], ~d[31]} : {Q[30:0], ~d[31]}; 
assign d = rsh - y; 
assign quot = (~x[31]) ? Q : (R == 0) ? -Q : -Q-1; 
assign rem =  (~x[31]) ? R : (R == 0) ? 0 : y - R; 

always @ (posedge(clk)) begin 
  if (div & stall) begin 
    R <= (~d[31]) ? d : rsh; Q <= qsh; S <= S + 1; end 
  else if (div) S <= 0; 
end 
endmodule 

The dividend is taken as the absolute value of x. In case of a negative x, a 
correction is made after the computation of quotient and remainder: 

IF x < 0 THEN 
 IF r = 0 THEN q := -q ELSE q := -q-1; r := y-r END 
END 

The Local Data Memory 

The (local) data memory is composed of two 1Kx32 block RAMs. This is 
expressed by the macro dbram32, with dmin and dmout as input and output 
ports, dmadr as its 11-bit address, and dmwr as write enable.: 

 
assign dmadr = ((irs == 7) ? 0 : AA[11:0]) + {4’b0, offset}; 
assign dmwr = ST;  // write for store instructions only 

y 

R Q 

– 

x 



 16 

assign dmin = B; 

dbram32 DM (.wda(dmin),  //write port 
 .aa (dmadr[10:0]), 
 .wea (dmwr), 
 .clka (clk), 
 .rdb (dmout),  //read port 
 .ab (dmadr[10:0]), 
 .enb (1'b1), 
 .clkb (clk)); 

assign regmux = 
(LDR) ? dmout :  // read for LDR instructions only 
(ROR) : s3 : 
aluRes; 

(Other terms will be added to regmux, the registers’ input, later). 

The control unit 

The control unit fetches instructions from the program memory into the instruction 
register IR and computes the address of the next instruction. This is the old 
address, held in the program counter (PC), plus 1, except for branch instructions. 
In their case, the address of the next instruction is the sum of the current location 
and the (signed) offset in the current branch instruction. The signal and register 
declarations are shown below together with the macro for the program memory. 

 

 
Fig. 1.4  Control Unit 

reg [11:0] PC; 

wire [17:0] IR;  // 36-bit register IR is contained in module pbram 
wire [35:0] pmout; 
wire [11:0] pcmux, nxpc; 
wire cond; 

pbram36 PM (.wda(36'b0),  // write port, not used 
 .aa (11'b0), 
 .wea (1'b0), 
 .clka (clk), 
 .rdb (pmout),  //read port 
 .ab (pcmux[11:1]), 
 .enb (1'b1), 

+1 

PC 

P-mem 
4K x 18 

decode 
0 
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 .clkb (clk)); 

assign IR = (PC[0]) ? pmout[35:18] : pmout[17:0]; 
assign nxpc = PC + 1; 

assign pcmux = 
  (~rst) ? 0 : 
  (stall0) ? PC : 
  (BL) ? IR[13:0] + nxpc : 
  (Bc & cond) ? {IR[9], IR[9], IR[9:0]} + nxpc : 
  (BR & IR[10]) ? A[11:0] : nxpc; 

The sequencing of instructions is finally achieved by the statement 

always @ (posedge clk)  PC <= pcmux; 

This rather straight-forward scheme was used for the TRM-1. 

Unfortunately, reading data from local memory is slow compared to functions 
implemented by the normal logic cells (LUT). It required the use of a clock rate 
not greater than 58.3 MHz. A simple measure called (single stage) pipelining 
allows to double the clock rate to 116.6 MHz. It requires two incarnations of IR 
and PC. An instructions is first fetched with address PCf into IRf, and thereafter 
moved from IRf to IR. While it is interpreted from IR, the next instruction is 
fetched into IRf. This sequential flow is broken by branch instructions. In their 
case, a NOP instruction must be inserted, causing a hiccup, i.e. a delay of one 
tick. The pipelining machinery is described as follows: 

localparam NOP = 18'b111011110000000000; // never jump 

reg [11:0] PCf, PC; 
reg [17:0] IR; 
reg stall1; 

wire [17:0] IRf;  //36-bit register IRf is contained in module pbram 
wire [11:0] pcmux, nxpcF, nxpc; 

always @ (posedge clk) begin 
  PCf <= pcmux; 
  if (~rst) begin PC <= 0; IR <= NOP; end 
  else if (stall0) begin PC <= PC; IR <= IR; end 
  else if ((Bc & cond) | BL | BR & IR[10]) 
    begin PC <= pcmux; IR <= NOP; end 
  else begin PC <= PCf; IR <= IRf; end 
end 

The signal cond determines, whether a branch is taken or not. It is derived from 
the various condition code registers. Bit IR[10] inverts the sense of the condition. 

assign cond = IR[10] ^  // xor 
  ((ird == 0) & Z | // EQ, NE 
   (ird == 1) & C | // CS, CC 
   (ird == 2) & N | // MI, PL 
   (ird == 3) & V | // VS, VC 
   (ird == 4) & ~(~C|Z) | // HI, LS 
   (ird == 5) & ~S | // GE, LT 
   (ird == 6) & ~(S|Z) | // GT, LE 
   (ird == 7)); // T, F 
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Input and Output 

Input and output is handled in the conventional way by including the memory 
data buses in the processor’s interface, and by reserving a (small) portion of the 
address space for external devices (address-mapped I/O). Addresses 0FC0H – 

0FFFH are designated for devices. This is a range of 64 addresses. If such an 
address is generated, the signal ioenb becomes active. 

assign ioenb = (dmadr[11:6] == 6'b111111); 
assign iord = LDR & ioenb; 
assign iowr = ST & ioenb; 
assign ioadr = dmadr[5:0]; 
assign outbus = B; 

Regmux now includes an entry for input data: 

assign regmux =  
  (LDR & ~ioenb) ? dmout : 
  (LDR & ioenb) ? inbus : 
  (ROR) ? s3 : 
  (BL | BR) ? {20'b0, nxpc} : aluRes; 

 

 
Fig. 1.5.  ALU, CU, memory, and I/O 

Stalling the processor 

Originally, the idea behind the RISC movement was to simplify the instruction set 
in such a way that every instruction could be interpreted in a single clock cycle. 
This condition simplifies pipelining very significantly, which is a backbone of the 
RISC idea. It makes it desirable that all instructions, that is, all data paths cause 
the roughly same delays. Unfortunately, this is only possible, if exceptions are 
allowed. In the case of this TRM implementation, there are two (only 3) such 
exceptions. The first is the LD instruction, reading data from the local block RAM. 
It requires 2 cycles. The others are, not surprisingly, multiplication and division. 
They require 32 cycles. 

Registers 

ALU 
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B 
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IR 
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PC 
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aluRes 
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The problem is solved by introducing a facility to stall the instruction fetch when 
the mentioned cases occur. The necessary additions to the TRM circuit are listed 
below: stall is an input to the TRM. 

reg stall1; 
wire stall0, stallM, stallD; 
assign stall0 = (LDR & ~stall1) | stallM | stallD | stall; 

assign pcmux = 
  (~rst) ? 0 : 
  (stall) ? PC : ... : nxpc; 

always @ (posedge clk) begin // stall generation 
  if (~rst) stall1 <= 0; 
  else stall1 <= (LDR & ~stall1); 
end 

 

 

Fig. 1.6. Stalling for 1 and 32 cycles 

Interrupts 

An interrupt facility is necessary, if the processor needs to be able to respond 
quickly to signals from external devices, i.e. where (occasional) polling of such 
signals is inadequate. Interrupts are based on letting (external) signals determine 
the choice of the next instruction at any time, i.e. by directly letting them control 
pcmux. Our TRM features two distinct interrupt signals, irq0 and irq1: 

assign pcmux = 
  (~rst) ? 0 : 
  (irq0 & intAck)? 2: 
  (irq1 & intAck)? 3: : ... : nxpc; 

Of course, it is mandatory to preserve the processor state upon interrupt, 
because the interrupt may occur at any arbitrary point in the program. The 
interrupt resembles somewhat a procedure call, and the response to an interrupt 
that of executing a procedure (called interrupt handler). In the first place, the 
processor stores its current PC value in a link register, from where it can be 
recovered after the interrupt had been serviced. Then a fixed value according to 
the interrupt source is forced to the PC (2 or 3 in our case). Typically an interrupt 
handler would save the values of all other registers, or at least those which the 
handler makes itself use of. This saving and later restoring of all registers is time-
consuming and not acceptable, if hard real-time constraints have to be met. 

stall0 
 
stall1 
 
stallM 

 LDR  LDR  xxx  MU   MU   MU MU  xxx 
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The TRM therefore features a second bank of 8 registers. Upon interrupt, the 
processor switches to interrupt mode by setting intMd, and to the use of the 
alternate bank (address bit 3). It thereby disables further interrupts, and then 
deposits the PC and the flag registers N, Z, C, V in the link register of the 
alternate bank. For all this, an extra cycle must be inserted. It is marked by the 
signal intAck. 

As a consequence, a special return instruction must be provided which, in 
addition to restoring the PC  also switches back to the normal register bank and 
restores N, Z, C, V. This is done by a BR instruction with IR[8] being set. 

It is of course necessary to disable interrupt signals. Thus we introduce state 
registers intEnb0 and intEnb1. Evidently, a special instruction is required to set 
these registers and abuse a form of the BR instruction for this purpose (with bit 
10 being zero). We call this instruction Set Processor Status (PSR). 

The additions necessary for the interrupt system are listed below, and there are 
remarkably few of them. 

reg intEnb, intAck, intMd, intAck; 
wire irq0e, irq1e; 

assign irq0e = irq0 & intEnb0; 
assign irq1e = irq1 & intEnb1; 

always @ (posedge clk) begin  // interrupt and mode handling 
  if (~rst) begin intEnb0 <= 0; intEnb1 <= 0; intMd <= 0; intAck <= 0; end 
  else if ((irq0e | irq1e) & ~intMd & ~stall0 & ~(IR == NOP)) begin  
    intAck <= 1; intMd <= 1; end 
  else if (BR & IR[10] & IR[8]) intMd <= 0; // return from interrupt 
  else if (BR & ~IR[10]) begin // SetPSR 
    intEnb0 <= IR[0]; intEnb1 <= IR[1]; intMd <= IR[2]; end 
  if (intAck & ~stall0) intAck <= 0; 
end  

Furthermore, we must provide an additional case in the code governing the PC: 

  else if ((irq0e | irq1e) & intAck) begin PC <= PCf; IR <= NOP; end 

For regmux the additional case intAck must be included, bringing it to its final 
form: 

assign pcmux = 
  (~rst) ? 0 : 
  (stall0) ? PCf : 
  (irq0e & intAck) ? 2 : 
  (irq1e & intAck) ? 3 : 
  (BL) ? IR[11:0] + nxpc : 
  (Bc & cond) ? {IR[9], IR[9], IR[9:0]} + nxpc : 
  (BR & IR[10]) ? A[11:0] : nxpcF; 

This concludes the description of the TRM processor implementation. 
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Experiments in Computer System Design 

Niklaus Wirth 

PART 2 

The Environment and the Top Module 

In order to be useful, a processor must be made available to users through its 
environment. It must connect to devices, such as keyboard and display, or to 
another computer. The development board used in this project features a number 
of such devices and connections. Their signals are available by standard 
specifications is a so-called configuration file (.ucf), and they include clock and 
reset signals. They are available only in the top module of the constructed 
module hierarchy. We therefore present the TRM’s top module first, and then 
discuss the implementations of other (service) modules. Starting with a 
transmitter and a receiver for a standard serial line, we obtain the simple module 
hierarchy shown below: 

 

Fig. 2.1. Hierarchy of Verilog modules 

The principal purpose of the top module is to connect signals of one module with 
signals of another module (or with external signals). This connecting occurs 
under control of the TRM, i.e. according to the TRM’s interface signals ioadr, 
iowr, and iord. Hence, the main components to be found in the top module are 
multiplexers and decoders driven by ioadr. This is shown by the diagram, in 
which the boxes in the middle represent individual devices, which can be either 
implemented by other modules or (exceptionally) in the top module itself, as in 
the cases of dip switches and LEDs. 

