PICL: A Programming Language for the Microcontroller PIC
Niklaus Wirth, Feb. 2005, rev. Oct. 2007

0. Introduction

PIC is the name of a single-chip microcontroller designed and fabricated by Microchip Inc. It
features an ALU with basic operations for arithmetic, a 128 byte data memory, a 2048 word
program memory, and 2 1/O ports (PIC 16C84). Here we present a programming language that
is tailored to the PIC’s size and architecture. The challenge lay in postulating a design allowing
to abstract from the peculiarities of the particular architecture and overcome the tedium of
coding instruction by instruction with an assembler, and yet of letting the processor’s facilities
be sufficiently transparent, that no excessively inefficient programs will be produced.

The language’s syntax is formally defined in terms of Extended BNF. Short examples of most
syntactic constructs are provided to help explaining their meanings and to illustrate the use and
structure of the language.

1. Symbols, Identifiers, Numbers and Comments

A program in the language PICL is a text to be considered as a sequence of symbols, identifier,
and numbers. Blanks and line breaks are irrelevant. Identifiers are sequences of letters and
digits. The first character must be a letter. Numbers are (unsigned) decimal integers. Symbols
are special characters or character pairs, or reserved words. No blanks must occur within
identifiers, numbers, and reserved words.

Constants, variables, and procedures are denoted by identifiers freely chosen by the
programmer. These identifiers are specified by declarations.

ident = letter {letter | digit).

integer = digit {digit}.

hexdig = digit | “AH | “Bﬂl “C“l HDHl “E“l “FH.
set = “$“ hexdig hexdig.

constant = integer | set.

reserved words = BEGIN | END | INT | SET | BOOL | OR |
INC | DEC | ROL | ROR |
IF | THEN | ELSE | ELSIF | WHILE | DO | REPEAT | UNTIL |
CONST | PROCEDURE | RETURN | MODULE.

symbol = +|-|*|/|&|=|#]|<|>|<=|>=]|

20~ T CO TDHTHH = 1>

2. Data Types and Variable Declarations

There are three data types in PICL, and every variable is of a specific data type. Examples of
declarations of variables are

INT X, y BOOL b SET u, v

The type INT denotes (unsigned) integers in the range 0 to 255. The type BOOL denotes truth
values. Boolean variables are also called flags. The type SET denotes a set of 8 truths values,
numbered with an index in the range of 0 to 7.

type = INT | SET | BOOL.
VariableDeclaration = type ident {“,” ident).

3. Expressions

Expressions denote either a variable, a constant, or a computed value. The operators are
addition, subtraction for integers, and logical operators for sets. Expressions are said to be
evaluated, and the resulting value is of type INT or SET. Examples:

X X+5 X—-Yy
u*v u+v u-v NofBits(x)

When applied to operands of type INT, + and — denote addition and subtraction respectively.
When applied to operands of type SET or BOOL, + denotes inclusive disjunction (or), * denotes
conjunction (and), - denotes exclusive disjunction (xor).

expression = (ident | constant) [operator (identifier | constant)] |
ident “(* [expression] “)".
operator = H+H H_u | u&l!.

An expression may be a function call. If the function has a parameter, the actual (value)
parameter is enclosed in parentheses.

4. Conditions

A condition represents a computed truth value. It consists of either a conjunction or a
disjunction of terms, and a term is either a Boolean variable or its negation, or a comparison.
An asterisk stands for True. Examples:

X>y x=0 b ~u.2
x>=0 & x<10 x=10Ry=1

The symbol “~” denotes negation, “#" inequality.
term = ident relation (ident | constant) | [‘~"] ident [“.” indeX].

relation = “="|"#" | “<” | ">" | "<="] ">="
index = integer.

conjunction = term {"&” term}.
disjunction = term {OR disjunction}.
condition = conjunction | disjunction.

5. Statements

Statements denote actions, and are said to be executed. There are simple statements and
composite statements. The latter consist of components which are statements themselves.
Simple statements are assignments, procedure calls, and commands operating on a variable.
Assignments consist of an expression and a variable. Their execution consists of the evaluation
of the expression and the assignment of the resulting value to the variable. Examples of
assignments are:

X:=y y:=0 X=x+1 u:=u*v

Procedure calls consist of the identifier denoting the procedure to be activated, possibly
followed by a parameter:

Output(100)
Examples of commands and queries acting on Boolean variables are:

1A.0 set A.0 to true

1 ~B.3 set B.3 to false
?A.0 wait until A.O
?~B.5 wait until not B.5

The queries are meaningful only if the operand is a port variable representing an input signal.
The two ports of the PIC controller are predefined and denoted by A and B.

Examples of commands acting on integer variables are:

INC x increment x (by 1)

DEC x decrement x (by 1)

ROL x rotate x by 1 bit via carry (S.0) to the left
ROR x rotate x by 1 bit via carry (S.0) to the right

Note: The commands INC x and DEC x are not equivalent with the assignments x := x+1 and x
= x-1, because the former do not affect the status flag S.0 (carry).

assignment = identifier “:=" expression.
call = identifier [“(“ expression “)"].
command = “I" [*~"] ident [*.” indeX] |

(INC | DEC | ROL | ROR) ident.
query = “?"[*~"] ident [*.” indeX].

There are three forms of composite statements. The if statement expresses conditional
execution of its component(s), the while and repeat statements express repeated execution.

