

1

1

The Language PICL and its Implementation

Niklaus Wirth, 20. Sept. 2007

1. Introduction

PICL is a small, experimental language for the PIC single-chip microcomputer. The class of
computers which PIC represents is characterized by a wordlength of 8, a small set of simple
instructions, a small memory of at most 1K cells for data and equally much for the program, and
by integrated ports for input and output. They are typically used for small programs for control or
data acquisition systems, also called embedded systems. Their programs are mostly permanent
and do not change.

All these factors call for programming with utmost economy. The general belief is that therefore
programming in a high-level language is out of the question. Engineers wish to be in total control
of a program, and therefore shy away from complex languages and compiler generating code that
often is unpredictable and/or obscure.

We much sympathize with this reservation and precaution, particularly in view of the
overwhelming size and complexity of common languages and their compilers. We therefore
decided to investigate, whether or not a language could be designed in such a way that the
reservations would be unjustified, and the language would indeed be beneficial for programmers
even of tiny systems.

We chose the PIC processor, because it is widely used, features the typical limitations of such
single-chip systems, and seems to have been designed without consideration of high-level
language application. The experiment therefore appeared as a challenge to both language design
and implementation.

The requirements for such a language were that it should be small and regular, structured and
not verbose, yet reflecting the characteristics of the underlying processor. In order to understand
the challenge of bridgeing the gap between high-level abstractions and the concrete architecture,
we must first obtain a picture of the processor, reduced to its essentials.

2. The Architecture of the PIC processor

The PIC processor is a typical Harvard architecture, i.e. a von Neumann machine with separate
memories for program and data. In this experiment, we used the PIC 16C84, which uses an
internal RAM for 64 bytes of data, and an EEPROM for 2k words of program. The first 12 bytes of
data memory have special functions. They are the status register, a timer, input/ouput ports, etc.
There is only one true register, the W-Register (not part of the RAM), which acts as an
accumulator in the ALU, and on which data instructions operate. In the following diagram (see
Fig. 1) we omit the “registers” with special functions.

There is a rather small instruction set with 4 formats for

1. Byte-oriented instructions consisting of opcode and operand address:

 MOV, ADD, SUB, AND, IOR, XOR,
 DEC, INC, DECFSZ, INCFSZ (increment/decrement and skip if result is zero)

2. Byte-oriented instructions consisting of opcode and literal operand:

 MOV, ADD, SUB, AND, IOR, XOR,
 GOTO, CALL, RETURN

3. Bit-oriented instructions consisting of opcode, operand address, and bit number:

 BFS, BFC (set/clear bit)
 BTFSC, BTFSS (bit test, skip if clear/set)

2

2

4. Jump instructions with an 11-bit absolute address.

Addresses are only 7 bits long, bit numbers range from 0 to 7 (see Fig. 2).

Fig. 1 The PIC architecture

Fig. 2. PIC instruction formats

3. The Language PICL

The language is concisely defined in a separate report. Here we merely point out its particular
characteristics which distinguish it from conventional languages. Like conventional languages,
however, it consist of constant, variable, and procedure declarations, followed by statements of
various forms. The simplest forms, again like in conventional languages, are the assignment and
the procedure call. Assignments consist of a destination variable and an expression. The latter is
restricted to be a variable, a constant, or an operator and its operand pair. No concatenation of
operations and no parentheses are provided. This is in due consideration of the PIC’s simple
facilities and ALU architecture. Examples can be found in the section on code patterns below.

Conditional and repetitive statements are given the modern forms suggested by E. W. Dijkstra.
They may appear as somewhat cryptic. However, given the small sizes of programs, this seemed
to be appropriate.

ALU

W-reg

RAM

48 x 8

data bus

I/O Ports

EEPROM

2K x 14

Instr. Reg.

Instr. Decode

Prog. Counter address

literals

00 opcode d address

4 7

11 opcode literal

01 op bit address

10x address

byte-oriented data instr.

byte-oriented instr. with literal

bit-oriented data instr.

goto / call

1

3

3

Conditional statements have the form shown at the left and explained in terms of conventional
notation to the right.