The I/O addresses driving the decoders and multiplexers in this top module are: . 

adr input output  

4 data Rx data Tx RS-232 
5 status -- bit 0: RxRdy, bit 1: TxRdy 
6 millisec timer reset timer interrupt (tick) 
7 8 dip switches 10 LEDs 

TRMTop 

RS232R RS232T TRM 
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Fig. 2.2. Environment with I/O devices 

In this sample top module one instance of each of TRM, FPU, RS232R, and 
RS232T are created (imported). Furthermore 8 dip switches are made available 
as inputs and 10 LEDs as outputs. They are represented as signals swi and leds 
in the top module’s interface (heading). And so are the serial input RxD and 
output TxD. Signals CLKBN and CLKBP stem from an oscillator, and rstIn from a 
push button. We refrain from presenting the clock generation circuitry in detail, 
but emphasize that the entire design is synchronous, i.e. driven by the single 
clock clk. 

Another feature of this top module is a timer (cnt1) counting elapsed 
milliseconds. It is driven by another counter (cnt0) which counts, according to the 
clock rate of 116.6 MHz, up to 116600 and then advances cnt1 and sets the tick 
register to 1. The tick signal is fed to the TRM’s irq0 input, and thus may cause 
an interrupt every millisecond, if enabled. 

Hint: The FPU can be deleted by simply dropping its instantiation. 

module TRM3Top( 
  input CLKBN, 
  input CLKBP, 
  input rstIn, 
  input RxD, 
  input [7:0] swi, 
  output TxD, 
  output [9:0] leds);   

wire ClockIn; 
wire PLLBfb;     
wire pllLock;    
wire clk, CLKx;  
reg rst, tick;    

wire[5:0] ioadr; 
wire iord, iowr, stall, io4, io5, io6, io7, io16; 
wire[31:0] inbus, outbus, fpubus; 

wire [7:0] dataTx, dataRx; 
wire rdyRx, doneRx, startTx, rdyTx; 

reg [9:0] Lreg;  // for LEDs 

decoder 
ioadr 

in        sel in        sel in        sel 

inbus 

multiplexer 

outbus 

TRM 
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reg [17:0] cnt0;  //driver of the millisecond counter 
reg [31:0] cnt1;  // millisecond counter 

TRM trmx(.clk(clk), .rst(rst), .stall(stall), .irq0(tick), .irq1(1’b0), 
    .inbus(inbus), .ioadr(ioadr), .iord(iord), .iowr(iowr), .outbus(outbus)); 
FPU fpu(.clk(clk), .rst(rst), .stall(stall), .iowr(iowr & io16), 
    .ioadr(ioadr[1:0]), .inbus(outbus), .outbus(fpubus)); 
RS232R receiver(.clk(clk), .rst(rst), .RxD(RxD), .done(doneRx), .data(dataRx), .rdy(rdyRx)); 
RS232T transmitter(.clk(clk), .rst(rst), .start(startTx), .data(dataTx), .TxD(TxD), .rdy(rdyTx)); 

assign io4 = (ioadr == 4); 
assign io5 = (ioadr == 5); 
assign io6 = (ioadr == 6); 
assign io7 = (ioadr == 7); 
assign io16 = (ioadr[5:2] == 4'b0100); 

assign inbus = io4 ? {24'b0, dataRx} : 
    io5 ? {30'b0, rdyTx, rdyRx} : 
    io6 ? cnt1 : 
    io7 ? swi : fpubus; 
assign dataTx = outbus[7:0]; 
assign startTx = iowr & io4; 
assign doneRx = iord & io4; 
assign leds = Lreg; 

always @(posedge clk)  
  if (~rst) begin tick <= 0;cnt0 <= 0; Lreg <= 0; end 
  else begin 
    if (iowr & io6) tick <= 0; 
    if (iowr & io7) Lreg <= outbus[9:0]; 
    else if (cnt0 == 116600) begin 
      cnt1 <= cnt1 + 1; cnt0 <= 0; tick <= 1;end 
    else cnt0 <= cnt0 + 1; 
  end 
 always @(posedge clk) rst <= rstIn & pllLock;      
endmodule 

A Transmitter for the RS-232 serial line 

RS-232 is one of the oldest standards for data transmission between computers 
and devices. It is based on a single line, packets (bytes) as elements, 
asynchronous transmission of packets, and synchronous transmission within 
packets. There exist a number of standard bit rates. Here we use 115.2 Kb/s. A 
unit of transmission consists of 10 bits, a start bit, the 8 data bits, and a stop bit. 
The latter serves to keep a minimal delay between packets. RS-232 is primarily 
used for low-speed transmission. The standard is particularly useful for simple 
implementations. Our version uses a 116.6 MHz clock, which is divided by 1012 
to obtain a bit rate of 115.2 Kb/s. 

 
start bit 

d0 – d7 
stop bit 
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Fig. 2.3. The RS-232 data format 

// RS232 transmitter for 115200 bps, 8 bit data, 1 stop bit 
// clock is 116.6 MHz; 116600 / 1012 = 115.2 KHz 
 

module RS232T( 
    input clk, rst, 
    input start, // request to accept and send a byte 
    input [7:0] data, 
    output rdy, 
    output TxD); 
 
wire endtick, endbit; 
reg run; 
reg [9:0] tick; 
reg [3:0] bitcnt; 
reg [9:0] shreg; 
 
assign endtick = tick == 1012; 
assign endbit = bitcnt == 9; 
assign rdy = ~start & ~run; 
assign TxD = ~shreg[0]; 
 
always @ (posedge clk) begin 
    if (run & ~endtick) tick <= tick + 1; 
    else tick <= 0; 
    if (~run) bitcnt <= 0; 
      else if (endtick & (bitcnt < 10)) bitcnt <= bitcnt + 1; 
    if (~rst) run <= 0; 
    else if (start & ~run & (bitcnt < 10)) run <= 1; 
      else if (endtick & endbit) run <= 0; 
    if (~rst) shreg <= 0; 
  else if (start & ~run) 
      begin shreg[0] <= 1'b1; shreg[8:1] <= ~data; end 
    else if (run & endtick) 
      begin shreg[8:0] <= shreg[9:1]; end 
end 
endmodule 

A Receiver for the RS-232 serial line 

The neutral state of the transmission line is “high”. The receiver’s state machine 
is triggered whenever the input RxD becomes low. The line is sampled in the 
middle of a “bit-cell” (midtick). in order to minimize the chance of reading an 
incorrect value. 

module RS232R( 
    input clk, rst, 
    input done,   // "byte has been read" 
    input RxD, 
    output rdy, 
    output [7:0] data); 
 
wire endtick, midtick; 
reg run, stat; 
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reg [8:0] tick; 
reg [3:0] bitcnt; 
reg [7:0] shreg; 
 
assign endtick = tick == 1012; 
assign midtick = tick == 506; 
assign endbit = bitcnt == 8; 
assign data = ~shreg; 
assign rdy = stat; 
 
always @ (posedge clk) begin 
  if (~rst) begin stat <= 0; run <= 0; end 
  else begin 
    if (run & ~endtick) tick <= tick + 1; 
    else tick <= 0; 
    if (~run) bitcnt <= 0; 
    else if (endtick & ~endbit) bitcnt <= bitcnt + 1; 
  else if (endtick & endbit) bitcnt <= 0; 
    if (~RxD) run <= 1; 
    else if (endbit & endtick) run <= 0; 
    if (run & midtick) begin 
      shreg[6:0] <= shreg[7:1]; shreg[7] <= ~RxD; end 
    if (endbit & endtick) stat <= 1; 
  else if (done) stat <= 0; 
  end 
end   
endmodule 

A Floating-point Unit 

Scientific computation is almost without exception based on floating-point 
arithmetic. Fractional numbers (type REAL) are represented by a pair mantissa-
exponent, i.e. 

x  =  m × B e 1.0 ≤ m < B 

where B is a fixed base. The universally adopted, single-precision IEEE Standard 
defines B = 2 and 

x  =  <s, m’, e’> m = 1.m’, e = e’ - 127, and 1.0 ≤ m < 2.0 

with a sign bit s, an exponent e’ of 8 bits, and a mantissa m’ of 23 bits. The 
leading 1 of m is suppressed. A few examples of real numbers and their 
representation in hexadecimal form are: 

x e m   

0.5 -1 1.0 3F000000 
1.0 0 1.0 3F800000 
1.5 0 1.5 3FC00000 
1.75 0 1.75 3FE00000 
2.0 1 1.0 40000000 
10.0 3 1.25 41200000 
100.0 6 1.5625 42C80000 
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Fig. 2.3. IEEE Floating-point number format 

In this logarithmic representation the value 0 is inherently not representable and 
must be treated as a special case. The Standard defines it to be represented by 
all zero bits. Note that the representation is zero-symmetric, i.e. x and –x are 
distinguished only by the sign bit. Also values with e’ = 255 are considered as 
special. They represent non-representable values (overflow). The largest 
absolute value is 2128 (about 1038) and the least value is 2-128 (about 10-38). 

Floating-point multiplication is easily explained. It consists of the multiplication 
of the mantissas and the addition of exponents: 

x0 * x1  =  2 e0+e1-127 * (m0 * m1) 

The product of the mantissas will be in the range 1.0 ≤ m0*m1 < 4.0. Therefore, a 

postnormalization is mandatory to reach the normal form 1.0 ≤ n < 2.0. It is 
achieved by a right shift of the product mantissa and an increment of the 

exponent by 1, if x ≥ 2.0. 

The cases of any of the operands being zero must be detected as special case 
resulting in a zero product. 

It is inherent in computing with rael numbers that the results may be slightly 
inaccurate. It is essential that the reults are rounded properly. This is done by 
adding 0.5 at the low order position, or a 1 at the position that will be truncated. 
This complexifies the circuitry, but it is necessary to achieve a usable arithmetic. 