Examples of if statements are:

IFx=y THEN z := 0 END
IFx>yTHEN z :=x; x :=y;y:=z END
IFXx<yTHEN z =y ELSIFy <x THEN z := X ELSE z := 0 END

Examples of while statements are:

WHILEx>0DO z:=z +vy; x:=x-1 END
WHILEXx >y DO Xx :=x-yELSIFy>xDOy:=y—-xEND

An example of a repaet statement is:
REPEAT z .=z -y; INCXUNTILz<y
The syntax of statements is:

guardedStat = condition -> statseq.
ifstat = IF condition THEN StatSeq
{ELSIF condition THEN StatSeq}
[ELSE StatSeq] END .
whilestat = WHILE condition DO StatSeq
{ELSIF condition DO StatSeq} END .
repeatstat = REPEAT statseq (UNTIL condition | END).
StatSeq = statement {*;” statement}.
statement = assignment | call | command | query | ifstat | whilestat | repeatstat.

A repeat statement without a termination condition denotes a repetition forever.

6. Procedure Declarations

Procedures, also called subroutines, are sequences of statements that can be activated by
procedure calls. A procedure may have a single parameter. It may have local variables that are
visible only within the procedure. If a procedure has a result, it is called a function. Functions
can be used in assignments. Their result type is indicated by the type symbol in the heading of
the procedure, and the result is specified at its end.

Examples of a procedure and a function declaration are:

PROCEDURE Send(INT x); {B.6 = clock, B.7 = data}
INT n;
BEGIN n :=8§;
REPEAT !~-B.6;
IF x.0 THEN !IB.7 ELSE '~B.7 END ;
1B.6; ROR x; DEC n
UNTILnh=0
END Send

PROCEDURE NofBits(INT x): INT;
INT n, cnt;
BEGIN cnt :=0; n :=8;
REPEAT
IF x.0 THEN INC cnt] END ;
ROR x; DEC cnt
RETURN cnt=0
END NofBits

The syntax of procedure declarations is

ProcedureDeclaration = ProcedureHeading ";" ProcedureBody.
ProcedureHeading = PROCEDURE ident ['(" FormalParameter ")"] [*:” type].
ProcedureBody = [{VariableDeclaration ";"}]

[BEGIN statseq][RETURN expression] END [ident].
FormalParameter = type ident.

The declaration of a procedure must textually precede any calls of the procedure. Therefore,
recursion cannot occur. If the heading contains the specification of a result type for a function
procedure, a return statement at the end of the body must specify the result.

7. Modules

An entire PICL program is called a module. It consists of a heading, specifying its name,
constant and variable declarations, procedure and function declarations, and a sequence of
statements, the main body.

Module = MODULE ident";"
[CONST {ident "=" constant ";"}]
[type {ident {"," ident} ";"}]
{ProcedureDeclaration ";"}
[BEGIN statseq] END ident ".".

The following sample program rotates a single zero bit among the flags x.0 — x.7.

MODULE Rotate;
CONST delay = 250;
INT x, dO, di1;
BEGIN x := 1,
I1S.5; B:=0; !~S.5;
REPEAT ROL x; B := x; d1 := delay;
REPEAT DEC d1; d0 := delay;
REPEAT DEC d0

UNTIL dO = 0;
DEC d1
UNTILd1=0
END
END Rotate.

Note: The first line of the procedure body serves to configure the controller. A, B, S are
predeclared identifiers. A and B denote the controller’s input and output ports, and S denotes
the controller’s status register. Every bit of A and B must be configured, and is initially set to
input. In this example, all 8 ports B.0, B.1, ... B.7 are set to output. The inner repetitions serve
as delays. Assuming that LEDs are connected to the ports, the lights rotate and indicate the
speed of the process.

The Syntax of PICL

ident = letter {letter | digit}.

integer = digit {digit}.

digit = "0"|"1"|"2" | "3" | "4"|"5" | "6" | "7"|"8" | "9".
hexdig = digit | “A“| “B* | “C" | “D" | “E" | “F".

set = “$" hexdig hexdig.

constant = integer | set.

type =INT | SET | BOOL.
VariableDeclaration = type ident {"," ident}.

expression = (ident | integer) [operator (ident | integer)] |
ident "(" [expression] ")".

operator = ("+"|"-"["™").

relation ="="|"#" | "<" | "<="] ">" | ">=",

Bterm = ident relation (ident | integer) | [*~"] ident [*.” index].

index = integer.

conjunction = Bterm ["&" conjunction].

disjunction = Bterm ["OR" disjunction].

condition = conjunction | disjunction | “*".

assignment = ident ":=" expression.
call = ident ["("expression")"].
command = "I" (["~"]ident ["." index]) | (INC | DEC | ROL | ROR) ident.
query = "?"["~"] ident [*." indeX]).
IfStatement = IF condition THEN StatSeq
{ELSIF condition THEN StatSeq}
[ELSE StatSeq] END .
WhileStatement = WHILE condition DO StatSeq
{ELSIF condition DO StatSeq} END .
RepeatStatement = REPEAT StatSeq (UNTIL condition | END).
StatSeq = statement {";" statement}.
statement = [assignment | call | command | query | IfStatement | WhileStatement | RepeatStatement].

ProcedureDeclaration = ProcedureHeading ";" ProcedureBody ident.
ProcedureHeading = PROCEDURE ident ["(" FormalParameter ")"] [":" type].
ProcedureBody = [{VariableDeclaration} ";"][BEGIN StatementSequence] [RETURN expression] END ident.
FormalParameter = type ident.
Module = MODULE ident ";"
[CONST {ident "=" constant ";"}]
[type {ident {"," ident} ";"}]
{ ProcedureDeclaration ";"}
[BEGIN StatementSequence] END ident ".".