[cond -> StatSeq] IF cond THEN Statseq END
[cond -> StatSeq0 |* StatSeq1] IF cond THEN Statseq0 ELSE StatSeq1 END
[cond0 -> StatSeq0 | cond1 -> StatSeq1] IF cond0 THEN Statseq0 ELSIF cond1 THEN StatSeq1END

Repetitive statements have the form:
{cond -> StatSeq} WHILE cond DO Statseq END
{cond0 -> StatSeq0 | cond1 -> StatSeq1} WHILE cond0 DO Statseq0 ELSIF cond1 DO StatSeq1END

There is also the special case mirroring a restricted form of for statement. Details will be
explained in the section on code patterns below.

{| ident, xpression -> StatSeq}

Procedures can have at most a single (value) parameter. They can be functions with a result that
can be assigned to a variable. Recursion is not allowed, and the depth of calls can be at most 8.
These restrictions are a direct consequence of architectural limitations and our effort to do without
complicated, hidden mechanisms, such as a call stack, local variables, etc. Whereas the syntax
of PICL is to provide the conveniences of high-level languages, its semantics are to mirror the
facilities and limitations of the processor clearly and honestly.

4. The PICL Compiler

The compiler consists of two modules, the scanner, and the parser and code generator. The
scanner recognizes symbols in the source text. The parser uses the straight-forward method of
syntax analysis by recursive descent. It maintains a linear list of declared identifiers for constants,
variables, and procedures.

5. Code Patterns

In order to exhibit the correspondence between language constructs and assembler code, a
sequence of short samples is listed, followed by the code generated by the compiler.

MODULE Assignments;
 CONST N = 10;
 INT x, z;
BEGIN z := x; z := N; z := 0;
END Assignments.

 0 0000080C MOVFW 0 12 move x to W
 1 0000008D MOVWF 1 13 move W to z
 2 0000300A MOVLW 10 move 10 to W
 3 0000008D MOVWF 1 13 move W to z
 4 0000018D CLRF 1 13 z := 0

Statements operating on a single operand are called operators. They are denoted by an
exclamation mark, and correspond to a single instruction.

MODULE Operators;
 BOOL b; SET s; INT x;
BEGIN !b; !~s.3;
 INC x; DEC x; ROL x; ROR x
END Operators.

 0 0000140C BSF 0 12 !b set b.0
 1 00001018 BCF 3 13 !~s.3 clear s.3
 2 00000A8E INCF 1 14 INC x
 3 0000038E DECF 1 14 DEC z
 4 00000D8E RLF 1 14 ROL x rotate x left via carry (S.0)
 5 00000C8E RRF 1 14 ROR x rotate x right via carry (S.0)

Statements testing a bit and waiting until the bit is set or reset are called queries. They are
denoted by a question mark, and they are applied to elements of input ports A and B.

4

4

MODULE Queries;
BEGIN ?A; ?~B.3
END Queries.

 0 00001C05 BTFSS 0 5 ?A wait until A.0 true
 1 00002800 GOTO 0
 2 00001986 BTFSC 3 6 ?~B.3 wait until B.3 false
 3 00002802 GOTO 2

Expressions have the simple form x op y. Both operands must be of the same type. The type
determines the operation. For example, + for integers denoted addition, + for sets denotes logical
or. If the result is assigned to the first operand, the compiler makes use of the possibility that the
result of an instruction may be written to the operand instead of the W-register. This saves one
instruction.

MODULE Expressions;
 INT x, y, z; SET u, v, w;
BEGIN z := x+3; z := y-3; z := x+y; x := x+y; z := 15-x;
 w := u + $07; w := u * $0F; w := u - v; u := u - v
END Expressions.