Floating-point addition (and subtraction) are more complicated. Before 
performing an additionof the mantissas, the exponents must be made equal. This 
is possible only by dividing (the mantissa of) the operand with the smaller 
exponent by 2n, where n is the difference of the two exponents. This operation is 
called denormalization. Division by 2n is of course achieved by shifting the 
mantissa to the right by n bits: 

m := SHR(n, n); e := e+n denormalization 

After the addition, the sum must be brought to its absolue value, and thereafter to 
its normalized form. This means that leading zeroes must be eliminated and the 
exponent decreased accordingly. This can be done sequentially by testing the 
leading bit ans left shifting the mantissa by one bit, until the leading bit is 1. A 
faster solution is to determine the number n of leading zeroes, and then left 
shifting the mantissa by n bits. The cost of this solution is increased complexity of 
the circuit. 

We point out that all this is achieved by a purely sequential circuit with no 
registers involved. However, a path length may result that causes a signal 
propagation delay larger that a single clock cycle. In this case, registers must be 
introduced. 

s exponent mantissa 

0 23 31 
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Floating-point division is not discussed here. It is a rather rare operation, too 
rare to warrant a complex circuit. It is better implemented by an iterative method 
in software. The following algorithm computes x = 1/a. 

x := 1.0; z := 1.0 - a; 
REPEAT x := x*(1.0+z); z := z*z UNTIL z = 0.0 

 

 

Implementation of floating-point operations 

It is generally desirable to provide floating-point operations by processor 
instructions. We instead chose to consider the FPU as an external divice, i.e. not 
as part of the basic processor. The advantage is a modular decoupling of the 
basic processor from the floating-point unit. The FPU’s interface therefore 
contains registers for the arguments x and y, and output ports for sum and 
product. Storing y also causes the respective operation to be triggered. 

adr input operation output 

16 x store x sum 
17 y store y,  addition product 
18 y store -y, addition 
19 y store y,  multiplication 

The following instruction sequences are used and generated by the compiler for 
the statements z := x+y; z := x-y; z  := x*y. Assume that R0 contains operand x, 
R1 operand y, and R2 the device address of the floating-point unit. 

   ST   R0 R2    0 x  
   ST   R1 R2    1 y 
   LD   R0 R2    0 R0 := x + y 
   ST   R0 R7    2 z := R0 

   ST   R0 R2    0 x 
   ST   R1 R2    2 -y 
   LD   R0 R2    0 R0 := x + (-y) 
   ST   R0 R7    2 z := R0 

   ST   R0 R2    0 x 
   ST R1 R2    3 y 
   LD R0 R2    1 R0 := x*y 
   ST R0 R7    2 z := R0 
 
module FPU( 
  input clk, rst, iowr, 
  input [1:0] ioadr, 
  input [31:0] inbus, 
  output stall, 
  output [31:0] outbus); 

reg [31:0] X, Y;   // arguments 
reg [26:0] s;  // pipe reg 
reg mulR; 

wire io0, io1, io2, io3; 
wire [27:0] x0, y0; 
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wire [36:0] x1, y1; 
wire [40:0] x2, y2; 
wire [26:0] x3, y3; 
wire [7:0] xe, ye; 
wire [8:0] dx, dy, e0, e1; 
wire [7:0] sx, sy;  // shift counts 
wire [1:0] sx0, sx1, sy0, sy1; 
wire sxh, syh; 
wire [26:0] ss; 
wire [31:0] Sum; 
 
reg [31:0] prodReg; // product buffer 
wire mul, sign, startM, stallM; 
wire [8:0] e2, e3; 
wire [69:0] mulRes; 
wire [24:0] p0, p1; 
wire [31:0] Prod; 

wire z24, z22, z20, z18, z16, z14, z12, z10, z8, z6, z4, z2; 
wire [4:0] u;  // shift counts 
wire [1:0] u0, u1; 
wire [41:0] t0, t1, t2, t3; 
wire [24:0] t4; 

assign io0 = (ioadr == 0);  // address assignments 
assign io1 = (ioadr == 1); 
assign io2 = (ioadr == 2); 
assign io3 = (ioadr == 3); 

always @ (posedge(clk)) 
  if (~rst) begin X <= 0; Y <= 0; end 
  else begin 
    if (iowr & io0) X <= inbus; 
    if (iowr & io1) Y <= inbus; 
    if (iowr & io2) Y <= {~inbus[31], inbus[30:0]}; 
  if (iowr & io3) Y <= inbus; 
  end 

assign xe = X[30:23];  // addition  denormalization 
assign ye = Y[30:23]; 
assign dx = xe - ye; 
assign dy = ye - xe; 
assign e0 = (dx[8]) ? ye : xe; 

assign sx = dy[8] ? 0 : dy; 
assign sy = dx[8] ? 0 : dx; 
assign sx0 = sx[1:0]; 
assign sx1 = sx[3:2]; 
assign sy0 = sy[1:0]; 
assign sy1 = sy[3:2]; 
assign sxh = sx[7] | sx[6] | sx[5]; 
assign syh = sy[7] | sy[6] | sy[5]; 

assign x0 = {4'b0001, X[22:0], 1'b0};  // guard digit 
assign y0 = {4'b0001, Y[22:0], 1'b0}; 

genvar i; 
generate  // denormalize, shift right 
  for (i = 0; i < 25; i = i+1) 
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  begin: shiftblk0 
    assign x1[i] = (sx0 == 3) ? x0[i+3] : (sx0 == 2) ? x0[i+2] : (sx0 == 1) ? x0[i+1] : x0[i]; 
    assign y1[i] = (sy0 == 3) ? y0[i+3] : (sy0 == 2) ? y0[i+2] : (sy0 == 1) ? y0[i+1] : y0[i]; 
  end 
  for (i = 0; i < 25; i = i+1) 
  begin: shiftblk1 
    assign x2[i] = (sx1 == 3) ? x1[i+12] : (sx1 == 2) ? x1[i+8] : (sx1 == 1) ? x1[i+4] : x1[i]; 
    assign y2[i] = (sy1 == 3) ? y1[i+12] : (sy1 == 2) ? y1[i+8] : (sy1 == 1) ? y1[i+4] : y1[i]; 
  end 
  for (i = 0; i < 25; i = i+1) 
  begin: shiftblk2 
    assign x3[i] = sxh ? 0 : (sx[4]) ? x2[i+16] : x2[i]; 
    assign y3[i] = syh ? 0 : (sy[4]) ? y2[i+16] : y2[i]; 
  end 
endgenerate 

assign ss = (X[31] ? -x3 : x3) + (Y[31] ? -y3 : y3);  // add or subtract 
always @ (posedge(clk)) s <= ss[26] ? -ss : ss; 

assign z24 = ~s[25] & ~ s[24]; 
assign z22 = z24 & ~s[23] & ~s[22]; 
assign z20 = z22 & ~s[21] & ~s[20]; 
assign z18 = z20 & ~s[19] & ~s[18]; 
assign z16 = z18 & ~s[17] & ~s[16]; 
assign z14 = z16 & ~s[15] & ~s[14]; 
assign z12 = z14 & ~s[13] & ~s[12]; 
assign z10 = z12 & ~s[11] & ~s[10]; 
assign z8 = z10 & ~s[9] & ~s[8]; 
assign z6 = z8 & ~s[7] & ~s[6]; 
assign z4 = z6 & ~s[5] & ~s[4]; 
assign z2 = z4 & ~s[3] & ~s[2]; 

assign u[4] = z10;  // u = shift count of post normalization 
assign u[3] = z18 & (s[17] | s[16] | s[15] | s[14] | s[13] | s[12] | s[11] | s[10]) 
      | z2; 
assign u[2] = z22 & (s[21] | s[20] | s[19] | s[18]) 
      | z14 & (s[13] | s[12] | s[11] | s[10]) 
      | z6 & (s[5] | s[4] | s[3] | s[2]); 
assign u[1] = z24 & (s[23] | s[22]) 
      | z20 & (s[19] | s[18]) 
      | z16 & (s[15] | s[14]) 
      | z12 & (s[11] | s[10]) 
      | z8 & (s[7] | s[6]) 
      | z4 & (s[3] | s[2]); 
assign u[0] = ~s[25] & s[24] 
      | z24 & ~s[23] & s[22] 
      | z22 & ~s[21] & s[20] 
      | z20 & ~s[19] & s[18] 
      | z18 & ~s[17] & s[16] 
      | z16 & ~s[15] & s[14] 
      | z14 & ~s[13] & s[12] 
      | z12 & ~s[11] & s[10] 
      | z10 & ~s[9] & s[8] 
      | z8 & ~s[7] & s[6] 
      | z6 & ~s[5] & s[4] 
      | z4 & ~s[3] & s[2]; 

assign e1 = e0 - u + 1; 
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assign u0 = u[1:0];  // u = shift count 
assign u1 = u[3:2]; 
assign t0 = {s[25:0], 16'b0}; 

generate // normalize, shift left 
  for (i = 16; i < 42; i = i+1) 
  begin: shiftblk4 
    assign t1[i] = (u0 == 3) ? t0[i-3] : (u0 == 2) ? t0[i-2] : (u0 == 1) ? t0[i-1] : t0[i]; 
  end 
  for (i = 16; i < 42; i = i+1) 
  begin: shiftblk5 
    assign t2[i] = (u1 == 3) ? t1[i-12] : (u1 == 2) ? t1[i-8] : (u1 == 1) ? t1[i-4] : t1[i]; 
  end 
  for (i = 16; i < 42; i = i+1) 
  begin: shiftblk6 
    assign t3[i] = u[4] ? t2[i-16] : t2[i]; 
  end 
endgenerate 

assign t4 = t3[41:17] + 1;  // rounding 
assign Sum = (xe == 0) ? Y : (ye == 0) ? X : 
    ((t3[41:17] == 0) | e1[8]) ? 0 : {ss[26], e1[7:0], t4[23:1]}; 

MulDSP mulUnit(.CLK (clk),   // multiplication 
 .mul (mul & ~startM), 
 .A ({11'b0, 1'b1, X[22:0]}), 
 .B ({11'b0, 1'b1, Y[22:0]}), 
 .stall (stallM), 
 .mulRes (mulRes)); 

assign mul = iowr & io3; 
assign startM = mul & ~mulR; 
assign stall = startM | stallM; 
assign sign = X[31] ^ Y[31]; 
assign e2 = X[30:23] + Y[30:23]; 
assign e3 = mulRes[47] ? e2 - 126 : e2 - 127; 
assign p0 = {1'b0, mulRes[47] ? mulRes[46:23] : mulRes[45:22]}; 
assign p1 = p0 + 1;  // rounding 

assign Prod = (xe == 0) | (ye == 0) ? 0 : 
    (~e3[8]) ? {sign, e3[7:0] + {7'b0, p1[24]}, p1[23:1]} : 
    (~e3[7]) ? {sign, 8'b11111111, 23'b0} : 0;  // overflow 

always @ (posedge(clk)) begin mulR <= mul; 
  if (mul) prodReg <= Prod; 
end 

assign outbus = (io0) ? Sum : prodReg; 
endmodule 

It is remarkable that the program of the FPU is almost as long as that for the 
entire processor TRM. It is therefore of interest to compare its performance with 
that of a solution implementing real arithmetic by software. The result of a 
comparison indicates that the hardware solution performs between 10 and 30 
times faster than the software implementation. The extreme case is that of 
subtraction with almost identical operands. This leads to a long post-
normalization shift, which is done in a loop in software. This case is a weak point 
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of floating-point arithmetc in general. It implies a loss of precision and is called 
cancellation. 
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Technical Report 8. 8. 2010 

