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Although the data type SET had been introduced in 1970 in Pascal and retained in Modula and 
Oberon, it seems to remain little appreciated. The idea stemmed originally form C.A.R. Hoare out 
of an attempt to raise types like Bits and Bitset onto a higher level of mathematically appealing 
abstraction. The key idea was to regard the bits of a computer word as a set of integers, namely 
the numbers of the one bits. In Pascal, the declaration of a set type explicitly specified the type of 
the set’s elements. It is typically an enumeration or a subrange type. For Oberon, the set type 
was chosen to be not generic, but that the elements were fixed to small integers ranging from 0 to 
n, the wordsize. Examples with n = 8 are the following: 

0 00000000 {} 
1 00000001 {0} 
5 00000101 {0, 2} 
55H 01010101 {0, 2, 4, 6} 

The disregard of most programmers for this type may be due to the restriction of elements to 
small integers. But more so, I suspect, because programmers fear a heavy mechanism to lie 
behind the set concept, possibly involving dynamic, linked data structures, resulting in a slow 
implementation. One must be aware that SET means “Set of small integers”. 

But the set concept does occur, even if not expressed in the proposed notation. A well-known 
example are status and command registers of device interfaces, where individual bits have their 
specific, independent meanings. Here, a more natural formulation would be highly desirable, 
rather than an “encoding” as an integer. Another example is a sequence of Boolean terms, for 
example 

(n = 2) OR (n = 3) OR (n = 5) OR (n = 7) OR (n = 11) OR (n = 13) OR (n = 17) 

which is much more simply expressed as 
n IN {2, 3, 5, 7, 11, 13, 17} 

This note is intended to encourage (Oberon) programmers to make use of this data type, and to 
show that it is not only convenient but also highly efficient. 

In the language Oberon, a value of type SET is represented as a word of 32 bits. The operators 
are set union (+), intersection (*), difference (-), and symmetric difference (/). There is set 
complementation (unary minus), and the relation of equality and set inclusion. A simple example 
will reveal that a very efficient implementation is quite obvious. Let s0 = {0, 1} and s1 = (0, 2}. 
Then 

s0 + s1 = {0, 1, 2} s0 – s1 = {1} 
s0 * s1 =  {0} s0 / s1 = {1, 2} 

Evidently, the set operations are to be represented by simple and fast logical operations available 
in every computer, namely 

union or 0011 or 0101 = 0111 
intersection and 0011 and 0101 = 0001 
difference and not  (bic) 0011 and 1010 = 0010 
sym. difference xor 0011 xor 0101 = 0110 

Set complementation is implemented by a not instruction, and inclusion follows from 

s0 ⊆ s1  ≡  s0 – s1 = {} 



Accordingly, the compiled code for the ARM processor and the following module consists of only 
a few instruction. Note that here we make use of the facility to have variables allocated in 
registers (here s0 in R0, s1 in R1, and s2 in R2). 

MODULE M; 
 PROCEDURE* P; 
  VAR s0, s1, s2: SET; 
 BEGIN s0 := s1 + s2; s0 := s1 * s2; s0 := s1 - s2; s0 := s1 / s2; 
  s0 := -s1; s0 := s0*s1 + s0/s1; 
 END P; 
END M. 

   3  E1810002 OR   R0 R1 R2 s0 := s1 + s2  
   4  E0010002 AND  R0 R1 R2 s0 := s1 * s2 
   5  E1C10002 BIC  R0 R1 R2 s0 := s1 - s2 
   6  E0210002 XOR  R0 R1 R2 s0 := s1 / s2 
   7  E1E00001 MVN  R0 R0 R1 s0 := -s1 
   8  E0009001 AND  R9 R0 R1 
   9  E0208001 XOR  R8 R0 R1 
  10  E1890008 OR   R0 R9 R8 

The generation of set values is handled at compile-time whenever possible, i.e. when the 
elements are constants.  

MODULE M; 
 PROCEDURE* P; 
  VAR s0: SET; 
 BEGIN s0 := {}; s0 := {0}; s0 := {8, 10 .. 12, 15}; 
 END P; 
END M. 

  11  E3A00000 MOV  R0 R0 0 s0 := {} 
  12  E3A00001 MOV  R0 R0 1 s0 := {0} 
  13  E3A09C9D MOV  R9 R0 40192 s0 := {8, 10 .. 12, 15} 
  14  E1A00009 MOV  R0 R0 R9 

The cases where the set elements are general expressions are more intricate. In fact they pose a 
genuine challenge to the compiler designer. The ARM processor fortunately features an 
attractive, regular instruction set. Its outstanding property is that within one instruction and one 
cycle both an arithmetic or logical operation, and a shift of the second operand may occur. This 
leads to the following surprisingly short code for the statements shown below. (Note that LSL 
means “logical shift left”. m is in register R11, n in R10). 

MODULE M;  (*sets*) 
 PROCEDURE* P(m, n: INTEGER); 
  VAR s0, s1, s2: SET; 
 BEGIN s0 := {m}; s0 := {0 .. n}; s0 := {m .. n}; s0 := {m+n .. m-n}; 
  IF n IN s0 THEN s0 := {0} END ; 
  IF s1 <= s2 THEN s0 := {4} END 
 END P; 
END M. 

   3  E3A08001 MOV  R8 R0 1 
   4  E1B00B18 MOV  R0 R0 R8 LSL R11 s0 := {m} 

   5  E3E09001 MVN  R9 R0 1 
   6  E1E00A19 MVN  R0 R0 R9 LSL R10 s0 := {0 .. n} 

   7  E3E09001 MVN  R9 R0 1 
   8  E1E09A19 MVN  R9 R0 R9 LSL R10 
   9  E3E08000 MVN  R8 R0 0 
  10  E0090B18 AND  R0 R9 R8 LSL R11 s0 := {m .. n} 

  11  E09B900A ADD  R9 R11 R10 R9 := m+n 
  12  E05B800A SUB  R8 R11 R10 R8 := m-n 
  13  E3E07001 MVN  R7 R0 1 
  14  E1E07817 MVN  R7 R0 R7 LSL R8 
  15  E3E06000 MVN  R6 R0 0 
  16  E0070916 AND  R0 R7 R6 LSL R9 s0 := {m+n .. m-n} 



  17  E3A09001 MOV  R9 R0 1 
  18  E1100A19 TST  R0 R0 R9 LSL R10 IF n IN s0 THEN 
  19  0A000000 BEQ        0 
  20  E3A00001 MOV  R0 R0 1 

  21  E1D1E002 BIC  LNK R1 R2 IF s1 <= s2 THEN 
  22  1A000000 BNE        0 
  23  E3A00E01 MOV  R0 R0 16 
 