 0 00003003 MOVLW 3
 1 0000070C ADDWF 0 12
 2 0000008E MOVWF 1 14 z := x+3
 3 00003003 MOVLW 3
 4 0000020D SUBWF 0 13
 5 0000008E MOVWF 1 14 z := y-3
 6 0000080D MOVFW 0 13
 7 0000070C ADDWF 0 12
 8 0000008E MOVWF 1 14 z := x+y
 9 0000080D MOVFW 0 13
 10 0000078C ADDWF 1 12 x := x+y
 11 0000080C MOVFW 0 12
 12 00003C0F SUBLW 15
 13 0000008E MOVWF 1 14 z := 15-x
 14 00003007 MOVLW 7
 15 0000040F IORWF 0 15
 16 00000091 MOVWF 1 17 w := u + $07
 17 0000300F MOVLW 15
 18 0000050F ANDWF 0 15
 19 00000091 MOVWF 1 17 w := u * $0F
 20 00000810 MOVFW 0 16
 21 0000060F XORWF 0 15
 22 00000091 MOVWF 1 17 w := u - v
 23 00000810 MOVFW 0 16
 24 0000068F XORWF 1 15 u := u - v

Conditions yield a truth value. They consist of comparisons and bit tests concatenated by either
logical disjunctions (or), or by conjunctions (and). Here, the conditions are part of if statements of
the form IF cond THEN statement END.

MODULE Conditions;
 INT x, y, z, w; SET s; BOOL b;
BEGIN
 IF x = y THEN z := 0 END ;
 IF x = y & y # z & z >= w THEN z := 0 END ;
 IF x < y OR y <= z OR z > w THEN z := 0 END
END Conditions.

 0 0000080D MOVFW 0 13 y
 1 0000020C SUBWF 0 12 x - y
 2 00001D03 BTFSS 2 3 = 0? (test S.3)
 3 00002805 GOTO 5
 4 0000018E CLRF 1 14 z := 0

 5 0000080D MOVFW 0 13
 6 0000020C SUBWF 0 12 x – y

5

5

 7 00001D03 BTFSS 2 3 = 0?
 8 00002812 GOTO 18
 9 0000080E MOVFW 0 14
 10 0000020D SUBWF 0 13 y - z
 11 00001903 BTFSC 2 3 #0?
 12 00002812 GOTO 18
 13 0000080F MOVFW 0 15
 14 0000020E SUBWF 0 14 z - w
 15 00001C03 BTFSS 0 3 >=0?
 16 00002812 GOTO 18
 17 0000018E CLRF 1 14 z := 0

 18 0000080D MOVFW 0 13
 19 0000020C SUBWF 0 12 x - y
 20 00001C03 BTFSS 0 3 >=0?

 21 0000281E GOTO 30
 22 0000080D MOVFW 0 13
 23 0000020E SUBWF 0 14 z - y
 24 00001803 BTFSC 0 3 <0?
 25 0000281E GOTO 30
 26 0000080E MOVFW 0 14
 27 0000020F SUBWF 0 15 w - z
 28 00001803 BTFSC 0 3 <0?
 29 0000281F GOTO 31
 30 0000018E CLRF 1 14 z := 0

Statements preceded by an if clause are called guarded statements. They are executed only if
the guard is true.

MODULE IfStatements;
 INT x; BOOL p, q;
BEGIN
 IF p THEN x := 0-x END ;
 IF p THEN x := 1 ELSIF q THEN x := 2 END ;
 IF p THEN x := 3 ELSIF q THEN x := 4 ELSE x := 5 END
END IfStatements.