Experiments in Computer System Design 

Niklaus Wirth 

PART 3 

About memories 

In the early years of computers, memories had been considered as an integral 
part of the central computing unit. This remained so through the eras of magnetic 
drum memories, magnetic core memories, and static semiconductor memories 
(SRAM). A change came with the RISCs (Reduced Instruction Set Computer), 
which more strongly decouple memory and processing unit. Whereas the speed 
of processors increased dramatically, the speed of memories also increased, but 
at a lesser pace. But their capacity increased substantially, mainly due to  
dynamic random access memories (DRAM). Cells in static RAMs consist of two 
transistors and have 2 stable states. Thus they hold a bit (until given a new 
value), and therefore they are called static. The dynamic RAM holds a bit in a 
small capacitor coupled with a single transistor. This cell requires less space on a 
die and therefore is dominant for large capacity devices. 

The DRAM has, however, a few drawbacks. The most prominent is that 
capacitors leak and discharge through the transistor. Therefore the charge must 
be refreshed. This is achieved by reading the cell and restoring the old value 
(through recharge). Refreshing requires additional circuitry, which must not 
interfere with normal data access. DRAMs are typically refreshed at least every 
millisecond. 

Memory chips of the latest provenience have capacities in the order of a gigabyte 
and therefore require large multiplexers for reading and decoders for writing. As 
a consequence, access is slower than for smaller devices. In the last decades, 
the speeds of processors and of memories have increasingly diverged. Two 
remedies are in use: 1. Data in memory are accessed in larger portions than 
single words or bytes. 2. Buffers are placed in the data path between memory 
and processor. These buffers are fast memories, called caches. Modern 
processors feature cache memories on-chip. Naturally, caches further complicate 
memory access, leading to more complex circuit. It is common that such cache 
mechanisms are to be invisible (transparent) to the computer user and to the 
software. We will here first show how a large DDR memory is interfaced with the 
TRM. 

A DDR memory as an external device 

Let us connect a DDR memory to the TRM’s input/output bus. The memory in 
question here is a 256 MB chip MT4HTF3264HY-53E of Micron, present on the 
ML-505 evaluation board. In fact, we will not connect the memory directly to the 
TRM, but place an intermediary agent in between. It is called a DDR Controller, 



 33 

and it was designed by Ch. Thacker of Microsoft Research in Mountain View. 
Thereby we obtain some freedom to ignore details of this particular type of DDR. 

In addition to being periodically refreshed, the DDR memory must be initialized at 
startup. This involves the loading of certain constants. Also, once the RAMs have 
been configured, the individual delay lines associated with the FPGA data pins 
must be adjusted to center the strobe in the "data valid" window. 

These complicated task appear to require a substantial amount of circuitry. This 
can be avoided by employing a dedicated, simple, programmed processor for 
these tasks. The design of such a processor is described below. It is called TRM-
0. Once the system is running, the TRM-0 controls the periodic refresh of the 
RAMs. Note that calibration can fail. The signal CalFailed is available to 
programs as a status bit of the DDR interface. The TRM-0 will be presented at 
the end of this Part. 

Let us now describe the top module that connects to the DDR-Controller as an 
external device of TRM. We start by showing the heading (interface) of this Top 
module. In addition to the signals of the top module described in Part-1 of this 
Report, it contains all signals leading to the memory chip on the ML-505 board. 
They are directly passed on to the DDR-Controller module. 

module TRM3DTop( 
  input CLKBN, 
  input CLKBP, 
  input rstIn, 
  input RxD, 
  input [7:0] swi, 
  output TxD, 
  output [9:0] leds, 

  inout [63:0] DQ, //the 64 DQ pins, signals to the memory chip 
  inout [7:0] DQS, //the 8  DQS pins 
  inout [7:0] DQS_L, 
  output [1:0] DIMMCK,  //differential clock to the DIMM 
  output [1:0] DIMMCKL, 
  output [12:0] A, //addresses to DIMMs 
  output [7:0] DM, 
  output [1:0] BA, //bank address to DIMMs 
  output RAS, CAS, WE, ODT, ClkEn, S0); 

The connections between the various modules are best sketched by the following 
block diagram: The registers and signals, in addition to those present in the basic 
version of TRM3Top are: 

reg Read, Write;  // DDR commands 
reg RBempty1, Write1;  // delayed DDR signals 
reg RDrdy, shiftRD; 
reg [22:0] Address; 
reg [255:0] RD;  // read data buffer from DDR 
reg [255:0] WD;  // write data buffer to DDR 

wire AFfull, WBfull, RBempty, WriteAF, ReadRB, WriteWB; 
wire [127:0] ReadData, WriteData; 
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Data are read and written in blocks of 256 bits (8 words). The memory can be 
considered as consisting of 256-bit elements. When writing, first 8 words are 
deposited into the WD buffer by 8 consecutive IO commands (with address 10). 

Fig. 3.1. TRM-DDR interface in TRM3DTop 

The DDR2 memory used here has a capacity of 256 MByte, Each “word” 
consists of 32 bytes, which results in a word address of 23 bits. Data are loaded 
into a 256-bit shift register. Each command shifts down the data by 32 bits and 
places the iobus data into the high end of the shift register. A subsequent 
command with address 11 initiates the DDR reading. It supplies the DDR 
address. This occurs in a single cycle with 128 bits transferred on the rising, and 
128 bits of the falling edge of the clock. 

Reading starts with a DDR-read command (address 11), supplying the DDR-
address of the 256-bit block. Reading also is done in two bursts at the rising and 
falling edges of the clock. The data are deposited in the RD buffer. Then follow 8 
consecutive read commands (address 10), each moving a word from the low end 
of the RD buffer to the TRM’s inbus and shifting the data in the buffer down. 

The operations of writing and reading a block are best described by the following 
procedures in Oberon. Bit 0 of the status register means “read buffer not empty”, 
bit 1 mena “write buffer full”, and bit 2 means “command buffer full”.: 
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  CONST A0 = 0FFFFFFCAH; A1 = 0FFFFFFCBH; 
 TYPE Block = ARRAY 8 OF INTEGER; 
  
 PROCEDURE Write(dst: INTEGER; VAR B: Block); 
  VAR i: INTEGER; 
 BEGIN i := 0;  
  REPEAT UNTIL ~BIT(A1, 1);   (*write buffer not full*)  
  REPEAT PUT(A0, B[i]); INC(i) UNTIL i = 8; 
  REPEAT UNTIL ~BIT(A1, 2);   (*command buffer not full?*) 
  PUT(A1, 2000000H + dst);  (*write DDR*)  
 END Write; 
 
 PROCEDURE Read(src: INTEGER; VAR B: Block); 
  VAR i: INTEGER; 
 BEGIN i := 0;  
  REPEAT UNTIL ~BIT(A1, 2);  
  PUT(A1, 1000000H+ src);   (*read DDR*)  
  REPEAT UNTIL ~BIT(A1, 0);  
  REPEAT UNTIL BIT(A1, 0);  
  REPEAT GET(A0, B[i]); INC(i) UNTIL i = 8; 
 END Read; 

The details of the implementation in TRM3DTop are given by the following 
statements in Verilog (see also declarations above): 

assign Reset = ~rstIn  | ~pllLock | ~ctrlLock; 
assign WriteAF = Read | Write1; 
assign WriteWB = Write | Write1;  // commands to DDR controller 
assign ReadRB = ~RBempty; 
assign WriteData = (Write1) ? WD[127:0] : WD[255:128]; 

always @(posedge clk) rst <= rstIn & pllLock & DDRCalSuccess;  

// writing DDR:  outbus(32) --> WD(256) --> WriteData(128) 
// reading DDR:  ReadData(128) --> RD(256) --> inbus(32) 

always @(posedge clk) 
  begin 
    if (io11 & iowr) begin  // DDR command 
      Address <= outbus[22:0]; 
      Read <= outbus[24]; RDrdy <= 0; 
      Write <= outbus[25]; 
    end 
    else begin Read <= 0; Write <= 0; 
      if (~RBempty1 & RBempty) RDrdy <= 1; 
    end 

    if (io10 & iowr) begin  // write a word to TRM 
      WD[223:0] <= WD[255:32]; WD[255:224] <= outbus; 
    end   

    if (io10 & iord) shiftRD <= ~shiftRD; else shiftRD <= 0; 
    Write1 <= Write; RBempty1 <= RBempty; 
    if (shiftRD) RD[223:0] <= RD[255:32]; else 
    if (~RBempty) begin RD[255:128] <= RD[127:0]; RD[127:0] <= ReadData; end 
  end 
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Introducing a Direct Memory Access Channel (DMA) 

The solution presented above is the simplest, as far as hardware is concerned. 
Its drawback is, however, low speed. This can be remedied by avoiding the use 
of one instruction for each word transferred, and instead to transfer an entire 
block through a single instruction. This solution introduces an important concept 
of computer architecture: The direct memory access channel. It postulates that 
not only the processor, but also other agents may obtain direct memory access. 

The two driver procedures are then simplified to: 

PROCEDURE Write(dst: INTEGER; VAR B: Block); 
BEGIN 
 REPEAT UNTIL ~BIT(A1, 1); (*write buffer not full*); 
 PUT(A0, ADR(B) + 2000000H); (*DMA transfer of 8 words from B*) 
 REPEAT UNTIL ~BIT(A1, 2); (*command buffer not full?*) 
 PUT(A1, 2000000H + dst); (*write DDR*) 
END Write; 
 
PROCEDURE Read(src: INTEGER; VAR B: Block); 
BEGIN 
 REPEAT UNTIL ~BIT(A1, 2); (*command buffer not full*)  
 PUT(A1, 1000000H+ src); (*read DDR*) 
 REPEAT UNTIL ~BIT(A1, 0);  
 REPEAT UNTIL BIT(A1, 0); 
 PUT(A0, ADR(B) + 1000000H); (*DMA transfer of 8 words to B*) 
END Read; 

The result is remarkable: The speed of transferring blocks has tripled. What are 
the consequences for the hardware interface? Evidently, the TRM itself must be 
modified by adding external access signals to its data memory. This implies that 
its interface must change  Furthermore, a data transfer lasts over several clock 
cycles, and therefore requires a state machine to control it. Furthermore, it must 
be possible to stall the processor, i.e. to prevent it from proceeding to the next 
instruction. 

We will let the state machine to be part of the device interface rather than of the 
TRM processor. This minimizes the changes to the interface, which we will 
describe first. It is extended with 5 signals: 

module TRM3X( 
input clk, rst, stall, 
input irq0, irq1, 
input[31:0] inbus, 
output [5:0] ioadr, 
output iord, iowr, 
output [31:0] outbus, 

input dmaenb, dmawr,  // dma connections 
input [11:0] dmaAdr, 
input[31:0] dmain, 
output [31:0] dmaout); 

In the TRM itself, all inputs signals to the local memory obtain a multiplexer with 
the existing input plus the one from the interface: 
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assign dmadr = (dmaenb) ? dmaAdr : ((irs == 7) ? 0 : AA[11:0]) + off); 
assign dmwr = (dmaenb) ? dmawr : ST & ~ioenb; 
assign dmin = (dmaenb) ? dmain : B; 
assign dmaout = dmout; 

The only further change to the TRM logic is the dmaenb signal stalling the 
processor: 

assign stall0 = (LDR & ~stall1) | stallM | stallD | stall | dmaenb; 

The major addition to the top module is the state machine. It controls the block 
transfer between the TRM output to the write buffer WD, and the block transfer 
between the read buffer RD and the TRM input. The state machine is triggered 
by a PUT statement with I/O address 10. The command word contains the 
address of local memory in bits 0 – 10, and either a read in bit 24 or a write in bit 
25. 

Fig. 3.2. DMA state machine 

When reading the DDR memory, the local memory is written, which takes a 
single clock cycle. When writing DDR memory, the local memory is read, which 
takes 2 clock cycles. This is reflected by the state machine having 2 states in the 
write branch. The word counter, running from 0 to 7, is kept separate from the 
state. The signal and register declarations are as follows: 

reg Read, Write;  // DDR commands 
reg RBempty1, Write1;  // delayed DDR signals 
reg RDrdy;   // data read from DDR ready 

reg [1:0] state;  // dma state (0 = idle) 
reg [2:0] wcnt;  // word count for DMA 
reg [11:0] dmaAdr; 
reg [22:0] ddradr; 
reg [255:0] RB;  // input buffer from DDR 
reg [255:0] WB;  // output buffer to DDR 

wire WriteAF, ReadRB, WriteWB; 
wire AFfull, WBfull, RBempty; 
wire dmaenb, dmawr; 
wire [31:0] dmain, dmaout; 
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wire [127:0] ReadData, WriteData;  // data from/to DDR 

assign WriteAF = Read | Write1; 
assign WriteWB = Write | Write1;  // commands to DDR controller 
assign ReadRB = ~RBempty; 
assign WriteData = (Write1) ? WB[127:0] : WB[255:128]; 
assign dmaenb = ~(state == 0); 
assign dmawr = (state == 1); 
assign dmain = RB[31:0]; 

The state machine is expressed in Verilog by the following statements: 

always @(posedge clk) 
  begin 
    if ((ioadr == 11) & iowr) begin  // DDR command 
      ddradr <= outbus[22:0]; 
      Read <= outbus[24]; RDrdy <= 0; 
      Write <= outbus[25]; 
    end 
    else begin Read <= 0; Write <= 0; 
      if (~RBempty1 & RBempty) RDrdy <= 1; 
    end 
 
    if (~rst) state <= 0; 
    else if ((ioadr == 10) & iowr) begin  // DMA command 
      dmaAdr <= outbus[11:0]; wcnt <= 0; 
      state <= outbus[25:24]; end // 01: read RB, 10: write WB 
    else begin 
      if (state == 2) state <= 3; 
      if (state == 3) begin 
        WB[223:0] <= WB[255:32]; WB[255:224] <= dmaout; 
        wcnt <= wcnt + 1; dmaAdr <= dmaAdr + 1; 
        state <= (wcnt == 7) ? 0 : 2; 
      end 
      if (state == 1) begin 
        RB[223:0] <= RB[255:32]; 
        wcnt <= wcnt + 1; dmaAdr <= dmaAdr + 1; 
        state <= (wcnt == 7) ? 0 : 1; 
      end 
    end 
    Write1 <= Write; RBempty1 <= RBempty; 
    if (~RBempty) begin RB[255:128] <= RB[127:0]; RB[127:0] <= ReadData; end 
  end 

This concludes the addition of a DMA facility to the TRM top module. It causes 
only a moderate increase of complexity and results in a very substantial gain in 
performance. Note that this addition was (almost entirely) an addition to the 
environment: The DMA facility is considered part of the device. 

Initializing and refreshing the SDRAM memory 

DRAMs must be initialized and periodically refreshed. An economical way of 
doing this is to dedicate a small processor to this task. Here we first describe the 
program used, and then the processor, TRM-0. The program is described in 
pseudo-language, suppressing details. It was actually implemented by a very 
simple assembler code. 
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PROCEDURE refresh; 
BEGIN prechargeall; wait(1); (*unit of delay = 32ns*) refreshall; wait(3); 
END refresh; 

Start: inhibit DDR; wait(6000); toggleDDR; setDIMMclk; 
InitMem: wait(12); prechargeall; wait(1); 
 babk2; bank3; babk1; MRS1; 
 wait(49);  (*wait for DLL to lock*)  refresh; refresh; 
 MRS2; MRS3; MRS4; wait(11); prechargeall; wait(1); 
Calibrate: inhibitDDR; set Force; 
 wait(1); … ; wait(3); WriteCmd; toggle(StartDQcal); n := 0; 
 REPEAT ReadCmd; DEC(n) UNTIL n = 0; 
 wait(16); refresh; enableDDR; clear Force; 
 REPEAT wait(768); disbleDDR; refresh; enableDDR END 

4 of the 8 registers are directly connected to the DDRcontroller, providing 
commands (D0, D1) and status (D2); When assigning a value to register D1, a 
strobe is issued (injectCmd), causing the DDRcontroller to insert the command in 
D0, D1 in the command sequence supplied by the interface of the TRM-3. The 
status bits of D2 are: 

0 StartDQcal 
1 inhibit DDR 
2 DDR clock enable 
3 reset DDR 
7 Force calibration 

The instantiation of TRM-0 in the Top module is: 

TRM0 trm0x (.clk(clk), .rst(rst), .trig(injectCmd), 
  .Din(12'b0), 
  .D0(D0), .D1(D1), .D2(D2), .D3(D3)); 

TRM-0: Architecture and instruction set 

The TRM-0 processor consists of a compute unit consisting of an ALU, 
implementing addition and subtraction, and the basic logic operations used for 
setting and clearing individual bits, and of a set of 8 12-bit registers. It has a 2K 
program memory, but no data memory. 
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Fig. 3.3. TRM-0 Block Diagram 
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7 0 BEQ PC := n,  if Z 
7 1 BNE PC := n,  if ~Z 
7 2 BLT PC := n,  if N 
7 3 BGE PC := n,  if ~N 
7 4 BLE PC := n,  if N|Z 
7 5 BGT PC := n,  if ~(N|Z) 
7 6 B PC := n 
7 7 NOP  

The implementation of TRM-0 

The implementation of TRM-0 is described by the following Verilog program, 
which somewhat resembles that of TRM-3, but is very substantially simpler. 

module TRM0( 
 input clk, rst, 
 output trig, 
 input [11:0] Din, 
 output [11:0] D0, D1, D2, D3); 
 
reg N, Z, T; 
reg [10:0] PC; 
reg [11:0] R0, R1, R2, R3, R4, R5, R6, R7; 
 
wire [17:0] IR;  // register contained in module pbram 
wire [35:0] pmout; 
wire [2:0] op, dst, src, cond; 
wire [1:0] cc; 
wire [10:0] pcmux, nxpc; 
 
wire [11:0] A, B, AluRes; 
 
dpbram36 im(  // program memory, 1K x 36 
 .wda(36'b0), // port A is the write port. 
 .aa(10'b0), 
 .wea(1'b0), 
 .ena(1'b0), 
 .clka(1'b0), 
 .rdb(pmout), // port B is the read port. 
 .wdb(36'b0), 
 .ab(pcmux[10:1]), 
 .web(1'b0), 
 .enb(1'b1), 
 .clkb(clk)); 
 
assign D0 = R4; 
assign D1 = R5; 
assign D2 = R6; 
assign D3 = R7; 
assign trig = T; 
 
assign IR = PC[0] ? pmout[35:18] : pmout[17:0]; 
assign op = IR[17:15]; 
assign cc = IR[14:13]; 
assign dst = IR[14:12]; 
assign src = IR[2:0]; 
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assign A = (~IR[11]) ? {IR[10], IR[10:0]} : 
           (src == 0) ? R0 : 
           (src == 1) ? R1 : 
           (src == 2) ? R2 : 
           (src == 3) ? R3 : 
           (src == 4) ? R4 : 
           (src == 5) ? R5 : 
           (src == 6) ? R6 : Din; 
 
assign B = (dst == 0) ? R0 : 
           (dst == 1) ? R1 : 
           (dst == 2) ? R2 : 
           (dst == 3) ? R3 : 
           (dst == 4) ? R4 : 
           (dst == 5) ? R5 : 
           (dst == 6) ? R6 : R7; 
 
assign AluRes = (op == 0) ? B | A : 
           (op == 1) ? B & ~A : 
           (op == 2) ? B + A :  
           (op == 3) ? B - A :  
           (op == 4) ? A : 
           (op == 5) ? A : nxpc; 
 
assign cond = IR[12] ^ ( 
           (cc == 0) ? Z :  
           (cc == 1) ? N :  
           (cc == 2) ? Z|N : 1);  
 
assign nxpc = PC + 1; 
assign pcmux = ((op == 6) | (op == 7) & cond) ? A : nxpc; 
 
always @ (posedge clk) begin 
  if (~rst) begin PC <= 0; R6 <= 0; end 
  else begin PC <= pcmux; 
    if (op != 7) begin 
      if (dst == 0) R0 <= AluRes; 
      if (dst == 1) R1 <= AluRes; 
      if (dst == 2) R2 <= AluRes; 
      if (dst == 3) R3 <= AluRes; 
      if (dst == 4) R4 <= AluRes; 
      if (dst == 5) R5 <= AluRes; 
      if (dst == 6) R6 <= AluRes; 
      if (dst == 7) R7 <= AluRes; 
      N <= AluRes[11]; 
      Z <= (AluRes == 0); 
      T <= (dst == 5); 
    end 
  end 
end 
endmodule  
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PART 4 

Multiprocessor-systems and interconnects 

The FPGA is an ideal ground for experimenting with multi-processor 
configurations. On the chip of the ML-505 board, a configuration with 12 TRMs 
was successfully installed and tested. The limiting factor is the number of block 
RAMs (and DSPs) available. The interesting questions is how to interconnect the 
individual processors. 