 0 00001C0D BTFSS 0 13 p.0?
 1 00002805 GOTO 5
 2 0000080C MOVFW 0 12
 3 00003C00 SUBLW 0
 4 0000008C MOVWF 1 12 x := -x

 5 00001C0D BTFSS 0 13 p.0?
 6 0000280A GOTO 10
 7 00003001 MOVLW 1
 8 0000008C MOVWF 1 12 x := 1
 9 0000280E GOTO 14
 10 00001C0E BTFSS 0 14 q.0?
 11 0000280E GOTO 14
 12 00003002 MOVLW 2
 13 0000008C MOVWF 1 12 x := 2

 14 00001C0D BTFSS 0 13 p.0?
 15 00002813 GOTO 19
 16 00003003 MOVLW 3
 17 0000008C MOVWF 1 12 x := 3
 18 0000281A GOTO 26
 19 00001C0E BTFSS 0 14 q.0?
 20 00002818 GOTO 24
 21 00003004 MOVLW 4
 22 0000008C MOVWF 1 12 x := 4
 23 0000281A GOTO 26
 24 00003005 MOVLW 5
 25 0000008C MOVWF 1 12 x := 5

While statements are sequences of guarded statements separated by “|” and enclosed in braces.
MODULE WhileStatements;

6

6

 INT x, y, z; BOOL b;
BEGIN
 WHILE x # 0 DO z := z + y; x := x – 1 END ;
 WHILE x = y & ~b DO !b END ;
 WHILE x >= y OR b DO !~b END ;
END WhileStatements.

 0 0000080C MOVFW 0 12 x
 1 00001903 BTFSC 2 3 =0?
 2 00002808 GOTO 8
 3 0000080D MOVFW 0 13
 4 0000078E ADDWF 1 14 z := z = y
 5 00003001 MOVLW 1
 6 0000028C SUBWF 1 12 x := x - 1
 7 00002800 GOTO 0

 8 0000080D MOVFW 0 13
 9 0000020C SUBWF 0 12 x - y
 10 00001D03 BTFSS 2 3 #0?
 11 00002810 GOTO 16
 12 0000180F BTFSC 0 15 ~b.0?
 13 00002810 GOTO 16
 14 0000140F BSF 0 15 !b.0
 15 00002808 GOTO 8

 16 0000080D MOVFW 0 13
 17 0000020C SUBWF 0 12 x - y
 18 00001803 BTFSC 0 3 <0?
 19 00002816 GOTO 22
 20 00001C0F BTFSS 0 15 b.0?
 21 00002818 GOTO 24
 22 0000100F BCF 0 15 !~b.0
 23 00002810 GOTO 16

Repeat statement have their test for termination at the end and are therefore executed at least
once. There is only one goto instruction jumping backward to the beginning of the repeat
statement.

MODULE RepeatStat;
 INT x, y;
BEGIN
 REPEAT x := x + 10; y := y - 1 UNTIL y = 0;
 REPEAT DEC y UNTIL y = 0
END RepeatStat.

 0 0000300A MOVLW 10
 1 0000078C ADDWF 1 12 x := x + 10
 2 00003001 MOVLW 1
 3 0000028D SUBWF 1 13
 4 0000080D MOVFW 0 13 y := y - 1
 5 00001D03 BTFSS 2 3 = 0 ?
 6 00002800 GOTO 0

 7 00000B8D DECFSZ 1 13 y := y – 1; = 0?
 8 00002807 GOTO 7

The compiler recognizes the special case, where the statement ends by decrementing a variable
and then testing it for zero, as is shown by the second statement in the preceding example. In this
case, subtraction, and test with skip are contractable into a single instruction DECFSZ
(decrement and skip if zero). This case is recognized, however, only if decrementing is done by
the DEC operator.

Procedures may have a single parameter, which is passed via the W-register, and they may have
a result, which is also passed via the W-register.

MODULE Procedures;
 INT x, y;

7

7

 PROCEDURE NofBits(INT x): INT;
 INT cnt, n;
 BEGIN cnt := 0; n := 8;
 REPEAT
 IF x.0 THEN INC cnt END];
 ROR x; DEC n
 UNTIL n = 0;
 RETURN cnt
 END NofBits;

 PROCEDURE Swap;
 INT z;
 BEGIN z := x; x := y; y := z
 END Swap;

 PROCEDURE P(INT a);
 BEGIN
 x := a + 10
 END P;

BEGIN Swap; P(y); x := NofBits(y)
END Procedures.