A frequently encountered model for systems is the data flow model. It is based 
on the premise that data flow on fixed channels from processor to processor. The 
key property of the data flow scheme as postulatd by Jack Dennis is that a 
processor takes action as soon as all necessary inputs are ready on the 
respective input channels. With this property, processor synchronization is 
implicit. Typical DF-Systems have been built whose nodes are essentially ALUs 
with buffers at the inputs. This model has not been successful in spite of several 
revivals over the past decades. A more promising model is the one where the 
nodes are autonomous, programmable processors. Evidently, the structure and 
the channels need to be custom-tailored to the application on hand. Here we 
merely present one kind of connection, actually the simplest connection possible, 
the buffered channel, also called point-to-point connection. 

Point-to-point connection: The buffered channel 

We assume that the elements of the sequence to be transmitted over a channel 
are 32-bit words. For this case, the interface can be particularly straight forward. 
Apart from the data, it contains the commands wreq and rdreq (for writing, 
sending, and reading, receiving respectively). Furthermore, there must be the 
status signals empty and full, indicating whether the write buffer is full, or the 
read buffer is empty, conditions where processing cannot proceed. In our first 
version, the buffer contains a single entry and is implemented as a register. 

module Channel( 
  input clk, rst, 
  input wreq, rdreq, 
  output empty, full, 
  input [31:0] indata, 
  output [31:0] outdata); 
 
reg loaded; 
reg [31:0] Buf; 
 
assign outdata = Buf; 
assign empty = ~loaded; 
assign full = loaded; 
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always @ (posedge clk) 
  if (~rst) loaded <= 0; 
  else if (wreq) begin Buf <= indata; loaded <= 1; end 
  else if (rdreq) loaded <= 0; 
endmodule 

If a higher degree of decoupling between the sending and the receiving nodes is 
required, a buffer with several slots must be provided. In the following example, 
16 entries are provided. The buffer is implemented by 32 LUT slices with the 
macro RAM16X1D_1. The buffer is organized circularly; the counters are modulo 
16 due to the fact that they consist of 4 bits. 

module Channel6( 
  input clk, rst, 
  input wreq, rdreq, 
  output empty, full, 
  input [31:0] indata, 
  output [31:0] outdata); 
 
reg [3:0] in, out;  // buffer pointers 
 
assign empty = (in == out); 
assign full = (out == (in+1)); 
assign outdata = D; 
 
genvar i; 
generate    //dual port register file 
  for (i = 0; i < 32; i = i+1) 
  begin: rf32 
  RAM16X1D_1 # (.INIT(16'h0000)) 
  rfa( 
  .DPO(outdata), 
  .SPO(), 
  .A0(out[0]),   // R/W address, controls D and SPO 
  .A1(out[1]), 
  .A3(out[3]), 
  .D(indata),  // data in 
  .DPRA0(in[0]), // read-only adr, controls DPO 
  .DPRA1(in[1]), 
  .DPRA2(in[2]), 
  .DPRA3(in[3]), 
  .WCLK(~clk), 
  .WE(wreq)); 
  end 
endgenerate 
 
always @(posedge clk) 
  if (~rst) begin in <= 0; out <= 0; end 
  else if (wreq) in <= in + 1; 
  else if (rdreq) out <= out + 1; 
endmodule 

It is noteworthy and important that the interface of the two versions of channels 
are identical, and therefore easily interchangeable. The interfacing of such 
channels and TRMs occurs in the same way as that between RS-232 lines and 
TRM, as presented in Part 2 of this Report. 

The ring structure 
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Point-to-point connections are less suitable in a multi-processor system, where 
no pairs of processors are a-priory known to communicate particularly frequently. 
In this case, a system is required that potentially connects every node with every 
other node. The traditional solution in this case is a bus. It inherently carries the 
problems of delays, of access priorities, and of bottlenecks. Also, since buses are 
usually implemented with tri-state gates, it is not easily practicable on FPGAs, as 
they do not contain tri-state gates. 

The most general soultion is a crossbar switch, a martix of gates. Each row 
represents an input, each column an output. Crossbar switches are fast, but 
require many resources. FPGAs are not particularly suitable for their 
implementation, mostly because of the relative scarcity of long wires. 

A likely alternative is the ring structure, where every processor is included as a 
ring node. The ring has technically the advantage that it consists of 
unidirectional, point-to-point connections only. It is therefore simple to implement 
and simple to operate. However, depending on the number of nodes lying 
between source and destination, there may be delays involved, Also, long 
messages may monopolize the ring, thus inducing longer waits for nodes also 
requesting access. 

Nevertheless, we present here a basic implementation of a ring node as an 
example of how processors may be connected in a simple way on an FPGA chip. 

Each node contains a register between the ring input and ring output. This 
register holds one data element and introduces a latency (delay of the data 
traveling through the ring) of a single clock cycle. The node also contains two 
buffers, one for the received data, and one for the data to be sent. Their purpose 
is to decouple the nodes in time and thereby to increase the efficiency of the 
connections. We postulate that the data are always sequences of bytes, and they 
are called messages. 

 

Fig. 4.1. Ring Node 

The figure shows that if a node is sending a message over the ring, buffer B is 
fed to the ring output. If a message is received, the ring input is fed to buffer A. 
Otherwise the input is transmitted to the output, with a single cycle’s delay. 

A B 

 ringin ringout 

outdata indata 

0 

slot 
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We have chosen the elements of messages to be bytes. The ring and its 
registers, called slots, are 10 bits wide, 8 for data and 2 for a tag to distinguish 
between data and control bytes. 

We postulate the following conventions: Messages are sequences of (tagged) 
bytes. The first element of a message is a header. It indicates the destination and 
the source number of the nodes engaged in the transmission. We assume a 
maximum of 16 nodes, resulting in 4-bit node numbers. The last element is the 
trailer. In between lie an arbitrary number of data bytes. 

tag data   

10 source, destination header 
00 xxxxxxxx data byte 
01 00000000 trailer 
11 00000000 token 

When no messages are to be transferred, the ring is said to be idle. When a 
node is ready to send a message, it must be granted permission in order to avoid 
collisions with messages sent by other nodes. One may imagine a central 
agency to rotate a pointer among the nodes, and the node so designated having 
the permission to send its message. As we wish to avoid a central agency, we 
instead insert a special element into the ring which takes over the role of the 
pointer. It is called the token. In the idle state, only the token is in the ring. Such a 
scheme is called a token-ring 

Only a single message can be in the ring. When a node is ready to send a 
message, it waits until the token arrives, and then replaces the token by the 
message. The token is reinserted after the message. The header contains the 
number of the destination node which triggers the receiver to become active. 
When the message header arrives at the destination, that node feeds the 
message into its receiver buffer. It removes the header from the ring by replacing 
the slot with a zero data item. 

The implementation of a token ring 

A node of the ring is described as a Verilog module. The module interface 
consists of the ring input and ring output, and of the connections to the 
associated TRM processor. 

module RingNode(clk, rst, wreq, rreq, ringin, ringout, indata, status, outdata); 
input clk, rst wreq, rreq; 
input [9:0] ringin; 
input [9:0] indata;  // from processor 
output [9:0] ringout; 
output [7:0] status; 
output [9:0] outdata;  // to processor 

reg sending, receiving, rdyS;   // states 
reg [5:0] inA, outA, inB, outB;   // buffer indices 
reg [9:0] slot;    // element in ring 
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The buffers are implemented as LUT memories with 64 elements, 10 bits wide. 
Registers inA and outA are the 6-bit indices of the input buffer A, inB, outB those 
of the output buffer B. 

There are 4 separate activities proceeding concurrently: 

1. A byte is fed from indata to the output buffer B, and the pointer inB is 
advanced (incremented modulo buffer size). This is triggered by the input strobe 
wreq with ioadr = 2 (0FC2H). 

2. A byte is transferred from buffer B to the ring, and pointer outB is advanced. 
This happens in the sending state, which is entered when the buffer contains a 
message and the token appears in the slot. The sending state is left when a 
trailer is transmitted. 

3. A byte is transferred from the slot (ring input) to the input buffer A and the 
pointer inA is advanced. This is triggered by the slot containing a message 
header with the receiver’s number. A zero is fed to the ring output. 

4. A byte is transferred from buffer A to outdata. This happens when the TRM 
reads input. Thereafter the TRM must advance pointer outA by applying a wreq 
signal and ioadr = 1 

The four concurrent activities are expressed in Verilog as shown below in one 
block clocked by the input signal clk. The input of buffer A is ringin, that of buffer 
B is indata (input from processor). 

wire startsnd, startrec, stopfwd; 
wire [9:0] A, B;   // buffer outputs 

assign startsnd = ringin[9] & ringin[8] & rdyS;  //token here and ready to send 
assign startrec = ringin[9] & ~ringin[8] & ((ringin[3:0] == mynum) | (ringin[3:0] == 15)); 
assign stopfwd = ringin[9] & ~ringin[8] & ((ringin[3:0] == mynum) | (ringin[7:4] == mynum)); 

assign outdata = A; 
assign status = {mynum, sending, receiving, (inB == outB), (inA == outA)}; 
assign ringout = slot; 

always @(posedge clk) 
  if (~rst) begin  // reset and initialization 
    sending <= 0; receiving <= 0; inA <= 0; outA <= 0; inB <= 0; outB <= 0; 
    rdyS <= 0; 
    if (mynum == 0) slot <= 10'b1100000000; else slot <= 0; end 
  else begin 
    slot <= (startsnd | sending) ? B : (stopfwd) ? 10'b0 : ringin; 
    if (sending) begin // send data 
      outB <= outB + 1; 
      if (B[9] & B[8]) sending <= 0; end  // send token 
    else if (startsnd) begin // token here, send header 
      outB <= outB + 1; sending <= 1; rdyS <= 0; end 

    else if (wreq) begin 
      inB <= inB + 1; // msg element into sender buffer 
      if (indata[9] & indata[8]) rdyS <= 1; end 

    if (receiving) begin 
      inA <= inA + 1; 
      if (ringin[8]) receiving <= 0; end   // trailer: end of msg 
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    else if (startrec) begin // receive msg header 
      inA <= inA + 1; receiving <= 1; end 

    if (rreq) outA <= outA + 1;   // advancing the read pointer 
  end 

 

A software driver 

The pertinent driver software is described in Oberon. It is responsible for the 
maintenance of the prescribed protocol  and message format, and it is therefore 
presented as a module. This module alone contains references to the hardware 
through procedures PUT, GET, and BIT. Clients are supposed not to access the 
hardware interface directly. 

The module encapsulates and exports procedures Send and Rec, a predicate 
Avail indicating whether any input had been received, and a function MyNum 
yielding the node number. 