 0 00002819 GOTO 25
 1 0000008E NofBits MOVWF 1 14 x := W (parameter)
 2 0000018F CLRF 1 15 cnt := 0
 3 00003008 MOVLW 8
 4 00000090 MOVWF 1 16 n := 8
 5 00001C0E BTFSS 0 14 x.0?
 6 00002808 GOTO 8
 7 00000A8F INCF 1 15 !+cnt
 8 00000C8E RRF 1 14 !>x
 9 00000B90 DECFSZ 1 16
 10 00002805 GOTO 5
 11 0000080F MOVFW 0 15 W := cnt
 12 00000008 RET

 13 0000080C Swap MOVFW 0 12
 14 00000091 MOVWF 1 17 z := x
 15 0000080D MOVFW 0 13
 16 0000008C MOVWF 1 12 x := y
 17 00000811 MOVFW 0 17
 18 0000008D MOVWF 1 13 y := z
 19 00000008 RET

 20 00000092 P MOVWF 1 18 a := W
 21 0000300A MOVLW 10
 22 00000712 ADDWF 0 18
 23 0000008C MOVWF 1 12 x := a + 10
 24 00000008 RET

 25 0000200D CALL 13 Swap
 26 0000080D MOVFW 0 13 W := y
 27 00002014 CALL 20 P
 28 0000080D MOVFW 0 13 W := y
 29 00002001 CALL 1 NofBits
 30 0000008C MOVWF 1 12 x := W

6. Applications

The following two procedures show how to use PIC facilities to implement multiplication and
division (of 8-bit non-negative integers).

PROCEDURE Multiply;
 INT x, y, z, n;
BEGIN z := 0; n := 8;
 REPEAT
 IF x.0 THEN z := z+y END ;
 ROR z; ROR x; DEC n

8

8

 UNTIL n = 0
END Multiply.

zh,z := x*y 16-bit product double length register

 0 0000018E CLRF 1 14 z := 0
 1 00003008 MOVLW 8
 2 0000008F MOVWF 1 15 n := 8
 3 00001C0C BTFSS 0 12 x.0?
 4 00002807 GOTO 7
 5 0000080D MOVFW 0 13
 6 0000078E ADDWF 1 14 z := z + y
 7 00000C8E RRF 1 14 !>z rotate via carry
 8 00000C8C RRF 1 12 !>x
 9 00000B8F DECFSZ 1 15
 10 00002803 GOTO 3

PROCEDURE Divide;
 INT r, q, d, n;
BEGIN r := 0; n := 8;
 REPEAT ROL q; ROL r;
 IF r >= d THEN r := r - d; INC q END
 DEC n
 UNTIL n = 0
END Divide.

q := r DIV d; r := r MOD d; r,q form a double length register

 0 0000018C CLRF 1 12 r := 0
 1 00003008 MOVLW 8
 2 0000008F MOVWF 1 15 n := 8
 3 00000D8D RLF 1 13 !<q
 4 00000D8C RLF 1 12 !<r
 5 0000080E MOVFW 0 14
 6 0000020C SUBWF 0 12 r - d
 7 00001C03 BTFSS 0 3 <0?
 8 0000280C GOTO 12
 9 0000080E MOVFW 0 14
 10 0000028C SUBWF 1 12 r := r - d
 11 00000A8D INCF 1 13
 12 00000B8F DECFSZ 1 15
 13 00002803 GOTO 3

The following procedures serve for sending and receiving a byte. Transmission occurs over a 3-
wire connection, using the conventional hand-shake protocol. Port A.3 is an output. It serves for
signaling a request to receive a bit. Port B.6 is an input and serves for transmittithe data. B.7 is
usually in the receiving mode and switched to output only when a byte is to be sent. In the idle
state, both request and acknowledge signals are high (1).