MODULE Ring; 

 CONST data = 0FC2H; stat = 0FC3H;  (*device register addresses*) 

 PROCEDURE Avail*(): BOOLEAN; 
  VAR status: SET; 
 BEGIN GET(stat, status); RETURN ~(0 IN status) 
 END Avail; 

 PROCEDURE Send*(dst, typ, len: INTEGER; VAR data: ARRAY OF INTEGER); 
  VAR i, k, w, header: INTEGER; 
 BEGIN REPEAT UNTIL BIT(stat, 1);  (*buffer empty*) 
  GET(stat, header); header := MSK(header, 0F0H) + MSK(dst, 0FH); 
  PUT(data, header + 200H); PUT(data, MSK(typ, 0FFH)); i := 0; 
  WHILE i < len DO 
   w := data[i]; INC(i); k := 4; 
   REPEAT PUT(data, MSK(w, 0FFH)); w := ROR(w, 8); DEC(k) UNTIL k = 0 
  END ; 
  PUT(data, 100H); PUT(0F02H, 300H)  (*trailer, token*) 
 END Send; 

 PROCEDURE Rec*(VAR src, typ, len: INTEGER; VAR data: ARRAY OF INTEGER); 
  VAR i, k, d, w, header: INTEGER; 
 BEGIN 
  REPEAT UNTIL ~BIT(stat, 0);  (*buffer not empty*) 
  GET(data, header); src := MSK(ROR(header, 4), 0FH); 
  GET(data, typ); GET(data, d); 
  i := 0; k := 4; w := 0; 
  WHILE MSK(d, 300H) = 0 DO 
   w := ROR(MSK(d, 0FFH) + w, 8); DEC(k); 
   IF k = 0 THEN data[i] := w; INC(i); k := 4; w := 0 END ; 
   GET(data, d) 
  END ; 
  len := i 
 END Rec; 

 PROCEDURE MyNum*(): INTEGER; 
  VAR x: INTEGER; 
 BEGIN GET(stat, x); RETURN MSK(ROR(x, 4), 0FH) 
 END MyNum; 
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END Ring. 

Because the TRM is a word-addressed machine, the data to be transmitted are 
arrays of integers, whereas the ring interface transmits bytes as elements of a 
packet. Each array element must therefore by sent over the ring as four bytes. 
Procedure Send, after composing and sending the header byte, unpacks each 
integer into 4 bytes with the aid of a rotate instruction (ROR). The Rec procedure 
packs 4 consecutive bytes into an integer (word) by rotating and masking. (The 
second byte of each message is the parameter typ, which is not used in this 
context). 

In PUT and GET operations, the first parameter indicates the address of the 
interface to be accessed. Here 0FC2H is the address of the data port, and 0FC3H 
that of the status. The status consists of 8 bits. It contains the following fields: 

bit 0 input buffer empty  (in = out) 
bit 1 output buffer full  (in = out) 
bits 2, 3 0 
bits 4-7 ring node number 

A test setup 

For testing and demonstrating the Ring with 12 nodes we use a simple test 
setup. It involves the program TestTRMRing for node 11, and the identical 
program Mirror for all nodes 0 – 10. The former is connected via the RS-232 link 
to a host computer running a general test program TestTRM for sending and 
receiving numbers. The main program TestTRMRing (running on TRM) accepts 
commands (via RS-232) for sending and receiving messages to any of the 12 
nodes. Program Mirror then receives the sent message and returns it to the 
sender (node 11), which buffers it until requested by a read message command. 

Communication over the link is performed by module RS, featuring procedures 
for sending and receiving integers and other items. The following are examples 
of commands: 

TestTRM.SR 1 3 10 20 30 40 50 0 0~ 
TestTRM.SR 1 8 0 0~ 
TestTRM.SR 1 3 10 0 4 11 12 0 5 13 14 0 7 15 16 17 0 0~ 
TestTRM.SR 2~   receive message 

The first command sends to node 3 the sequence of numbers 10, 20, 30, 40, 50. 
The second sends the empty message to node 8, and the third sends to node 3 
the number 10, to node 4 the items 11 12, to node 5 the numbers 13, 14, and to 
node 7 the numbers 15, 16, 17. 
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Fig. 4.2. The test setup 

MODULE TestTRMRing; 
 IMPORT RS, Ring; 
 VAR cmd, dst, src, x, len, typ, s, i: INTEGER; 
  buf: ARRAY 16 OF INTEGER; 
BEGIN 
 REPEAT RS.RecInt(cmd); 
  IF cmd = 0 THEN RS.SendInt(Ring.MyNum()) 
  ELSIF cmd = 1 THEN  (*send msg*) 
   RS.RecInt(dst); 
   REPEAT len := 0; RS.RecInt(x); 
    WHILE x # 0 DO buf[len] := x; INC(len); RS.RecInt(x) END ; 
    Ring.Send(dst, 0, len, buf); RS.RecInt(dst) 
   UNTIL dst = 0; 
   RS.SendInt(len) 
  ELSIF cmd = 2 THEN  (*receive msg*) 
   IF Ring.Avail() THEN 
    Ring.Rec(src, typ, len, buf); 
    RS.SendInt(src); RS.SendInt(len); i := 0; 
    WHILE i < len DO RS.SendInt(buf[i]); INC(i) END 
   END 
  ELSIF cmd = 3 THEN RS.SendInt(ORD(Ring.Avail())) 
  END ; 
  RS.End 
 UNTIL FALSE 
END TestTRMRing. 

MODULE Mirror; 
 IMPORT Ring; 
 VAR src, len, typ: INTEGER; 
  buf: ARRAY 16 OF INTEGER; 
BEGIN  
 REPEAT Ring.Rec(src, typ, len, buf); Ring.Send(src, 0, len, buf) UNTIL FALSE 
END Mirror. 

Broadcast 

The design presented here was, as already mentioned, intentionally kept simple 
and concentrated on the essential, the transmission of data from a source to a 
destination node. A single extension was made, first because it is useful in many 
applications, and second in order to show that it was easy to implement thanks to 
a sound basis. This is the facility of broadcasting a message, that is, to send it to 
all nodes. The ring is ideal for this purpose. If the message passes once around 

TestTRM 

V24 

TestTRMRing 

RS 

Mirro 

Ring Ring 

Mirro 

Ring 

PC PC TRM Node 11 Node 10 Node 0 

RS-232 link 



 51 

the ring, simply all nodes must be activated as receivers. We postulate that 
address 15 signals a broadcast. There are only two small additions to the circuit 
are necessary, namely the addition of the term ringin[3:0] = 15  in the expression 
for startrec, and of the term ringin[7:4] = mynum in that of stopfwd. 

Discussion 

The presented solution is remarkably simple and the Verilog code therefore brief 
and the circuit small. This is most essential for tutorial purposes, where the 
essence must not be encumbered by and hidden in a myriad of secondary 
concerns, although in practice they may be important too. 

Attractive properties of the implementation presented here are that there is no 
central agency, that all nodes are perfectly identical, that no arbitration of any 
kind is necessary, and that the message length is not a priori bounded. No length 
counters are used; instead, explicit trailers are used to designate the message 
end. All this results in a simple and tight hardware. 

The data path of the ring is widened by 2 bits, a tag for distinguishing data from 
control bytes, which are token, message header, and message trailer. Actually, a 
single bit would suffice for this purpose. Two are used here in order to retain an 
8-bit data field also for headers containing 4-bit source and destination 
addresses. 

The simplicity has also been achieved by concentrating on the basic essentials, 
that is, by omitting features of lesser importance, or features whose function can 
be performed by software, by protocols between partners. The circuit does not, 
for example, check for the adherence to the prescribed message format with 
header and trailer. We rely on the total “cooperation” of the software, which 
simply belongs to the design. In this case, the postulated invariants can be 
established and safeguarded by packing the relevant drivers into a module, 
granting access to the ring by exported procedures only. 

A much more subtle point is that this hardware does not check for buffer 
overflow. Although such overflow would not cause memory beyond the buffers to 
be affected, it would overwrite messages, because the buffers are circular. We 
assume that overflow of the sending buffer would be avoided by consistent 
checking against pending overflow before storing each data element, for 
example, by waiting for the buffer not being full before executing any PUT 
operation: 

REPEAT UNTIL ~BIT(adr, 1) 

In order to avoid blocking the ring when a message has partially been stored in 
the sending buffer, message sending is not initiated before the message end has 
been put into the buffer (signal rdyS). This effectively limits the length of 
messages to the buffer size (64), although several (short)  messages might be 
put into the buffer, and messages being picked from the buffer one after the 
other. 
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A much more serious matter is overflow of the receiving buffer. In this case, the 
overflowing receiver would have to refuse accepting any further data from the 
ring. This can only be done by notifying the sender, which is not done by the 
presented hardware. For such matters, communication protocols on a higher 
level (of software) would be the appropriate solution rather than complicated 
hardware. 

We consider it essential that complicated tasks, such as avoiding overflow, or of 
guaranteeing proper message formats, can be left to the software. Only in this 
way can the hardware be kept reasonably simple. A proper module structure 
encapsulating a driver for the ring is obviously necessary.  
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Niklaus Wirth 

PART 5 

The principle of Cache Memories 

The introduction of a DMA for the DDR memory tripled its access speed. 
Nevertheless, it remains an unsatisfactory solution. The programmer does not 
wish to consider the memory as an array of blocks that can be written and read 
back. He wishes the large memory to be the memory, and any problems arising 
from using a DDR with wide access path to be problems of the hardware 
implementation. Considering this wish led to the concept of a cache. 

A cache is a memory lying in the path between the processor and the memory. It 
is faster than the large memory, connects to it with a wide bus, and to the 
processor with a narrower bus. A cache mechanism handles all data transfers. 

There exist several types of cache arrangements and mechanisms. The general 
idea is the following: 

Let there be a main memory with 2n words and a fast cache memory with 2m 
words, where m << n. This cache is regarded as consisting of 2m-k groups of 2k 
words. Each group is called a cache line. Its length 2k is equal to the access port 
width of the main memory. Data to and from the main memory are always 
transferred in groups of 2k consecutive words forming a cache lines. The 
relatively large access time of large memories is compenstaed by a wider access 
path. 

In addition to the cache memory, we introduce a table (array) T of 2m-k entries, 
one for each cache line, called tag. A tag is the address of the associated cache 
line in main memory. When a word is to be read, the line in which it lies is read 
into any (free) line of the cache, and the group’s address is stored in the 
corresponding tag.  Actually, before reading a line, the table of tags is searched 
for the given address. If found, the line is aleady present in the cache and 
reading from main memory can be avoided. As the cache is much faster than 
main memory, this results in a significant gain in speed. Finding the given 
address is called a hit, not finding it a miss. The gain in speed depends 
significantly on the probability of hits. It is surprisingly large due to the fact that 
sequential access to consecutive words is predominant. This is particularly the 
case for reading instructions. 

This scheme implies that the entire table of tags T must be searched to find the 
address. Evidently, a sequential search is out of the question. A sufficiently 
efficient solution requires an associative memory, where not a content is 
delivered given an address, but rather an address given a content, namely the 
address of the tag containing the memory address. This scheme is called a (fully) 
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associative cache. Such memories, however, are unpopular, because they 
require a lot of circuitry, essentially a comparator for every element of the table of 
tags. Simpler, but still effective solutions exist. 