Fig. 3. Transmission protocol

PROCEDURE Send(INT x);
 INT n;
BEGIN ?B.6; wait for ack = 1
 !S.5; !~B.7; !~S.5; n := 8; switch B.7 to output
 REPEAT
 IFx.0 -> !B.7 ELSE !~B.7 END ; apply data

req

ack

dat

9

9

 !~A.3; issue request
 ?~B.6; wait for ack
 !A.3; ROR x; reset req, shift data
 ?B.6; DEC n wait for ack reset
 UNTIL n = 0;
 !S.5; !B.7; !~S.5 reset B.7 to input
END Send;

PROCEDURE Receive;
 INT n;
BEGIN d := 0; n := 8; result to global vaiable d
 REPEAT
 ?~B.6; ROR d; wait for req
 IF B.7 THEN !d.7 ELSE !~d.7 END ; sense data
 !~A.3; issue ack
 ?B.6; wait for req reset
 !A.3; DEC n reset ack
 UNTIL n = 0
END Receive;

Another version of the same procedures also uses three lines. But it is asymmetric: There is a
master and a slave. The clock is always delivered by the master on B.6 independent of the
direction of the data transmission on A3 and B7.

Fig. 4. Master-slave configuration

When sending, the data is applied to A.3, when receiving, the data is on B.7. The advantage of
this scheme is that no line ever switches its direction, the disadvantage is its dependence on the
relative speeds of the two partners. The clock must be sufficiently slow so that the slave may
follow. There is no acknowledgement.

Master Slave
PROCEDURE Send(INT x); PROCEDURE Receive;
 INT n; INT n;
BEGIN n := 8; BEGIN d := 0; n := 8; result to global vaiable d
 REPEAT REPEAT ?~B.6; !>d; wait for clock low
 IF x.0 THEN !A.3 ELSE !~A.3 END; IF B.7 THEN !d.7 ELSE ~d.7 END; sense data
 !~B.6; !>x; !B.6; DEC n ?B.6; DEC n wait for clock high
 UNTIL n = 0 UNTIL n = 0
END Send; END Receive;

PROCEDURE Receive; PROCEDURE Send(INT x);
 INT n; INT n;
BEGIN d := 0; n := 8; BEGIN n := 8;
 REPEAT !~B.6; ROR d; REPEAT ?~B.6; wait for clock low
 IF B.7 THEN !d.7 ELSE ~d.7 END; IF x.0 THEN !A.3 ELSE !~A.3 END; apply data
 !B.6; DEC n ROR x ?B.6; DEC n wait for clock high
 UNTIL n = 0 UNTIL n = 0
END Receive; END Send;

7. Conclusions

The motivation behind this experiment in language design and implementation had been the
question: Are high-level languages truly inappropriate for very small computers? The answer is:
Not really, if the language is designed in consideration of the stringent limitations. I justify my
answer out of the experience made in using the language for some small sample programs. The
corresponding assembler code is rather long, and it is not readily understandable. Convincing

master slave A3
B6
B7

A3
B6
B7

10

10

oneself of its correctness is rather tedious (and itself error-prone). In the new notation, it is not
easy either, but definitely easier due to the structure of the text.

In order to let the regularity of this notation stand out as its main characteristic, completeness was
sacrificed, that is, a few of the PIC’s facilities were left out. For example, indirect addressing, or
adding multiple-byte values (adding with carry). Corresponding constructs can easily be added.

One might complain that this notation is rather cryptic too, almost like assembler code. However,
the command (!) and query (?) facilities are compact and useful, not just cryptic. Programs for
computers with 64 bytes of data and 2K of program storage are inherently short; their
descriptions should therefore not be longwinded. After my initial doubts, the new notation appears
as a definite improvement over conventional assembler code.

The compiler was written in the language Oberon. It consists of a scanner and a parser module of
2 and 4 pages of source code respectively (including the routines for loading and verifying the
generated code into the PIC’s ROM). The parser uses the time-honored principle of top-down,
recursive descent. Parsing and gode generation occur in a single pass.