 

The direct mapped cache 

Here we will present only the simplest solution, the direct-mapped cache. It also 
uses a cache organized as a matrix, i.e. an array of cache lines, and a table of 
tags, one entry per cache line. The time-consuming search is avoided by 
mapping all blocks of the cache size 2m directly onto the cache. Then all words 
with address a MOD 2m = b, i.e. with the last m bits equal to b, correspond to the 
cache word with address b. The tag table entry T[b] then contains the address of 
the block in main memory containing the cache line C[b]. 

 

The constants k, m, n are determined by the available hardware components. In 
the present case (ML-505 board), the memory size is 256 MB = 228 bytes. As we 
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deal with words rather than bytes (4 per word) a word address consists of n = 26 
bits. The DDRAM’s access path is 256 bits, i.e. 8 words wide. Hence k = 3.The 
cache memory is implemented as a single block RAM with 1K = 210 words. 
Hence m = 10-k = 7. The main memory then consists of 216 blocks of 1K words, 
and an address a consists of 3 fields: 

Madr 16 bits a[25:10] block in memory 
Tadr 7 bits a[9:3] line in block 
Wadr 3 bits a[2:0] word in line 

 

We summarize the operations involved in accessing a word in memory: 

1.   Compare Madr with T[Tadr]. 
2a. If equal, the desired word is in the cache at address [Tadr, Wadr]. 
2b. If not equal, the word is not in the cache. The cache line is fetched from 

address [Madr, Tadr, 0] in memory and stored at address Tadr in the cache. 
Then the word is selected at Wadr in the line. 

In case 2b, the line is overwritten in the cache. The old line is lost. This implies 
that the line must be stored in main memory beforehand. This can be omitted, if 
no word in the line had been overwritten (by any Store instruction) since the line 
had been loaded. For this purpose, an additional bit in the tag memory is 
introduced for each entry, showing whether or not any word in the line had been 
modified. This bit is called modif. Unless it had been set by a Store instruction, 
the cache line need not be written back. The bit is cleared whenever a cache line 
is loaded. Accordingly, we expand step 2b to 

2b. If not equal: Store line at Tadr into memory at address [T[Tadr], Tadr, 0], if 
modif[Tadr] = 1. Then fetch cache line at [Madr, Tadr, 0]. 

Implementing the cache 
We now present our implementation of the direct cache for the TRM in detail. We 
recall that the SDRAM has a capacity of 256 MB, and the cache contains 1K 
words. This is only half the TRM’s local memory. We remove the upper half from 
the cache mechanism and map addresses 0FFFFFC0H – 0FFFFFFFFH to the 
upperhalf with addresses 400H – 0FFFH. This range includes I/O addresses and 
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Fig. 5.3. Direct mapping with tags 
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the stack. The software stack is frequently accessed , which justifies its exclusion 
from the cache. 

 

Fig. 5.4.  Cache memory C with tag table T 

Table T must provide fast access and is therefore implemented as an LUT RAM 
similar to the TRMs register bank. It consists of 16 +1 slices of RAM128X1D with 
27 entries. 

The access mechanism for SDRAM is largely taken over from the previous 
version with DMA. However, the complexity of the setup and of the algorithm to 
access the memory suggest that the state machine be moved from the device 
into the processor, i.e. from module TRM3CTop into TRM3C. The additions to 
the TRM turn out to be nontrivial and substantial. The DDR signals in the TRM 
interface now are dmain and dmaout as with DMA. Additionally there are the 
address ddradr and the control outputs dmard, dmawr, ddwr, ddrd, and the state 
input DDstat.: 

module TRM3C( 
input clk, rst, stall, 
input irq0, irq1, 
input[31:0] inbus, 
output [5:0] ioadr, 
output iord, iowr, 
output [31:0] outbus, 
input [2:0] DDstat,   // dma/ddr connections 
input [31:0] dmain, 
output dmard, dmawr, ddrd, ddwr, 
output [22:0] ddradr, 
output [31:0] dmaout); 

The new wires and registers are: 

reg caEnb;   // cache enable and states 
reg Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12; 
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reg [2:0] wcnt;  // DMA word count 
reg [11:0] dmaAdr; 
reg [22:0] DDadr; 
reg [26:0] adrR; 

wire [26:0] adr; 
wire Twr, Twr1, miss, missE, modif, dbit, adrHi, modif; dmEnb; 
wire [6:0] Tadr; 
wire [15:0] Madr; 
wire [16:0] Tin, Tout; 

Twr (and Twr1) are the write enables for the tags. Miss signals cache misses, 
and it is active when the address part Madr does not match the corresponding 
tag entry (Tout), and if not the uppermost 1K block of memory is addressed 
(~adrHi). The table of tags is defined by 

genvar i; 
generate   // tags for cache 128 x (16+1) 
  for (i = 0; i < 17; i = i+1) 
  begin: tags 
    RAM128X1D #(.INIT(128'h00000000000000000000000000000000)) 
 TAG( 
 .A(Tadr),  // r/w adr, controls D, SPO 
 .D(Tin[i]), 
 .SPO(), 
 .DPRA(Tadr),  // read only adr, controls DPO 
 .DPO(Tout[i]), 
 .WCLK(clk), 
 .WE((i == 16) ? Twr1 : Twr)); 
  end 
endgenerate 

The signal adr is now extended from 12 bits to 26 bits. The dma-Signals are 
taken over from the DMA implementation. 

assign adr = ((irs == 7) ? 0 : AA[26:0]) + {19'b0, off}; 
assign dmadr = (dmEnb) ? dmaAdr : {1’b0, adrHi, adr[9:0]}; 
assign dmwr = (dmEnb) ? dmawr : ST &  ~miss; 
assign dmin = (dmEnb) ? dmain : B; 

assign ddradr = DDadr; 
assign dmaout = dmout; 
assign adrHi = (Madr == 16'hffff); 
assign miss = ~(Madr == Tout[15:0]) & ~adrHi; 
assign missE = miss & caEnb; 
assign Tadr = adr[9:3]; 
assign Madr = adr[25:10]; 
assign Tin = {dbit, Madr}; 
assign modif = Tout[16]; 

The heart of the cache system is the state machine controlling data transfers 
between SDRAM (DDR2) and cache. It is triggered out of the idle state whenever 
a cache miss occurs. We chose the one-hot form of state machine with states Q0 
– Q12. The – after many considerations – obvious solution is to extend the 
already present rudimentary state machine, which stalls the LDR instruction for 
one cycle, from 2 to 13 states with the following assocuated actions: 
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Q0 idle 
Q1 extend memory access 
Q2 initialize DMA 
Q3, Q4 transfer 8 words from cache to buffer 
Q5 wait until SDRAM ready 
Q6 write buffer to SDRAM 
Q7 initialize DMA 
Q8 wait until SDRAM ready 
Q9 read buffer from SDRAM 
Q10, Q11 wait until data ready 
Q12 transfer 8 words from buffer to cache 

The state machine is described by the following diagram (MEM = LDR | ST). 

 

Fig. 5.5. Cache control state machine 

In Verilog, the state machine is expressed by the following clocked statements. 

always @ (posedge clk) begin  // cache state machine 
  Q0 <= ~rst | Q0 & ~MEM | Q1 & ~missE | Q12 & wc7; 
  Q1 <= Q0 & MEM;  // Twr1 
  Q2 <= Q1 & missE & modif; 
  Q3 <= Q2 | Q4 & ~wc7; 
  Q4 <= Q3;  // dmard 
  Q5 <= Q4 & wc7 | Q5 & DDstat[2]; 
  Q6 <= Q5 & ~DDstat[2];  // ddwr 
  Q7 <= Q6 | Q1 & missE & ~modif; // Twr 
  Q8 <= Q7 | Q8 & DDstat[2]; 
  Q9 <= Q8 & ~DDstat[2];  // ddrd 
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  Q10 <= Q9 | Q10 & DDstat[0]; 
  Q11 <= Q10 & ~DDstat[0] | Q11 & ~DDstat[0]; 
  Q12 <= Q11 & DDstat[0] | Q12 & ~wc7;  // dmawr 
end 

Unfortunately it turned out that the condition miss cannot be established in a 
single clock cycle. adr is computed in one cycle, but the comparison Madr = Tout 
takes a second cycle. We therefore must resort to the trick of inserting a register 
(adrR) in the signal path, not the least because in this way the load (fanout) 
condition can be met. This is of no negative consequence for the LDR instruction. 
However, the ST instruction now also takes a second cycle, whereas this had not 
been necessary before. The stall condition is asserted in the second cycle 
unconditionally by both the LDR and ST instructions. Thereafter it is asserted by 
the miss condition, and by the state machine in all states except Q0 and Q1. 

assign dmEnb = ~Q0 & ~Q1; 
assign stallC = (Q0 & MEM) | (Q1 & missE) | dmEnb; 
assign stall0 = stallM | stallD | stallC | stall; 

The state machine controls the data transfer by the signals dmard, dmawr, ddrd, 
and ddwr (control signals to DDR and DMA in the interface to DDRController). 
wcnt is the counter that controls the dma-transfer by counting 8 words. DDstat[2] 
means : “DDR controller busy”, and DDstat[0] means “DDR output ready”. 

always @ (posedge clk) begin 
  adrR <= adr; 
  DDadr <= Q2 ? {Tout[15:0], Tadr} : Q7 ? adr[25:3] : DDadr; 
  dmaAdr <= (Q2|Q7) ? {2'b0, Tadr, 3'b0} :  (Q4|Q12) ? dmaAdr + 1 : dmaAdr; 
  wcnt <= (Q2|Q7) ? 0 : (Q4|Q12) ? wcnt + 1 : wcnt; 
end 

Noting that states Q3, Q4 and Q12 are actually repeated 8 times, we conclude 
that an access with cache miss costs either 19 or 36 cycles (depending on 
whether or not the cache line had been modified), whereas an access with a hit 
takes only 2 cycles. A remarkable difference! 

And this concludes the introduction of a direct cache store. It is not obvious that 
the direct cache method would prove efficient. After all, it seems likely that cache 
misses are frequent with 216 lines mapping from SDRAM to the same line in the 
cache. But in fact the direct-mapped cache proved quite satisfactory, considering 
its relative simplicity. An intermediary method between fully associative and 
direct mapped cache is the n-way associative cache. Here n tag tables and n 
cache memories coexist, and if any one of the tags in corresponding lines 
matches the desired address, the associated cache yields the word to be 
accessed. Only n comparators are needed. In present commercial processors up 
to 8-way associative caches are provided. A much simpler and hardly less 
effective solution is to double or quadruple the size of the cache. 

Typically, separate caches are provided for data and program access. Here we 
have shown only a data cache. A program cache is simpler, because instructions 
are read only. No modif condition and no write-back are needed. 
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